
Parallel Programming
Models and Architectures

lecture 01 (2021-03-15)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2020-21 —

João Lourenço <joao.lourenco@fct.unl.pt>

COMPUTER SCIENCE DEPARTMENT

Outline

• Parallel Programming Models

• Parallel Architectures

– Bibliography:
• Chapters 1 and 2 of book

McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;
Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Oct 12, 2018 2Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19

Parallel Computing
• Let’s prepare a pasta

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 3

Chop herbs

Crush tomato

Boil water

Cook pasta

Drain pasta

Cook sauce

Combine and serve

Parallel Computing
• Let’s prepare a pasta

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 4

Chop herbs

Crush tomato

Boil water

Cook pasta

Drain pasta

Cook sauce

Combine and serve

Cook pasta

Parallel Computing
• Let’s prepare a pasta

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 5

Chop herbs

Crush tomato

Boil water

Drain pasta

Cook sauce

Combine and serve

Cook pasta

Parallel Computing
• Let’s prepare a pasta

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 6

Chop herbs

Crush tomato

Boil water

Drain pasta

Cook sauceD

Combine and serve

Cook pasta

Parallel Computing
• Let’s prepare a pasta

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 7

Chop herbs

Crush tomato

Boil water

Drain pasta

Cook sauceD

Combine and serve

Car crash simulation example

• Simplified model based on a crash simulation for
the Ford Motor Company

• Illustrates various aspects common to many
simulations and applications

• This example was provided by Q. Stout and C. Jablonowski of the University
of Michigan

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 8

Finite Element Representation

• Car is modeled by a triangulated surface (elements)

• The simulation models the movement of the elements,
incorporating the forces on the elements to determine their
new position

• In each time step, the movement of each element depends
on its interaction with the other elements to which it is
physically adjacent

• In a crash, elements may end up touching other elements that
were not touching initially

• The state of an element is its location, velocity, and
information such as whether it is metal that is bending

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 9

(Sequential) Car

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 10

Car

Serial Crash Simulation

for all elements

read (State(element), Properties(element), Neighbor_list(element))

for step=1 to end_of_simulation

for element=1 to num_elements

Compute State(element) for next step,
based on the previous state of the element
and its neighbors and the properties of the element

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 11

Car

Simple Approach to
Paralleization
• Distributed Memory – Parallel system based on

processors linked with a fast network; processors
communicate via messages
• Owner Computes – Distribute elements to

processors; each processor updates its own
elements
• Single Program Multiple Data (SPMD) – All

machines run the same program on
independent data; dominant form of parallel
computing

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 12

Split Car

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 13

For shared memory

Basic Parallel Version

concurrently for all processors P

for all elements assigned to P

read (State(element), ProperCes(element), Neighbor- list(element))

for step=1 to end_of_simulaCon

for element=1 to num_elements_in_P

Compute State (element) for next step, based on previous state
of element and its neighbors, and on properties of the element

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 14

Distributed Car (ghost cells)
Distributed Car (w/ ghost cells)

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 15

For distributed system

CRAY-1 Vector Machine (1976)

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 16

CRAY-1 Vector Machine (1976)

03/03/2020, 00'43Cray-1 - Wikipedia

Page 1 of 10https://en.wikipedia.org/wiki/Cray-1

Cray-1

3D rendering of two Cray-1 with a figure as
scale

Design

Manufacturer Cray Research

Designer Seymour Cray

Release date 1975

Units sold Over 80

Price US$7.9 million in 1977
(equivalent to $33.3 million in
2019)

Casing

Dimensions Height: 196 cm (77 in)[1]

Dia. (base): 263 cm (104 in)[1]

Dia. (columns): 145 cm (57 in)[1]

Weight 5.5 tons (Cray-1A)

Power 115 kW @ 208 V 400 Hz[1]

System

Front-end Data General Eclipse

Operating
system

COS & UNICOS

CPU 64-bit processor @ 80 MHz[1]

Memory 8.39 Megabytes (up to 1 048
576 words)[1]

Storage 303 Megabytes (DD19 Unit)[1]

FLOPS 160 MFLOPS

Successor Cray X-MP

Cray-1
The Cray-1 was a supercomputer designed,
manufactured and marketed by Cray Research.
Announced in 1975, the first Cray-1 system was
installed at Los Alamos National Laboratory in
1976. Eventually, over 100 Cray-1's were sold,
making it one of the most successful
supercomputers in history. It is perhaps best
known for its unique shape, a relatively small C-
shaped cabinet with a ring of benches around the
outside covering the power supplies.

The Cray-1 was the first supercomputer to
successfully implement the vector processor design.
These systems improve the performance of math
operations by arranging memory and registers to
quickly perform a single operation on a large set of
data. Previous systems like the CDC STAR-100 and
ASC had implemented these concepts but did so in
a way that seriously limited their performance. The
Cray-1 addressed these problems and produced a
machine that ran several times faster than any
similar design.

The Cray-1's architect was Seymour Cray; the chief
engineer was Cray Research co-founder Lester
Davis.[2] They would go on to design several new
machines using the same basic concepts, and
retained the performance crown into the 1990s.

History
Background

Vector machines
Cray's approach

Description
Cray-1S

Cray-1M
Software
Museums
Other images of the Cray-1
In popular culture
References
External links

Contents

Vector Machines Today

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 17

= 49 375 Cray-1s

Flynn's Taxonomy

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 18

• Single Instruction, Single Data (SISD) architecture 2.2 Parallel Architectures: A Brief Introduction 9

instructions input
data

output
data

processor

control unit

Figure 2.1: The Single Instruction, Single Data (SISD) architecture

operate on vector data in a pipelined fashion, can also be categorized as SIMD.
Exploiting this parallelism is usually done by the compiler.

Multiple Instruction, Single Data (MISD). No well-known systems fit
this designation. It is mentioned for the sake of completeness.

Multiple Instruction, Multiple Data (MIMD). In a MIMD system,
each processing element has its own stream of instructions operating on its own
data. This architecture, shown in Fig. 2.3, is the most general of the architectures
in that each of the other cases can be mapped onto the MIMD architecture. The
vast majority of modern parallel systems fit into this category.

2.2.2 A Further Breakdown of MIMD

The MIMD category of Flynn’s taxonomy is too broad to be useful on its own; this
category is typically decomposed according to memory organization.

instructions input
data

output
data

processor

input
data

output
data

processor

input
data

output
data

processor

input
data

output
data

processor

control unit

Figure 2.2: The Single Instruction, Multiple Data (SIMD) architecture

Image from: Mattson T., Sanders B., Massingill B.; Patterns for Parallel Programming; Addison-Wesley(2004).

Flynn's Taxonomy

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 19

• Single Instruction, Multiple Data (SIMD) architect.

2.2 Parallel Architectures: A Brief Introduction 9

instructions input
data

output
data

processor

control unit

Figure 2.1: The Single Instruction, Single Data (SISD) architecture

operate on vector data in a pipelined fashion, can also be categorized as SIMD.
Exploiting this parallelism is usually done by the compiler.

Multiple Instruction, Single Data (MISD). No well-known systems fit
this designation. It is mentioned for the sake of completeness.

Multiple Instruction, Multiple Data (MIMD). In a MIMD system,
each processing element has its own stream of instructions operating on its own
data. This architecture, shown in Fig. 2.3, is the most general of the architectures
in that each of the other cases can be mapped onto the MIMD architecture. The
vast majority of modern parallel systems fit into this category.

2.2.2 A Further Breakdown of MIMD

The MIMD category of Flynn’s taxonomy is too broad to be useful on its own; this
category is typically decomposed according to memory organization.

instructions input
data

output
data

processor

input
data

output
data

processor

input
data

output
data

processor

input
data

output
data

processor

control unit

Figure 2.2: The Single Instruction, Multiple Data (SIMD) architecture

Image from: Mattson T., Sanders B., Massingill B.; Patterns for Parallel Programming; Addison-Wesley(2004).

SISD vs. SIMD - example

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 20

SISD vs. SIMD

Flynn's Taxonomy

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 21

• Multiple Instruction, Single Data (MISD)

Flynn's Taxonomy

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 22

• Multiple Instruction, Multiple Data (MIMD) archit. 10 Chapter 2 Background and Jargon of Parallel Computing

instructions
input
data

output
data

processor

control unit

instructions
input
data

output
data

processor

control unit

instructions
input
data

output
data

interconnect network

processor

control unit

instructions
input
data

output
data

processor

control unit

Figure 2.3: The Multiple Instruction, Multiple Data (MIMD) architecture

Shared memory. In a shared-memory system, all processes share a single
address space and communicate with each other by writing and reading shared
variables.

One class of shared-memory systems is called SMPs (symmetric multiproces-
sors). As shown in Fig. 2.4, all processors share a connection to a common memory
and access all memory locations at equal speeds. SMP systems are arguably the
easiest parallel systems to program because programmers do not need to distribute
data structures among processors. Because increasing the number of processors in-
creases contention for the memory, the processor/memory bandwidth is typically
a limiting factor. Thus, SMP systems do not scale well and are limited to small
numbers of processors.

The other main class of shared-memory systems is called NUMA (nonuniform
memory access). As shown in Fig. 2.5, the memory is shared; that is, it is uniformly
addressable from all processors, but some blocks of memory may be physically more
closely associated with some processors than others. This reduces the memory band-
width bottleneck and allows systems with more processors; however, as a result, the
access time from a processor to a memory location can be significantly different de-
pending on how “close” the memory location is to the processor. To mitigate the
effects of nonuniform access, each processor has a cache, along with a protocol to
keep cache entries coherent. Hence, another name for these architectures is cache-
coherent nonuniform memory access systems (ccNUMA). Logically, programming
a ccNUMA system is the same as programming an SMP, but to obtain the best

CPU CPU CPU CPU

memory

Figure 2.4: The Symmetric Multiprocessor (SMP) architecture

Image from: Mattson T., Sanders B., Massingill B.; Patterns for Parallel Programming; Addison-Wesley(2004).

Parallel Architectures

• The Symmetric Multiprocessor (SMP) architecture

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 23

10 Chapter 2 Background and Jargon of Parallel Computing

instructions
input
data

output
data

processor

control unit

instructions
input
data

output
data

processor

control unit

instructions
input
data

output
data

interconnect network

processor

control unit

instructions
input
data

output
data

processor

control unit

Figure 2.3: The Multiple Instruction, Multiple Data (MIMD) architecture

Shared memory. In a shared-memory system, all processes share a single
address space and communicate with each other by writing and reading shared
variables.

One class of shared-memory systems is called SMPs (symmetric multiproces-
sors). As shown in Fig. 2.4, all processors share a connection to a common memory
and access all memory locations at equal speeds. SMP systems are arguably the
easiest parallel systems to program because programmers do not need to distribute
data structures among processors. Because increasing the number of processors in-
creases contention for the memory, the processor/memory bandwidth is typically
a limiting factor. Thus, SMP systems do not scale well and are limited to small
numbers of processors.

The other main class of shared-memory systems is called NUMA (nonuniform
memory access). As shown in Fig. 2.5, the memory is shared; that is, it is uniformly
addressable from all processors, but some blocks of memory may be physically more
closely associated with some processors than others. This reduces the memory band-
width bottleneck and allows systems with more processors; however, as a result, the
access time from a processor to a memory location can be significantly different de-
pending on how “close” the memory location is to the processor. To mitigate the
effects of nonuniform access, each processor has a cache, along with a protocol to
keep cache entries coherent. Hence, another name for these architectures is cache-
coherent nonuniform memory access systems (ccNUMA). Logically, programming
a ccNUMA system is the same as programming an SMP, but to obtain the best

CPU CPU CPU CPU

memory

Figure 2.4: The Symmetric Multiprocessor (SMP) architecture

Image from: Mattson T., Sanders B., Massingill B.; Patterns for Parallel Programming; Addison-Wesley(2004).

Parallel Architectures

• Nonuniform memory access (NUMA) architect.

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 24

Image from: Mattson T., Sanders B., Massingill B.; Patterns for Parallel Programming; Addison-Wesley(2004).

2.2 Parallel Architectures: A Brief Introduction 11

CPU CPU CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU CPU CPU

memory

memory memory

memory

Figure 2.5: An example of the nonuniform memory access (NUMA) architecture

performance, the programmer will need to be more careful about locality issues and
cache effects.

Distributed memory. In a distributed-memory system, each process has
its own address space and communicates with other processes by message pass-
ing (sending and receiving messages). A schematic representation of a distributed
memory computer is shown in Fig. 2.6.

Depending on the topology and technology used for the processor intercon-
nection, communication speed can range from almost as fast as shared memory (in
tightly integrated supercomputers) to orders of magnitude slower (for example, in
a cluster of PCs interconnected with an Ethernet network). The programmer must
explicitly program all the communication between processors and be concerned
with the distribution of data.

Distributed-memory computers are traditionally divided into two classes: MPP
(massively parallel processors) and clusters. In an MPP, the processors and the
network infrastructure are tightly coupled and specialized for use in a parallel com-
puter. These systems are extremely scalable, in some cases supporting the use of
many thousands of processors in a single system [MSW96, IBM02].

Clusters are distributed-memory systems composed of off-the-shelf com-
puters connected by an off-the-shelf network. When the computers are PCs run-
ning the Linux operating system, these clusters are called Beowulf clusters. As

CPU CPU CPU CPU

interconnect network

memory memory memory memory

Figure 2.6: The distributed-memory architecture

Parallel Architectures

• Nonuniform memory access (NUMA) architect.

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 25

Image from: Mattson T., Sanders B., Massingill B.; Patterns for Parallel Programming; Addison-Wesley(2004).

2.2 Parallel Architectures: A Brief Introduction 11

CPU CPU CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU CPU CPU

memory

memory memory

memory

Figure 2.5: An example of the nonuniform memory access (NUMA) architecture

performance, the programmer will need to be more careful about locality issues and
cache effects.

Distributed memory. In a distributed-memory system, each process has
its own address space and communicates with other processes by message pass-
ing (sending and receiving messages). A schematic representation of a distributed
memory computer is shown in Fig. 2.6.

Depending on the topology and technology used for the processor intercon-
nection, communication speed can range from almost as fast as shared memory (in
tightly integrated supercomputers) to orders of magnitude slower (for example, in
a cluster of PCs interconnected with an Ethernet network). The programmer must
explicitly program all the communication between processors and be concerned
with the distribution of data.

Distributed-memory computers are traditionally divided into two classes: MPP
(massively parallel processors) and clusters. In an MPP, the processors and the
network infrastructure are tightly coupled and specialized for use in a parallel com-
puter. These systems are extremely scalable, in some cases supporting the use of
many thousands of processors in a single system [MSW96, IBM02].

Clusters are distributed-memory systems composed of off-the-shelf com-
puters connected by an off-the-shelf network. When the computers are PCs run-
ning the Linux operating system, these clusters are called Beowulf clusters. As

CPU CPU CPU CPU

interconnect network

memory memory memory memory

Figure 2.6: The distributed-memory architecture

Software Taxonomies

• Data Parallel (SIMD)
– Parallelism that is a result of identical operations being

applied concurrently on different data items; e.g., many
matrix algorithms

– Difficult to apply to complex problems

• Single Program, Multiple Data (SPMD)
– A single application is run across multiple

processes/threads on a MIMD architecture
– Most processes execute the same code but do not work in

lock-step
– Dominant form of parallel programming

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 26

Shared Memory (SM)

• Attributes:
– Global memory space
– Each processor will utilize its own cache for a portion of global

memory; consistency of the cache is maintained by hardware

• Advantages:
– User-friendly programming techniques (OpenMP and OpenACC)
– Low latency for data sharing between tasks

• Disadvantages:
– Global memory space-to-CPU path may be a bottleneck
– Non-Uniform Memory Access
– Programmer responsible for synchronization

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 27

Distributed Memory (DM)

• Attributes:
– Memory is shared amongst processors through message passing

• Advantages:
– Memory scales based on the number of processors
– Access to a processor's own memory is fast
– Cost effective

• Disadvantages:
– Error prone; programmers are responsible for the details of the

communication
– Complex data structures may be difficult to distribute

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 28

Hardware/Software Models

• Software and hardware models do not need to
match

• DM software on SM hardware:
– Message Passing Interface (MPI) - designed for DM

Hardware but available on SM systems

• SM software on DM hardware
– Remote Memory Access (RMA) included within MPI-3
– Partitioned Global Address Space (PGAS) languages

• Unified Parallel C (extension to ISO C 99)
• Coarray Fortran (Fortran 2008)

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 29

Difficulties

• Serialization causes bottlenecks

• Workload is not distributed

• Debugging is hard

• Serial approach doesn't parallelize

Oct 12, 2018 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19 30

The END

Oct 12, 2018 31Concurrency and Parallelism — J. Lourenço © FCT-UNL 2018-19

