
Concurrency Errors (2)
lecture 22 (2020-05-19)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2019-20 —

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

João Lourenço <joao.lourenco@fct.unl.pt>

Agenda

• Assigning Semantics to Concurrent Programs
• Concurrency Errors

– Detection of data races
– Detection of high-level data races and stale value errors
– Detection of deadlocks

• Reading list:
– TBD

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 2

Concurrency Errors
Data Race Detection

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 3

Overview

• Static program analysis
• Dynamic program analysis

– Lock-set algorithm
– Happens-Before
– Noise-Injection

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 4

Static Data Race Detection

• Advantages:
– Reason about all inputs/interleavings
– No run-time overhead
– Adapt well-understood static-analysis techniques
– Possibly with annotations to document concurrency

invariants

• Example Tools:
– RCC/Java type-based
– ESC/Java "functional verification"

(theorem proving-based)

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 5

Static Data Race Detection

• Advantages:
– Reason about all inputs/interleavings
– No run-time overhead
– Adapt well-understood static-analysis techniques
– Possibly with annotations to document concurrency

invariants

• Disadvantages of static approach:
– Tools produce “false positives” and/or “false negatives”
– May be slow, require programmer annotations
– May be hard to interpret results
– May not scale to large or complex programs

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 6

Dynamic Data Race Detection

• Advantages
– Soundness

• Every actual data race is reported
– Completeness

• All reported warnings are actually races (avoid “false
positives”)

• Disadvantages
– Run-time overhead (5-20x for best tools)
– Memory overhead for analysis state
– Reasons only about observed executions

• sensitive to test coverage
• (some generalization possible...)

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 7

Approaches

• Happens-Before

• Lock-set algorithm
– Learns which shared memory locations are protected by

which locks
– Issues warning if finds no lock protects a shared memory

location

• (…)

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 8

Concurrency Errors
Dynamic Data Race Detection Using
Happens-before [Lamport ‘78]

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 9

Lock Definition

• Lock: a synchronization object that is either

available, or owned (by a thread)

– Operations: lock(mu) and unlock(mu)

• (We are assuming no explicit initialize operation)

– A lock can only be unlocked by its current owner

– The lock() operation is blocking if the lock is owned by

another thread

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 10

The Happens-before Relation

• happens-before defines a partial order for
events in a set of concurrent threads
– In a single thread, happens-before reflects the temporal

order of event occurrence

– Between threads, A happens before B if A is an unlock
access in one thread, and B is a lock access in a different
thread (assuming the threads obey the semantics of the
lock , i.e., can’t have two successive locks, or two
successive unlocks, or a lock in one thread and an unlock
in a different thread)

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 11

The Happens-before Relation

• Let event a be in thread 1 and event b be in
thread 2

If a = unlock(mu) and b = lock(mu) then
a → b (a happens-before b)

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 12

Data races between threads are possible if
accesses to shared variables are not ordered

by the happens-before relation

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 13

unlock(mu)

lock(mu)

x = x + 1

unlock(mu)

lock(mu)

x = x + 1

Thread 1 Thread 2

…

…

Example 1

?

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 14

unlock(mu)

lock(mu)

x = x + 1

unlock(mu)

lock(mu)

x = x + 1

Thread 1 Thread 2

…

…

Example 1

1

2

3

…

…

7

8

9
ev1→ ev2→ ev3
ev7→ ev8→ ev9

ev2→ ev8
ev3→ ev7 No Data Race

Example 1

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 15

unlock(mu)

lock(mu)

x = x + 1

unlock(mu)

lock(mu)

x = x + 1

Thread 1 Thread 2

…

…

Arrows represent
happens-before

relation

Example 2

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 16

unlock(mu)

lock(mu)

x = x + 1

unlock(mu)

lock(mu)

x = x + 1

Thread 1 Thread 2

…

…

Accesses to both ‘x’ and ‘y’ are ordered by happens-
before, so no data race occurred.

y = y + 1

y = y + 1

But … a different execution ordering could get different results?! Hppens-before only
detects data races if the incorrect order shows up in the execution trace.

Example 3

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 17

unlock(mu)

lock(mu)

x = x + 1

unlock(mu)

lock(mu)

x = x + 1

Thread 1 Thread 2

…

…

y = y + 1 y = y + 1?

Example 3

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 18

unlock(mu)

lock(mu)

x = x + 1

unlock(mu)

lock(mu)

x = x + 1

Thread 1 Thread 2

…

…

y = y + 1 y = y + 1

If Thread 2 executes before Thread 1, happens-before
no longer holds between the two accesses to ‘y’, so
the possibility of a data race occurs and should be
notified to the programmer.

?

Concurrency Errors
The Lock-Set Algorithm — Eraser [Savage et.al. ‘97]

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 19

Approaches

• Checks a sufficient condition for data-race
freedom
• Consistent locking discipline

– Every data structure is protected by a single lock
– All accesses to the data structure are made while holding

the lock

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 20

Thread 1

void Bank::Deposit(int a) {

int t = bal;
bal = t + a;

}

Thread 2

void Bank::Withdraw(int a) {

int t = bal;
bal = t - a;

}

Approaches

• Checks a sufficient condition for data-race
freedom
• Consistent locking discipline

– Every data structure is protected by a single lock
– All accesses to the data structure are made while holding

the lock

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 21

Thread 1

void Bank::Deposit(int a) {
acquireLock(balLock);
int t = bal;
bal = t + a;
releaseLock(balLock);

}

Thread 2

void Bank::Withdraw(int a) {
acquireLock(balLock);
int t = bal;
bal = t - a;
releaseLock(balLock);

}

Approach

• Checks a sufficient condition for data-race
freedom
• Consistent locking discipline

– Every data structure is protected by a single lock
– All accesses to the data structure are made while holding

the lock

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 22

Thread 1

void Bank::Deposit(int a) {
acquireLock(balLock);
int t = bal;
bal = t + a;
releaseLock(balLock);

}

Thread 2

void Bank::Withdraw(int a) {
acquireLock(balLock);
int t = bal;
bal = t - a;
releaseLock(balLock);

}

Accesses to ‘bal’ are
concistently protected

by ‘balLock’.

Approach

• How to know which locks protect each memory
location?
– Ask the programmer? Cumbersome!
– Infer from the program code? Is it effective?

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 23

acquireLock(A);
acquireLock(B);
x ++;
releaseLock(B);
releaseLock(A);

acquireLock(B);
acquireLock(C);
x ++;
releaseLock(C);
releaseLock(B);

‘x’ is protected by
A, or B, or both

‘x’ is protected by
B, or C, or both

‘x’ is protected
by B

The Lock-Set Algorithm

• Two data structures:
– LocksHeld(t) = set of locks held currently by thread t

• Initially set to Empty
– LockSet(x) = set of locks that could potentially be protecting x

• Initially set to the universal set

• When thread ‘t’ acquires lock ‘l’
– LocksHeld(t) = LocksHeld(t) ∪ {l}

• When thread ‘t’ releases lock ‘l’
– LocksHeld(t) = LocksHeld(t) \ {l}

• When thread ‘t’ accesses location ‘x’
– LockSet(x) = LockSet(x) ⋂ LocksHeld(t)

• “Data race” warning if LockSet(x) becomes empty

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 24

Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1)

lock(m2)

v = v + 1

unlock(m2)

v = v + 2

unlock(m1)

lock(m2)

v = v + 1

unlock(m2)
May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 25

Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2)

v = v + 1

unlock(m2)

v = v + 2

unlock(m1)

lock(m2)

v = v + 1

unlock(m2)
May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 26

∪

Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1

unlock(m2)

v = v + 2

unlock(m1)

lock(m2)

v = v + 1

unlock(m2)
May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 27

Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2)

v = v + 2

unlock(m1)

lock(m2)

v = v + 1

unlock(m2)
May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 28

∩

Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v + 2

unlock(m1)

lock(m2)

v = v + 1

unlock(m2)
May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 29

\

Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v + 2 {m1} {m1}

unlock(m1)

lock(m2)

v = v + 1

unlock(m2)
May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 30

∩

Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v + 2 {m1} {m1}

unlock(m1) { } {m1}

lock(m2)

v = v + 1

unlock(m2)
May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 31

\

Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v + 2 {m1} {m1}

unlock(m1) { } {m1}

lock(m2) {m2} {m1}

v = v + 1

unlock(m2)
May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 32

∪

Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v + 2 {m1} {m1}

unlock(m1) { } {m1}

lock(m2) {m2} {m1}

v = v + 1 {m2} { }

unlock(m2)
May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 33

∩

Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v + 2 {m1} {m1}

unlock(m1) { } {m1}

lock(m2) {m2} {m1}

v = v + 1 { } — ALARM

unlock(m2)
May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 34

Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v + 2 {m1} {m1}

unlock(m1) { } {m1}

lock(m2) {m2} {m1}

v = v + 1 { } — ALARM

unlock(m2) { } { }
May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 35

\

Algorithm Guarantees

• No warnings => no data races on the current
execution
– The program followed consistent locking discipline in this

execution

• Warnings does not imply a data race
– Thread-local initialization or Bad locking discipline

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 36

Algorithm Guarantees

• No warnings => no data races on the current
execution
– The program followed consistent locking discipline in this

execution

• Warnings does not imply a data race
– Thread-local initialization or Bad locking discipline

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 37

Thread 1

acquireLock(m1);
acquireLock(m2);
x = x + 1;
releaseLock(m2);
releaseLock(m1);

Thread 2

acquireLock(m2);
acquireLock(m3);
x = x + 1;
releaseLock(m3);
releaseLock(m2);

Thread 3

acquireLock(m1);
acquireLock(m3);
x = x + 1;
releaseLock(m3);
releaseLock(m1);

Ala
rm
!!

Acknowledgments

• Some parts of this presentation was based in
publicly available slides and PDFs
– www.cs.cornell.edu/courses/cs4410/2011su/slides/lecture10.pdf
– www.microsoft.com/en-us/research/people/madanm/
– williamstallings.com/OperatingSystems/
– codex.cs.yale.edu/avi/os-book/OS9/slide-dir/

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 38

The END

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 39

