) informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Concurrency Errors (1)

lecture 21 (2020-05-13)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2019-20 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>

Agendd

« Assigning Semantics to Concurrent Programs

« Concurrency Errors
— Detection of data races
— Detection of high-level data races and stale value errors
— Detection of deadlocks

« Reading list:
— TBD

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Assigning Semantics to
Concurrent Programs

Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y =>Global Vars
a, b =>Local Vars

X
Y

] a=Y
2 b=X

Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y =>Global Vars
a, b =>Local Vars

X
Y

] a=Y
2 b=X

« What are the final values for 'X’, 'Y', ‘a’ and ‘b’?¢

Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y =>Global Vars
a, b =>Local Vars

X
Y

] a=Y
2 b=X

« What are the final values for 'X’, 'Y', ‘a’ and ‘b’?¢
~X=1, Y=2

Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y =>Global Vars
a, b =>Local Vars

X
Y

] a=Y
2 b=X

« What are the final values for 'X’, 'Y', ‘a’ and ‘b’?¢
~-X=1, Y=2, a=2, b=2¢

Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y => Global Vars
a, b =>Local Vars

X
Y

] a=Y
2 b=X

« What are the final values for 'X’, 'Y', ‘a’ and ‘b’?¢
~-X=1, Y=2, a=2, b=2¢

* Depends on the interleavings of the statements
— Sequential Consistency [Lamport’/9]
— Program behavior = set of inferleavings

Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y =>Global Vars
a, b =>Local Vars

X
Y

] a=Y
2 b=X

Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y =>Global Vars
a, b =>Local Vars

X
Y

] a=Y
2 b=X

Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y =>Global Vars
a, b =>Local Vars

X
Y

] a=Y
2 b=X

Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y =>Global Vars
a, b =>Local Vars

X
Y

] a=Y
2 b=X

Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y =>Global Vars
a, b =>Local Vars

X
Y

] a=Y
2 b=X

=]

>
1
>

X=1
Y=2 a=Y a=Y

a=Y b =X Y=2
b=X Y=2 b=X

a=2, b=1 a=0, b=1 a=0, b=1

Assigning Semantics to
Concurrent Programs

X=Y=0 X, Y => Global Vars
a, b => Local Vars
X =1 a=Y
Y=2 b=X
X =1 X =1 X =1 a=Y a=Y a=yY
Y=2 a=Y a=Y b=X X =] X =1
a=Y b=X | Y=2 X = Y=2 b = X
b=X Y=2 b=X Y=2 b=X y=9
a=2,b=1 a=0,b=1 a=0, b=1 a=0, b=0 a=0, b=1 a=0, b=1

Sequential Consistency

* Instructions are executed by the order they
appear in the program

« Memory behaves as a shared array
— Reads and writes are effective immediately

« Be aware that:

— This is naturally true for sequential programs...
— But it is not frue for concurrent programs!

State explosion in concurrent
orograms

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 16

State explosion in concurrent
orograms

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 17

State explosion in concurrent

orograms

N
O

i,

Ve
o
%,
%
\
@
%

o
o
o
i
o
~
-l
=
7
T
O
L
©
0
O
c
0
-
>
0

State explosion in concurrent

orograms

%%,e .
7@ 8]
38 B8 B |
G/ B_B_|
pon
\8_B !
N '

— o o™ < LN
N [\l [\l N N
~ () W) () () ()
@
—
d o—e -4 @
i N ™M - LN
— — = —
() Lo o ()

(\o)
~—
Q

o
o
o))
—
o
N
-l
=z
7
T
O
L
©
o]
O
c
3]
-
' o

©

c
©
>
Q
c
(O]
—
—
>
Q
c
o
O
o
N
o
N
(22}

State explosion in concurrent

&/
-._ nﬁnﬁn:::
025"

12 22 242 52
() () ()
%) e o
O
s < 0—e < O
O
—
Q

o
o
(@)}
i
o
N
-l
=
7
T
O

L

©
o
O
c

State explosion in concurrent
orograms

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

State explosion in concurrent
orograms

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

State explosion in concurrent

orograms

an
/] .-ﬁﬁ'ﬁ
g B 8 |
N

o
o
(@)}
i
o
N
-l
=
7
T
O

L

©
o
O
c

State explosion in concurrent

orograms

State explosion in concurrent
orograms

P P>
1
ei'@ €2
e
elz /:
613 623
4
615
[

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

State explosion in concurrent

orograms

State explosion in concurrent

orograms

i oN o™ < LN
N [\l [\l (g N
() () a 76
(@]
@ @
—
O -4 @
i (@] o i LN O
— — — ()] — —
() () () () ()

State explosion in concurrent

orograms

State explosion in concurrent

orograms

State explosion in concurrent

orograms

State explosion in concurrent
orograms

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

State explosion in concurrent
orograms

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

State explosion in concurrent
orograms

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

State explosion in concurrent
orograms

P, p
e 1 ® e

e
612 ¢
e;3 e,3
e Qe
615

e,>
616 ® 2

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

State explosion in concurrent
orograms

State explosion in concurrent
orograms

State explosion in concurrent
orograms

State explosion in concurrent
orograms

P P,
1
el @ 2
e 2
e;2 /: 2
813
815

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

State explosion in concurrent
orograms

State explosion in concurrent
orograms

State explosion in concurrent
orograms

P P,
el @
e 2
e2 ® S
e13
4
815
816 ®

.0
’0
0

-
o
R
.

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCTNL 2679-20 41

‘e

State explosion in concurrent
orograms

™,
% %0 B

sl I I W
& S S E G
e,

0
D
.
e
‘e
o/
.
‘e
.

‘e
O
g
.
e
.

Q intermediate states

State explosion in concurrent
orograms

7 states 6 states 30 states

s o) @' %
1 e21 '
' ¢ % %0 B

v S B B S @
e 13 e 23 ®‘@'®'@'® ,,,,,,

4 @ DWW
€1

te: B B =
e 15 @ 5 -

‘e
O
g
.
e
.

Q intermediate states

Consistent run:
valid path 25p 1O 25

e .
.. “a,

.
e
.
.
Py

30 states— =

‘® %\/(%/7
R

. 0\0"&\000 @ @

S S S G
s o N w e R N
B EN»

I

7 N S e
S

Consistent run

(LA
e
.
.
o
.
.
.
o

7 states 6 states 30 states @
0

A A
e

0
O
g
.
‘e
.

i
.

Consistent run

7 states 6 states
P, P,
1

el @ €

e 2
e;2 '/: 2
813 e23

4

815

e 5
816 [2

Consistent run

7 states

6 states 30 states -

.
.... el
. .
o .
. e
. .
.
* ‘N
o .
‘.
.
o
.
.,
. .
.<(~
*, g
.0
‘.

8 & ® %
A e

S0 Ta) T) G
X

? e ®'®§®§a

‘e
O
g
.
e
.

L
.

Inconsistent run — program error

Consistent runs — How many?¢

7states 6 states 30 states

o
o
LN o
., o
LN X
., -
. o
o, o
. o
o, o
. o
o,
., o
o, -
., 0
LN R
b2 g
¢ o

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCTNL 20‘19—20 49

Concurrency Errors

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

50

Common Concurrency Errors

» Data races (atomicity violations)
« Ordering violations

« Unintended sharing

» High-level atomicity violations

 Deadlocks and livelocks

Data Race

« Code is supposed to execute atomically
— Multiple dependent instructions to manipulate some data

* Interleaving with instructions of another thread
that access the same data

Thread 1 Thread 2
void Bank::Deposit(int a) void Bank::Withdraw(int a)
{ {
int t = bal; int t = bal;
bal = t + a; bal = t - a;

} }

Data Race

« Code is supposed to execute atomically
— Multiple dependent instructions to manipulate some data

* Interleaving with instructions of another thread
that access the same data

Thread 1 Thread 2
void Bank::Deposit(int a) void Bank::Withdraw(int a)
{ {
int t = bal_——/ int t = bal;
bal = t + a; __bal =t - a;
} }

The widthdraw is not reflected in the final balance!

Ordering Violation

* Missing or incorrect synchronization between
two processes
(e.g., a producer and a consumer)

Thread 1 Thread 2

work = null;
CreateThread (Thread 2); ConsumeWork(work);
work = new Work();

Ordering Violation

* Missing or incorrect synchronization between
two processes
(e.g., a producer and a consumer)

Thread 1 Thread 2

work = null;

CreateThread (Thﬁggg_Z}f———”"——_—ConsumeWork(work);

work = new Work();

‘work’ Is not initialized yet!

Unintended Sharing

» Processes accidentally share data
— ‘work()' is executed by both threads concurrently

void work() {
static int local = ©;

local += ..

Thread 1 Thread 2

;ork() ;ork()

High-Level Data Race

* Wrongly defined atomic blocks

synchronized(this) void getX() { synchronized(this) void getY() {
return pair.x$ return paerY,

}

Thread 1 Thredd 2

synchronized(this)
void setPair(in
pair.x = X;
pair.y = y;

// synchrnzd
// synchrnzd

return x == vy,

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

57

Deaqadlock

* Processes are waiting forever for each other

Thread 1 Thread 2
AcquireLock (A); —» AcquirelLock (B);
AcquireLock (B); = » AcquirelLock (A);

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 58

Common Concurrency Errors

» Data races (atomicity violations)

» Ordering violations « symptom
» Uninfended sharing
* High-level atomicity violations

 Deadlocks and livelocks

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

59

Common Concurrency Errors

» Data races (atomicity violations)

* High-level atomicity violations

 Deadlocks and livelocks

Concurrency Errors

Data Races

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

61

Whatis a Data Race?¢

* TwWo conflicting memory accesses happening

concurrently

* Which means:

— They access the same memory location

— At least one is an update (write)

Whatis a Data Race?¢

* TwWo conflicting memory accesses happening

concurrently

* Which means:

— They access the same memory location

— At least one is an update (write)

 Write — Write
 Write — Read
« Read — Write

Read — Read

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

63

What means
"Happens Concurrently’e

* TWO events A and B happen concurrently if both
A, B
and
B, A
are possible sequentially consistent executions of
those events

Assigning Semantics to
Concurrent Programs

X=Y=0

A—X =1 a=Y

B—Y =2 b=X
X=1 X=1 X =] a=Y a=Y a=Y
Y=2 a=Y a=Y b=X | X=1 X=1
a=Y b=X Y =2 X =] Y =2 b =X
b=X Y =2 b=X Y =2 b=X Y =2
a=2,b=1 a=0,b=1 a=0,b=1 a=0,b=0 a=0,b=1 a=0, b=]

Assigning Semantics to
Concurrent Programs

X=Y=0

A—X = a=Y

B—sY=2 b =X
x=1A) X=1A | X=14| a=Y | a=Y | a=Y
Y=28 ' a=Y a=Y b = X x=V3 X=1A
a=Y | b=X J Y=28)GHA) Y=28 | p=x
b=X | Y=2 b=X Y=28 b=X y=9B
a=2,b=1 a=0,b=1 a=0,b=1 a=0,b=0 a=0,b=1 «a=0, b=1

MaY 13, 2020

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

66

Assigning Semantics to
Concurrent Programs

X=Y=0

A—X = a=Y

B—sY=2 b =X
x=1A) X=1A | X=14| a=Y | a=Y | a=Y
Y=28 ' a=Y a=Y b = X x=V3 X=1A
a=Y | b=X J Y=28)GHA) Y=28 | p=x
b=X | Y=2 b=X Y=28 b=X y=9B
a=2,b=1 a=0,b=1 a=0,b=1 a=0,b=0 a=0,b=1 «a=0, b=1

Always "A, B”. Events ‘A" and ‘B’ are not concurrent!

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

MaY 13, 2020

67

Assigning Semantics to
Concurrent Programs

X=Y=0
A—X =] a=Y —C
Y=2 b =X
X=1A x—1A\ x=1A\ a=Y¢ a=Y¢ CI=Y3
Y=2 a=Y¢ a=Y¢ p=x | X=1A | x=1A
a=Y¢ pb=X Y=2 X=1A¥Y=2 b = X
b=X Y=2 b=X Y=2 b=X y=9

a=2, b=1 a=0, b=1 a=0, b=1 a=0, b=0 a=0, b=1 a=0, b=1
Both “A, C" and “C, A”. Events ‘A’ and ‘C’ are concurrent!

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 68

Question

'x’ is a shared variable, initially| 0

Q: Knowing that processes A and B execute
concurrently, what are the possible values for ‘X’

affer both processes terminatee
Any value in the range 5 to 10! Wrong!!!

Process A Process B
for (i = @; i < 5; i++) { for (3 = @; j < 5; J++) {
X =X + 1 X =X+ 1
} }

Any value in the range 2 to 10/ How???

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

The smallest value s 2

® L @

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

70

How 1o Detect a Data Race®@

* TWO concurrent accesses to a shared memory
location

e At least one of them is a write

« How tO monitor memory accessese

 How to detect if two accesses are (or may be)
concurrente

MaY 13, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

71

Acknowledgments

« Some parts of this presentation was based in
publicly available slides and PDFs
— www.cs.cornell.edu/courses/cs4410/201 1su/slides/lecture 10.pdf
- www.microsoft.com/en-us/research/people/madanm/

— williamstallings.com/OperatingSystems/
— codex.cs.yale.edu/avi/os-book/OS9/slide-dir/

The END

MaY 13, 2020

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

73

