) informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Concurrency Errors (4)

lecture 24 (2020-05-26)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2019-20 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>

Agendd

« Concurrency Anomalies
* Assigning Semantics to Concurrent Programs

« Concurrency Errors

— Detection of data races
— Detection of high-level data races and stale value errors
— Detection of deadlocks

May 27, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Deadlocks

May 27, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Deaqadlock

Permanent blocking of a set of processes that either compete for
system resources or communicate with each other.

(a) Deadlock possible (b) Deadlock

IVIdy L/, LULVY LuUlILulIclivy diiu rdidiiciiniil — J. LUUICIILU & TUITUNL 2V 1J-24V

20

FCT-UNL 2019

©
o]
O
c
)
-
S
o]
—
-
£
R
o
‘©
—
@©
o
©
c
©
>
(@]
c
)
-
P -
S5
8]
c
o
o

May 27, 2020

System Model

e Finite number of resources

» Resources are organized into classes
— Each class only contain idenfical resource instances

* Processes compete for accessing resources

o |f a process request an instance of a resource
class, any instance of that class must satisfy the
process

Protocol 1o Use a Resource

* Request — The process either gets an instance of
the resource immediately; or waits until one is
available (and gets it)

* Use — The process can operate on its resource
iInstance

» Release — The process releases its resource
instance

« Examples: malloc() & free() — open() & close()

Deaqadlock

A set of two or more processes are deadlocked if:
1. They are blocked (i.e., in the waiting state)

2. Each is holding a resource

3. Each is waiting to acquire a resource held by

*
* *
* *
* *
- *
* *
* *
L4 *
0‘ ‘O
LR 2

* *
. .
* -
* -
* *
o ‘e
o 5

R1 R2

Deaqadlock

» Deadlock depends on the dynamics of the

execution

e |s difficult to identify and test for deadlocks,
which may occur only under certain
circumstances

May 27, 2020

*
* *
* *
* *
* *
* *
L4 *
0‘ ‘O
LR 2

* *
. .
* -
* -
* *
o ‘e
o -

R1

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

R2

Conditions Necessary for
Deadlock

* mutual exclusion: only one process can use a
resource at a tfime

* hold and wait: a process holding at least one
resource is waiting to acquire additional
resources which are currently held by other
Processes

* no preemption: a resource can only be released
voluntarily by the process holding it

» circular wait: a cycle of process requests exists
(l,e., Pg =Py Py ... Py > Py).

Example

Thread 1 Thread 2
void *do work one(void *param) { void *do work two(void *param)

pthread mutex lock(&ml); pthread mutex lock(&m2);
pthread mutex lock(&m2); pthread mutex lock(&ml);
/** /**

* Do some work * Do some work

*/ */

pthread mutex _unlock(&m2); pthread mutex unlock(&ml);
pthread mutex unlock(&ml); pthread mutex unlock(&m2);
pthread exit(0); pthread exit(9);

} ¥

Example

Thread 1

Will deadlock
happene

Thread 2

void *do work one(void *param) {

pthread mutex lock(&ml);
pthread mutex lock(&m2);
/**

* Do some work

*/
pthread mutex unlock(&m2);
pthread mutex unlock(&ml);
pthread exit(9);

}

void *do work two(void *param)

pthread_mutex_lock(&m2);
pthread_mutex_lock(&ml);
/**

* Do some work

*/
pthread_mutex_unlock(&ml);
pthread_mutex_unlock(&m2);
pthread_exit(0);

Example

!

2

Only if executed in order:

— 1, 3,2, 4; or
— 1, 3,4, 2; or
— 3, 1, 2, 4; or

Thread 1 —3,1,4,2 Thread 2
void *do work one(void *param) { void *do work two(void *param)
pthread mutex lock(&ml); 3 | pthread _mutex_ lock(&m2);
pthread mutex lock(&m2); 4 | pthread _mutex_ lock(&ml);
/** /**

* Do some work

*/

pthread mutex unlock(&m2);
pthread mutex unlock(&ml);

pthread exit(9);

* Do some work

*/

pthread_mutex_unlock(&ml);
pthread_mutex_unlock(&m2);

pthread exit(9);

1

These orderinés are ok:
— 1,2, 3,4, and
— 3,4, 1,2

Resource Allocation Graph

» A set of verfices V and a set of edges E

* V is partitioned into two types:
- P ={P,, P,, ..., P}, the setf of all the processes in the system
- R ={R,, R,, ..., R}, the set of all resource types in the system

 E is partfitioned info two types:
— Request edge — directed edge P; - R
— Assignment edge - directed edge R, — P,

Resource Allocation Graph

* Process Q

» Resource Type with 4 instances

- P;requests instance of R, —» =

* Piis holding an instance of Ry (5 fi:

Example of
Resource Allocation Graphs

Ra

: 4
N I
N
SNSRI i B T S 2 N "-'"-'a._.
tDdeadlock?
T -T %0 <. - T [e A T R i S R ‘,(' = L=y

Rb

May 27, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Example of

Resource Allocation Graphs

May 27, 2020

Ra

Rb

Con

currency and Parallelism — J. Lourengco © FCT-UNL 2019-20

17

Example of

Resource Allocation Graphs

May 27, 2020

Ra

Con

Rb

T

P4

Re

Rd

currency and Parallelism — J. Lourengco © FCT-UNL 2019-20

18

Example of
Resource Allocation Graphs

B

Safe

May 27, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Basic Facts

e [f graph contains no cycles = no deadlock

e [f graph contains a cycle =
— if only one instance per resource type, then deadlock

— if several instances per resource type, possibility of
deadlock

May 27, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

20

How 1o Deal with Deadlocks?

« Deadlock prevention
__ The system never enters

a deadlock stafe

 Deadlock avoidance

May 27, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 21

How 1o Deal with Deadlocks?

« Deadlock prevention
__ The system never enters

a deadlock stafe

 Deadlock avoidance

» Deadlock detection and recovery The system

= may enter a
* |gnore the issue!l ;) deqdlock state

May 27, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 22

Deadlocks

Deadlock prevention

May 27, 2020

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

23

Deadlock Prevention

* Provides a set of methods to ensure that at least

one of the necessary conditions cannot hold

* These methods prevent deadlocks by
constraining how requests for resources can be

made

Conditions Necessary for
Deadlock

* mutual exclusion: only one process can use a
resource at a tfime

* hold and wait: a process holding at least one
resource is waiting to acquire additional
resources which are currently held by other
Processes

* no preemption: a resource can only be released
voluntarily by the process holding it

» circular wait: a cycle of process requests exists
(l,e., Pg =Py Py ... Py > Py).

Deadlock Prevention

« Restrict the way requests can be made...

 Mutual Exclusion

— not required for sharable resources (e.g., read-only files);
must hold for non-sharable resources

* Hold and Wait

— must guarantee that whenever a process requests a
resource, it does not hold any other resources

— require process to request and allocate all its resources
before it begins execution

— low resource utilization; starvation possible

Deadlock Prevention

« Restrict the way requests can be made...

* No Preemption

— if a process that is holding some resources requests another
resource that cannot be immediately allocated 1o if, then
all resources currently being held are released

— preempted resources are added to the list of resources for
which the process is waiting

— process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting

« Circular Wait

- impose a total ordering of all resource types, and require
that each process requests resources in an increasing
order of enumeration

Example of Deadlock
with Lock Ordering

void transaction(Account from, Account 1o,
double amount) {

from.lock();

to.lock(); Thread 1
from.withdraw(amount); transaction (A, B, 25);
to.deposit(amount);

to.unlock(); Thread 2
from.unlock(); transaction (B, A, 50);

Deadlocks

Deadlock avoidance

May 27, 2020

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

29

Deadlock Avoidance

« Requires that the system has some additional
a priori information available

— Requires that each process declare the maximum number
of resources of each type that it may need

— The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can
never be a circular-wait condition

— Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes

Safe State

« When a process requests an available resource, system
must decide if immediate allocation leaves the system in
a safe state

- System is in safe state if there exists a sequence <P,, P,,
..., P,> of ALL the processes in the system such that for
each P, the resources that P; can still request can be
satisfied by currently available resources + resources held
oy all the P;, with | <

 That is:

— If P resource needs are not immediately available, then P; can wait until
all P; have finished

- When P; is finished, P; can obtain needed resources, execute, return
allocated resources, and terminate

— When P; terminates, P;,; can obtain its needed resources, and so on

Deadlock Avoidance

o [f a system is in safe state = no deadlocks

 |f a system is In unsafe state = possibility of

deadlock

e Avoidance = ensure that
a system will never enter
an unsafe state

unsafe
deadlock

/

Avoidance Algorithms

 Single instance of a resource type
Use a resource-allocation graph

* Multfiple instances of a resource type
Use the banker’s algorithm

Resource-Allocation Graph
Scheme

- Claim edge P; -» Ry indicated that process P may
request resource R;; represented by a dashed
ine

» Claim edge converts to request edge when a
process requests a resource

» Request edge converted to an assignment edge
when the resource is allocated to the process

« When aresource is released by a process,
assignment edge reconverts to a claim edge

« Resources must be claimed a priori in the system

Resource-Allocation Graph

May 27, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

35

Banker's Algorithm

* Resources may have multiple instances
» Each process must a priori claim maximum use

« When a process requests a resource it may have
to wait

« When a process gets all its resources it must
return them in a finite amount of time

Banker's Algorithm

hitps.//www.youtube.com/watchev=wOLwWGqgffukg

Initial

10 5

Available

A B C

3 3

May 27, 2020

2

P
P,
P3
Py

Po — finish[0] = F
P, — finish[1] =T
P, — finish[2] = F
P; — finish[3] =T
P, — finish[4] =T

Allocation

2
3
2
0

0

o —» O

0
2
1
2

725

Max

P4 3
P, 9
P 2
P, 4
Available
5 3 2
7 4 3
7 4 5

Need (= max — alloc)

(a8 cl | AlB cCl AlB C
Po O 1 0 Po 7 5 3 Po 7 4 3

2 2
0 2
2 2 P,
3 3

Po — finish[0] =T
P, — finish[2] =T

<P,, P, P,, Py, P,>

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

1
6
0
4

Available

w = O N

R R O N

7

5

10

5

37

Deadlocks

Deadlock detection

May 27, 2020

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

38

Deadlock Detection

* [f neither avoidance nor prevention is
Implemented, deadlocks can (and will) occur.

« Coping with this requires:
— Detection: finding out if deadlock has occurred

« Keep track of resource allocation (who has what)
« Keep track of pending requests (who is waiting for what)

— Recovery: resolve the deadlock

Single Instance of
Each Resource Type

« Maintain a wait-for graph
— Nodes are processes
- Py — P, if Pyis waifing for a resource held by P,

» Periodically invoke an algorithm that searches
for a cycle in the graph
— If there is a cycle, there exists a deadlock

* An algorithm to detect a cycle in a graph
requires an order of n? operations, where n is the
number of vertices in the graph

Resource-Allocation Graph
and Wait-for Graph

R, R, R,
(P P Cﬁ
Resource-Allocation Graph Corresponding wait-for graph

May 27, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

41

Several Instances
of a Resource Type

* Yes! Itis possible!
» Algorithm inspired in the Banker's algorithm

Strategies Once
Deadlock Detected

« Abort all deadlocked processes

« Resource preemption

» Roll back each deadlocked process to some
poreviously defined checkpoint, and restart all
process

— Original deadlock may occur

Recovery from Deadlock:
Process Termination

« Abort all deadlocked processes

« Abort one process at a time until the deadlock
cycle is eliminated

e In which order should we choose to aborte
— Priority of the process?

— How long process has computed, and how much longer to
completione

— Resources the process has used?

— Resources process needs to complete?

— How many processes will need to be terminated?
— |s process interactive or batche

Recovery from Deadlock:
Resource Preemption

 Selecting a victim — minimize cost

* Rollback - return to some safe state, restart
process for that state

 Starvation - same process may always be
picked as victim, include number of rollback in
cost factor

Roll Back

» Roll back all the processes
— Possibly to a situation where no locks are being held

» Pray for the deadlock to not happen again

May 27, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

46

Acknowledgments

« Some parts of this presentation was based in
publicly available slides and PDFs
— www.cs.cornell.edu/courses/cs4410/201 1su/slides/lecture 10.pdf
- www.microsoft.com/en-us/research/people/madanm/

— williamstallings.com/OperatingSystems/
— codex.cs.yale.edu/avi/os-book/OS9/slide-dir/

The END

May 27, 2020

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

48

