

Course Administrivia

lecture 01 (2021-03-15)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2020-21 —

João Lourenço <joao.lourenco@fct.unl.pt>

Administrivia — Basic Info

- Lectures
 - João Lourenço < joao.lourenco@fct.unl.pt >

- Labs
 - João Lourenço < joao.lourenco@fct.unl.pt >
- Office location
 - Dep. Informática · Building II · Room P2/9
 - Extension: 10740

Administrivia — Schedule

		2ª		3ª	4ª		5ª	6ª
8:00								
	9:00				:			
9:00	10:00	CP to.1 não-presencial/Online			CP po.1 não-presencial/Online		CP po.2 não-presencial/Online	
10:00	11:00							
11:00	12:00				Office		CP	
12:00	13:00	Office hours (*)			Office hours (*)		po.3 não-presencial/Online	
13:00	14:00	(*) Office						
14:00	15:00	by appoi			tment!			
15:00	16:00	Office hours (*)						
16:00	17:00						CP po.4	
17:00	18:00						não-presencial/Online	

Administrivia — Main Bib.

 McCool M., Arch M., Reinders J.; Structured Parallel Programming: Patterns for Efficient Computation; Morgan Kaufmann (2012); ISBN: 978-0-12-415993-8

 Mattson T., Sanders B., Massingill B.; Patterns for Parallel Programming; Addison-Wesley (2004); ISBN: 0-321-22811-1

Raynal M.; Concurrent Programming: Algorithms,
 Principles, and Foundations; Springer-Verlag Berlin
 Heidelberg (2013); ISBN: 978-3-642-32026-2

Administrivia — Additional Bib.

 Suhramaniam V.; Programming Concurrency on the JVM: Mastering Synchronization, STM, and Actors; The Pragmatic Bookshelf (2011); ISBN-13: 978-1-934356-76-0

 Herlihy M., Shavit N., Luchangco V., Spear M.; The Art of Multiprocessor Programming (2nd ed); Morgan Kauffman (2021). ISBN: 978-0-12-415950-1

 Ben-Ari M.; Principles of Concurrent and Distributed Programming, 2/E; Pearson (2006); ISBN: 978-0-321-31283-9

Shared-Memory Synchronization

Administrivia — Additional Bib.

Class web page @ CLIP

Mar 3, 2020

All assignments, handouts, [lecture notes]

Average Response Time:

Concurrency and Parallelism — J. Lourenço © FCT-UNL

Administrivia — Course Goals: Knowledge

- To understand the concepts of concurrency and parallelism, and how they can be explored when designing software;
- To identify the models used for problem solving in multiprocessors and highly-parallel systems;
- To know the paradigms used in the development of algorithms for multiprocessors and highly-parallel systems;
- To know the languages, libraries and tools used in the development of concurrent and parallel programs;
- Be familiar with common concurrency problems, and how to mitigate or avoid them.

Administrivia — Course Goals: Application

- Be able to identify and exploit opportunities for concurrency and parallelization within a software system;
- Be able to partition a problem into multiple tasks to be executed in a parallel system;
- Be able to reason about the behavior of concurrent and parallel programs;
- Be able to build correct and efficient concurrent and parallel algorithms;
- Be able to use the Java/C-like programming languages and parallel libraries to develop parallel software systems;
- Be able to use programming tools in the development of concurrent and parallel applications, including the design, implementation, debugging and deployment stages;
- Be able to predict and measure the performance characteristics of a parallel system.

Syllabus: Concurrency

1. Parallel architectures

Flynn's taxonomy; performance theory (including Amdahl's and Gustafson's laws).

2. Parallel programming

The spectrum of high-demanding computational problems; regular and irregular problems; strategies for problem decomposition and their mapping to programming patterns; the transactional and map-reduce models.

3. Concurrency control and synchronization

Competition and collaboration; atomicity; linearization; monitors; locks; semaphores; barriers; producer-consumer; multi-reader single-writer locks; futures; concurrency in practice in Java and C.

4. Safety and liveness

Safety vs. liveness; progress; deadlock; deadlock prevention, avoidance, detection, and recovery; livelock; livelock avoidance; priority inversion; priority inheritance. Lock-free algorithms.

5. The transactional model

Composite operations; transactions (serializability), optimistic concurrency control (OCC) and transactional memory.

6. Concurrency without shared data

Active objects; message passing; actors.

Lab classes

- In the class
 - Design and implement parallel and concurrent programs
- One Homework / Project
 - Addressing parallelism and/or concurrency
- Rules for grouping
 - Group members may be enrolled in different lab classes
 - Groups of 3 students
 - **All exceptions** require explicit authorization
 - Non-authorized individual projects **will not** be graded

Administrivia — Evaluation

- [60%] two tests (individual, online)
 [average ≥ 8.5 points]
- [40%] one HW/project (groups of 3 students)
 [grade ≥ 8.5 points]
- [3%] participation in class' life cycle
 (includes lectures, labs, piazza, etc)
 (please note that "participation ≠ being there")

The tests and exam will contain questions about the lab exercises and home project

Administrivia — "Frequency"

- "Frequency":
 - Project ≥ 8.5 points => FREQUENCY ACQUIRED
- Frequency from 2019-20?
 - Your lab grade from 2019-20 will be considered.
 - Please note that tests will include questions about:
 - the lab exercises you MUST answer these questions!
 - this year's project you MUST NOT answer these questions!
- Frequency from 2018-19 or before?
 - You must acquire frequency again this year!

Administrivia — Project devel.

- We will use GIT extensively
- One private git repository per group.
 - Rep name: cp_2020_21_Gnn (where "nn" is the group number)
 - Add me as an "observer" [Read-Only]
- Each group member will commit regularly his/her individual
 - contributions to the group repository
 - Commit logs/messages must clearly state the contributions
- Individual grade will consider individual contributions committed the GIT repository
 - No meaningful commits/contributionsno frequency (failing the course)
- Project submission is just a Commit ID
- Learn GIT now!!!!

https://git-scm.com/book/en/v2

Administrivia — Project report

- I don't care who does what in the project, as long as everybody does technically relevant / meaningful work for the project
- Work division must be reported in the project report
 - Must be supported by the individual commit logs

Any attempt of fraud => all groups' members will fail the course immediately

Administrivia — Project method.

- Feel free to ask questions in/out classes
 - Teacher, colleagues, Piazza
 - Please make use of Piazza!
- Fell free to answer questions from colleagues
 - Helping finding a solution ≠ giving the solution for free

- Cite any source that inspired your work
 - If you cite what/who you used, then it is not cheating
 - Worst case I will deduce some points if it undermines the assignment

Remember...

- Clip is the official source of information for the course.
- Confirm @Clip all the administrivia related topics.
 - In case of contradiction, is the information in Clip that prevails
- If yours is a special case where the rules are unclear or do not apply, please let me know (so that we can handle it appropriately)!

The END