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Agenda

• Assigning Semantics to Concurrent Programs
• Concurrency Errors

– Detection of data races
– Detection of high-level data races and stale value errors
– Detection of deadlocks

• Reading list:
– TBD
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Concurrency Errors
Data Race Detection
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Overview

• Static program analysis
• Dynamic program analysis

– Lock-set algorithm
– Happens-Before
– Noise-Injection
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Static Data Race Detection 

• Advantages:
– Reason about all inputs/interleavings
– No run-time overhead
– Adapt well-understood static-analysis techniques
– Possibly with annotations to document concurrency 

invariants

• Example Tools:
– RCC/Java type-based
– ESC/Java "functional verification"

(theorem proving-based)
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Static Data Race Detection

• Advantages:
– Reason about all inputs/interleavings
– No run-time overhead
– Adapt well-understood static-analysis techniques
– Possibly with annotations to document concurrency 

invariants

• Disadvantages of static approach:
– Tools produce “false positives” and/or “false negatives”
– May be slow, require programmer annotations
– May be hard to interpret results
– May not scale to large or complex programs

May 19, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 6



Dynamic Data Race Detection

• Advantages
– Soundness

• Every actual data race is reported
– Completeness

• All reported warnings are actually races (avoid “false 
positives”)

• Disadvantages
– Run-time overhead (5-20x for best tools)
– Memory overhead for analysis state 
– Reasons only about observed executions

• sensitive to test coverage
• (some generalization possible...)
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Approaches

• Happens-Before

• Lock-set algorithm
– Learns which shared memory locations are protected by 

which locks
– Issues warning if finds no lock protects a shared memory 

location

• (…)
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Concurrency Errors
Dynamic Data Race Detection Using
Happens-before  [Lamport ‘78]
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Lock Definition

• Lock: a synchronization object that is either 

available, or owned (by a thread)

– Operations: lock(mu) and unlock(mu)

• (We are assuming no explicit initialize operation)

– A lock can only be unlocked by its current owner

– The lock() operation is blocking if the lock is owned by 

another thread
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The Happens-before Relation

• happens-before defines a partial order for 
events in a set of concurrent threads
– In a single thread, happens-before reflects the temporal 

order of event occurrence 

– Between threads, A happens before B if A is an unlock 
access in one thread, and B is a lock access in a different 
thread (assuming the threads obey the semantics of the 
lock , i.e., can’t have two successive locks, or two 
successive unlocks, or a lock in one thread and an unlock 
in a different thread)
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The Happens-before Relation

• Let event a be in thread 1 and event b be in 
thread 2

If a = unlock(mu) and b = lock(mu) then
a → b (a happens-before b)
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Data races between threads are possible if 
accesses to shared variables are not ordered 

by the happens-before relation
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unlock(mu)

lock(mu)

x = x + 1

unlock(mu)

lock(mu)

x = x + 1

Thread 1 Thread 2

…

…

Example 1

?
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unlock(mu)

lock(mu)

x = x + 1

unlock(mu)

lock(mu)

x = x + 1

Thread 1 Thread 2

…

…

Example 1

1

2

3

…

…

7

8

9
ev1→ ev2→ ev3
ev7→ ev8→ ev9

ev2→ ev8
ev3→ ev7 No Data Race



Example 1
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unlock(mu)

lock(mu)

x = x + 1

unlock(mu)

lock(mu)

x = x + 1

Thread 1 Thread 2

…

…

Arrows represent 
happens-before

relation



Example 2
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unlock(mu)

lock(mu)

x = x + 1

unlock(mu)

lock(mu)

x = x + 1

Thread 1 Thread 2

…

…

Accesses to both ‘x’ and ‘y’ are ordered by happens-
before, so no data race occurred.

y = y + 1

y = y + 1

But … a different execution ordering could get different results?!     Hppens-before only 
detects data races if the incorrect order shows up in the execution trace.



Example 3
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unlock(mu)

lock(mu)

x = x + 1

unlock(mu)

lock(mu)

x = x + 1

Thread 1 Thread 2

…

…

y = y + 1 y = y + 1?



Example 3
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unlock(mu)

lock(mu)

x = x + 1

unlock(mu)

lock(mu)

x = x + 1

Thread 1 Thread 2

…

…

y = y + 1 y = y + 1

If Thread 2 executes before Thread 1, happens-before 
no longer holds between the two accesses to ‘y’, so 
the possibility of a data race occurs and should be 
notified to the programmer. 

?



Concurrency Errors
The Lock-Set Algorithm — Eraser [Savage et.al. ‘97]
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Approaches

• Checks a sufficient condition for data-race 
freedom
• Consistent locking discipline

– Every data structure is protected by a single lock
– All accesses to the data structure are made while holding 

the lock
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Thread 1

void Bank::Deposit(int a) {

int t = bal;
bal = t + a;

}

Thread 2

void Bank::Withdraw(int a) {

int t = bal;
bal = t - a;

}



Approaches

• Checks a sufficient condition for data-race 
freedom
• Consistent locking discipline

– Every data structure is protected by a single lock
– All accesses to the data structure are made while holding 

the lock
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Thread 1

void Bank::Deposit(int a) {
acquireLock(balLock);
int t = bal;
bal = t + a;
releaseLock(balLock);

}

Thread 2

void Bank::Withdraw(int a) {
acquireLock(balLock);
int t = bal;
bal = t - a;
releaseLock(balLock);

}



Approach

• Checks a sufficient condition for data-race 
freedom
• Consistent locking discipline

– Every data structure is protected by a single lock
– All accesses to the data structure are made while holding 

the lock
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Thread 1

void Bank::Deposit(int a) {
acquireLock(balLock);
int t = bal;
bal = t + a;
releaseLock(balLock);

}

Thread 2

void Bank::Withdraw(int a) {
acquireLock(balLock);
int t = bal;
bal = t - a;
releaseLock(balLock);

}

Accesses to ‘bal’ are 
concistently protected 

by ‘balLock’.



Approach

• How to know which locks protect each memory 
location?
– Ask the programmer?  Cumbersome!
– Infer from the program code? Is it effective?
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acquireLock(A);
acquireLock(B);
x ++;
releaseLock(B);
releaseLock(A);

acquireLock(B);
acquireLock(C);
x ++;
releaseLock(C);
releaseLock(B);

‘x’ is protected by
A, or B, or both

‘x’ is protected by 
B, or C, or both

‘x’ is protected
by B



The Lock-Set Algorithm

• Two data structures:
– LocksHeld(t) = set of locks held currently by thread t

• Initially set to Empty
– LockSet(x) = set of locks that could potentially be protecting x

• Initially set to the universal set

• When thread ‘t’ acquires lock ‘l’
– LocksHeld(t) = LocksHeld(t) ∪ {l}

• When thread ‘t’ releases lock ‘l’
– LocksHeld(t) = LocksHeld(t) \ {l}

• When thread ‘t’ accesses location ‘x’
– LockSet(x) = LockSet(x) ⋂ LocksHeld(t)

• “Data race” warning if LockSet(x) becomes empty
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Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1)

lock(m2)

v = v + 1

unlock(m2)

v = v  + 2

unlock(m1)

lock(m2)

v = v + 1

unlock(m2)
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Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2)

v = v + 1

unlock(m2)

v = v  + 2

unlock(m1)

lock(m2)

v = v + 1

unlock(m2)
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Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1

unlock(m2)

v = v  + 2

unlock(m1)

lock(m2)

v = v + 1

unlock(m2)
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Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2)

v = v  + 2

unlock(m1)

lock(m2)

v = v + 1

unlock(m2)
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Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v  + 2

unlock(m1)

lock(m2)

v = v + 1

unlock(m2)
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Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v  + 2 {m1} {m1}

unlock(m1)

lock(m2)

v = v + 1

unlock(m2)
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Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v  + 2 {m1} {m1}

unlock(m1) { } {m1}

lock(m2)

v = v + 1

unlock(m2)
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Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v  + 2 {m1} {m1}

unlock(m1) { } {m1}

lock(m2) {m2} {m1}

v = v + 1

unlock(m2)
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Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v  + 2 {m1} {m1}

unlock(m1) { } {m1}

lock(m2) {m2} {m1}

v = v + 1 {m2} { }

unlock(m2)
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Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v  + 2 {m1} {m1}

unlock(m1) { } {m1}

lock(m2) {m2} {m1}

v = v + 1 { } — ALARM

unlock(m2)
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Another Example
Program Code LocksHeld LockSet

{ } {m1, m2}

lock (m1) {m1} {m1, m2}

lock(m2) {m1, m2} {m1, m2}

v = v + 1 {m1, m2} {m1, m2}

unlock(m2) {m1} {m1, m2}

v = v  + 2 {m1} {m1}

unlock(m1) { } {m1}

lock(m2) {m2} {m1}

v = v + 1 { } — ALARM

unlock(m2) { } { }
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Algorithm Guarantees

• No warnings => no data races on the current 
execution
– The program followed consistent locking discipline in this 

execution

• Warnings does not imply a data race
– Thread-local initialization or Bad locking discipline
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Algorithm Guarantees

• No warnings => no data races on the current 
execution
– The program followed consistent locking discipline in this 

execution

• Warnings does not imply a data race
– Thread-local initialization or Bad locking discipline
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Thread 1

acquireLock(m1);
acquireLock(m2);
x = x + 1;
releaseLock(m2);
releaseLock(m1);

Thread 2

acquireLock(m2);
acquireLock(m3);
x = x + 1;
releaseLock(m3);
releaseLock(m2);

Thread 3

acquireLock(m1);
acquireLock(m3);
x = x + 1;
releaseLock(m3);
releaseLock(m1);

Ala
rm
!!
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The END
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