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Agendd

« Assigning Semantics to Concurrent Programs

« Concurrency Errors
— Detection of data races
— Detection of high-level data races and stale value errors
— Detection of deadlocks

« Reading list:
— TBD
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Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y => Global Vars
a, b =>Local Vars

X
Y

] a=Y
2 b=X

« What are the final values for 'X’, 'Y', ‘a’ and ‘b’?¢
~-X=1, Y=2, a=2, b=2¢

* Depends on the interleavings of the statements
— Sequential Consistency [Lamport’/9]
— Program behavior = set of inferleavings
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Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y =>Global Vars
a, b =>Local Vars

X
Y

] a=Y
2 b=X

=]

>
1
>

X=1
Y=2 a=Y a=Y

a=Y b =X Y=2
b=X Y=2 b=X

a=2, b=1 a=0, b=1 a=0, b=1



Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y => Global Vars
a, b => Local Vars
X =1 a=Y
Y=2 b=X
X =1 X =1 X =1 a=Y a=Y a=yY
Y=2 a=Y a=Y b=X X =] X =1
a=Y b=X | Y=2 X = Y=2 b = X
b=X Y=2 b=X Y=2 b=X y=9
a=2,b=1 a=0,b=1 a=0, b=1 a=0, b=0 a=0, b=1 a=0, b=1




Sequential Consistency

* Instructions are executed by the order they
appear in the program

« Memory behaves as a shared array
— Reads and writes are effective immediately

« Be aware that:

— This is naturally true for sequential programs...
— But it is not frue for concurrent programs!
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State explosion in concurrent

orograms
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State explosion in concurrent
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State explosion in concurrent
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State explosion in concurrent
orograms

7 states 6 states 30 states
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Consistent run:
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Consistent run
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Inconsistent run — program error




Consistent runs — How many?¢

7states 6 states 30 states
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Concurrency Errors
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Common Concurrency Errors

» Data races (atomicity violations)
« Ordering violations

« Unintended sharing

» High-level atomicity violations

 Deadlocks and livelocks



Data Race

« Code is supposed to execute atomically
— Multiple dependent instructions to manipulate some data

* Interleaving with instructions of another thread
that access the same data

Thread 1 Thread 2
void Bank::Deposit(int a) void Bank::Withdraw(int a)
{ {
int t = bal; int t = bal;
bal = t + a; bal = t - a;

} }



Data Race

« Code is supposed to execute atomically
— Multiple dependent instructions to manipulate some data

* Interleaving with instructions of another thread
that access the same data

Thread 1 Thread 2
void Bank::Deposit(int a) void Bank::Withdraw(int a)
{ {
int t = bal_——/ int t = bal;
bal = t + a; __bal =t - a;
} }

The widthdraw is not reflected in the final balance!



Ordering Violation

* Missing or incorrect synchronization between
two processes
(e.g., a producer and a consumer)

Thread 1 Thread 2

work = null;
CreateThread (Thread 2); ConsumeWork( work );
work = new Work();



Ordering Violation

* Missing or incorrect synchronization between
two processes
(e.g., a producer and a consumer)

Thread 1 Thread 2

work = null;

CreateThread (Thﬁggg_Z}f———”"——_—ConsumeWork( work );

work = new Work();

‘work’ Is not initialized yet!



Unintended Sharing

» Processes accidentally share data
— ‘work()' is executed by both threads concurrently

void work() {
static int local = ©;

local += ..

Thread 1 Thread 2

;ork() ;ork()



High-Level Data Race

* Wrongly defined atomic blocks

synchronized(this) void getX() { synchronized(this) void getY() {
return pair.x$ return paerY,

}

Thread 1 Thredd 2

synchronized(this)
void setPair(in
pair.x = X;
pair.y = y;

// synchrnzd
// synchrnzd

return x == vy,
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Deaqadlock

* Processes are waiting forever for each other

Thread 1 Thread 2
AcquireLock (A); —» AcquirelLock (B);
AcquireLock (B); = » AcquirelLock (A);
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Common Concurrency Errors

» Data races (atomicity violations)

» Ordering violations « symptom
» Uninfended sharing
* High-level atomicity violations

 Deadlocks and livelocks
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Common Concurrency Errors

» Data races (atomicity violations)

* High-level atomicity violations

 Deadlocks and livelocks



Concurrency Errors

Data Races
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Whatis a Data Race?¢

* TwWo conflicting memory accesses happening

concurrently

* Which means:

— They access the same memory location

— At least one is an update (write)



Whatis a Data Race?¢

* TwWo conflicting memory accesses happening

concurrently

* Which means:

— They access the same memory location

— At least one is an update (write)

 Write — Write
 Write — Read
« Read — Write

Read — Read
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What means
"Happens Concurrently’e

* TWO events A and B happen concurrently if both
A, B
and
B, A
are possible sequentially consistent executions of
those events



Assigning Semantics to
Concurrent Programs

X=Y=0

A—X =1 a=Y

B—Y =2 b=X
X=1 X=1 X =] a=Y a=Y a=Y
Y=2 a=Y a=Y b=X | X=1 X=1
a=Y b=X Y =2 X =] Y =2 b =X
b=X Y =2 b=X Y =2 b=X Y =2
a=2,b=1 a=0,b=1 a=0,b=1 a=0,b=0 a=0,b=1 a=0, b=]



Assigning Semantics to
Concurrent Programs

X=Y=0

A—X = a=Y

B—sY=2 b =X
x=1A) X=1A | X=14| a=Y | a=Y | a=Y
Y=28 ' a=Y a=Y b = X x=V3 X=1A
a=Y | b=X J Y=28 )GHA) Y=28 | p=x
b=X | Y=2 b=X Y=28 b=X y=9B
a=2,b=1 a=0,b=1 a=0,b=1 a=0,b=0 a=0,b=1 «a=0, b=1
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Assigning Semantics to
Concurrent Programs

X=Y=0

A—X = a=Y

B—sY=2 b =X
x=1A) X=1A | X=14| a=Y | a=Y | a=Y
Y=28 ' a=Y a=Y b = X x=V3 X=1A
a=Y | b=X J Y=28 )GHA) Y=28 | p=x
b=X | Y=2 b=X Y=28 b=X y=9B
a=2,b=1 a=0,b=1 a=0,b=1 a=0,b=0 a=0,b=1 «a=0, b=1

Always "A, B”. Events ‘A" and ‘B’ are not concurrent!
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Assigning Semantics to
Concurrent Programs

X=Y=0
A—X =] a=Y —C
Y=2 b =X
X=1A x—1A\ x=1A\ a=Y¢ a=Y¢ CI=Y3
Y=2 a=Y¢ a=Y¢ p=x | X=1A | x=1A
a=Y¢ pb=X Y=2 X=1A¥Y=2 b = X
b=X Y=2 b=X Y=2 b=X y=9

a=2, b=1 a=0, b=1 a=0, b=1 a=0, b=0 a=0, b=1 a=0, b=1
Both “A, C" and “C, A”. Events ‘A’ and ‘C’ are concurrent!
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Question

'x’ is a shared variable, initially| 0

Q: Knowing that processes A and B execute
concurrently, what are the possible values for ‘X’

affer both processes terminatee
Any value in the range 5 to 10! Wrong!!!

Process A Process B
for (i = @; i < 5; i++) { for (3 = @; j < 5; J++) {
X =X + 1 X =X+ 1
} }

Any value in the range 2 to 10/ How???
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The smallest value s 2

® L @
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How 1o Detect a Data Race®@

* TWO concurrent accesses to a shared memory
location

e At least one of them is a write

« How tO monitor memory accessese

 How to detect if two accesses are (or may be)
concurrente
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The END
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