N NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

Parallel Programming
Models and Architectures

lecture 03 (2021-03-22)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2020-21 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>

Outline

» Performance scalability
— Analyfical performance measures
- Amdahl’ s law
— Gustafson-Barsis’ law
— Work-span and Brent’'s lemma

- Bl b | |O g a p h y Structured Parallel

Programming

« Chapter 2 of book
McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;
Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 2

What is Performance?

* In computing, performance is defined by 2 factors
— Computational requirements (what needs to be done?) Efficacy
— Computing resources (how much will it coste) Efficiency

« Computational problems translate to requirements

« Computing resources interplay and tradeoff
1

Resources for solution

T\ / (\\ . y %? ... and ultimately I@J

Performance ~

Hardware Time Energy Money

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

What is Parallel Performance®?

We are concerned with performance issues when using @
parallel computing environment
— Performance with respect to parallel computation

Performance is the raison d’étre for parallelism
— Parallel performance versus sequential performance
— If the “performance” is not better, parallelism is not necessary

Parallel processing includes technigues and technologies
necessary to compute in parallel

— Hardware, networks, operating systems, parallel libraries, languages,
compilers, algorithms, toaols, ...

Parallelism must deliver performance
— Howe How welle

Performance Expectation (Loss)

e If each processor is rated at “f" MFLOPS and there are
“p" processors, should we see “f x p"" MFLOPS
performancee

— If it fakes 100 seconds on 1 processor, shouldn't it take 10 seconds on
10 processorse

« Several causes affect performance
— Each must be understood separately

— But they interact with each other in complex ways
« Solution to one problem may create another
« One problem may mask another

« Scaling (system, problem size) can change conditions

 Need to understand performance space

Embarrassingly Parallel
Computations

 An embarrassingly parallel computation is one that
can be obviously divided into completely
Independent parts that can be executed
simultaneously

— In an embarrassingly parallel computation there is no interaction

between separate processes, except for the (initial) work
distribution and (final) results collection and combination

 Embarrassingly parallel computations have potential

to achieve maximal speedup on parallel platforms

— If it takes T tfime sequentially, there is the potential to achieve
T /P time running in parallel with P processors

— Why is this not the (usual) case?

Scalabllity

« Can the program scale up to use many
Processorse
— What does that mean@

 How do we measure scalabilitye

— How do we evaluate scalability goodness?

« Comparative evaluation
— If double the number of processors, what to expect?
— Is scalability lineare
— Is efficiency retained as problem size increases?

— Apply performance metrics

Performance and Scalabllity

 Performance evaluation

— Sequential runtime (T,eq Or T;) is a function of
« problem size and architecture
— Parallel runtime (Tpo) is a function of
« problem size and parallel architecture
* # processors used in the execution
— Performance is affected by
 algorithm + architecture

« Scalability

— Ability of parallel algorithm to achieve performance gains
proportional to the number of processors and the size of the
problem

Performance Metrics and
Formulas

T, Is the execution time on a single processor

* T, Is the execution fime on a “p” processor system

-
* Sy is the speedup Slp)= =+
p
* E, Is the efficiency E(p) = 159_
* C, is the cost Cost(p) =p x T,

« A parallel algorithm is cosf-optimal it
—) Parallel time = sequential fime (E, = 100%, C, =T;)

Amdahl’ s Law
(Fixed Size Speedup)

 Interested in solving the problem faster

e Reduce execution time

P=1

. i
Serial work l Serial Wo.rk (f) is =16%
of execution time

Parallelizable work

awi|

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

10

Amdahl’ s Law
(Fixed Size Speedup)

 Interested in solving the problem faster

e Reduce execution time

P=1 p=2
. o
Serial work l l Serial Work (f) is =25%

of execution time
Parallelizable work II

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

awl |

11

Amdahl’ s Law
(Fixed Size Speedup)

 Interested in solving the problem faster

e Reduce execution time

Serial work l

Parallelizable work

P-4

Serial Work (f) is =40%
of execution time

swl]

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

12

Amdahl’ s Law
(Fixed Size Speedup)

 Interested in solving the problem faster

e Reduce execution time

Serial work l

Parallelizable work

P-4 P=8

Serial Work (f) is =60%
of execution time

swl]

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 13

Amdahl’ s Law

(Fixed Size Speedup)

 Interested in solving the problem faster

e Reduce execution time

=3

Serial work l

Parallelizable work

swl]

Mar 22, 2021

1 P=2

P-4

P=8

ksl |l lJ]]

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 14

Amdahl’ s Law
(Fixed Size Speedup)

« Let f be the fraction of a program that is sequential
— (1 — f) is the fraction that can be parallelized

* Let T, be the execution fime on 1 processor

- Let T, be the execution time on p processors
P=1 P=2 P=4 P-8

Serial work f T4 f T, f T, lf T1

f =0.16
III sEEEEEEE
Parallelizable work 1-f) T,
(1-/)=0.84
1- f) Ty p
= (1- f) Iy .
5 szf.m(l DR
1-/)-Ty .

Mar 22, 2021 y Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 15

Amdahl’ s Law
(Fixed Size Speedup)

« Let f be the fraction of a program that is sequential
— 1 — fis the fraction that can be parallelized

* Let T, be the execution fime on 1 processor
- Let T, be the execution time on p processors

20.00 — 0'05

* S, Isthe speedup s //

v Parallel Portion ——

o / ="
f T —|— (]_ f) -Th %12.00 /

10.00
y

]_ 8.00 A LA

+ (1;]?) 6.00 /
4. 74 —

S - 1 200 ,,/:/ i 0.50
p~>00 = ? 0.00

Sp <

@\ﬂ

0.10

Speed

A
N

S, <

~=
N

mmmmmmmmmm
NNNNNNN

Number of Processors

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 16

Amdahl’ s Law
Fixed Size Speedup)

« Amdahl’s Law:
Maximal Speedup

1000
Serial Speedup 672
fraction
* 0.1%
- 1%
10% 100
30%
< 50%
- 10
3
L,
T T T 1

2 4 8 16 32 64 128 256 512 1024 2048
Number of workers

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

17

Amdahl’ s Law
(Fixed Size Speedup)

« Amdhal’s Law: » Amdahl’s Law:
Maximal Speedup Efficiency > Sp/p

1000 —0 100%
Serial Speedup 672 Efficiency
fraction
* 0.1% 80%
- 1%
10% 100
30% 60%
< 50%
Serial
fraction 40%
- 10 B, 01% \.
1%
~-10% 20%
l 2 30%
~<-50%
T T T T T T T T T T 1 T T T T T T T T Y Y \A/\ 0%
12 4 8 16 32 64 128 256 512 1024 2048 1 2 4 8 16 32 64 128 256 512 1024 2048
Number of workers Number of workers

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 18

Amdahl’ s Law (Example)

« If 90% of the computation can be parallelized,
what is the max. speedup achievable using
3 Processorse

e Solution:;

f=10% =0.1

1
< A
S(8) < o1+ 03 4.7

Amdahl’s Law and Scalabillity

« Scalability

— Abillity of parallel algorithm to achieve performance gains proportional to
the number of processors and the size of the problem

« When does Amdahl’'s Law applye

— When the problem size is fixed

— Strong scaling (p—=%, Sp =Sw =1 /1)

— Speedup bound is determined by the degree of sequential execution time
in the computation, not # processorsl!!

— Uhh, this is not good ... Why<
— Perfect efficiency is hard to achieve

« See original paper by Amdahl at
— http://inst.eecs.berkeley.edu/~n252/sp07/Papers/Amdahl.pdf

Gustafson-Barsis’ Law
(Scaled Speedup)

...speedup should be measured by scaling the
problem to the number of processors, not by fixing
the problem size.

— John Gustafson

Gustafson-Barsis’ Law
(Scaled Speedup)

« Often interested in larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel fime

P=1
Serial K Serial Work is = 16% of
erial wor total execution time

Parallelizable work

awil]

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 22

Gustafson-Barsis’ Law
(Scaled Speedup)

« Often interested in larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel fime

P=1 P=2
Serial K Serial Work is = 9% of
erial wor total execution time

Parallelizable work II

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 23

awl |

Gustafson-Barsis’ Law
(Scaled Speedup)

« Often interested in larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel fime

P=1 P 2 P 4
S I k Serial Work is = 5% of
erial wor total execution time

Parallelizable work I II IIII

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 24

awl |

Gustafson-Barsis’ Law
(Scaled Speedup)

« Often interested in larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel fime

P=1 P 2 P 4 P=8
Serial Work is = 3% of

Serial WOl'k total execution time

ParaezabeworkI II IIII IIIIIIII

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

awl |

Gustafson-Barsis' Law

(Scaled Speedup)

« Often interested in larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel fime

P=2

P
Serial work l

Parallelizable work

awil]

P=4

P=8

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Gustafson-Barsis’ Law
(Scaled Speedup)

« Execution time of a parallel program: T, =a+b
— a => part not parallelizable
— b => part parallelizable

» Because we are scaling the problem (data being
processed), with “P" processors we have:
Tp = a + P . b

* The wall clock execution time is always the same, so
scaled speedup is calculated on the volume of data
processed (which is proportional to the
total/accumulated execution time):

5,<T,/Ty = (a+ P-b)/(a+ b)

Gustafson-Barsis’ Law
(Scaled Speedup)

*Scaled speedup §,<T,/T;=(a+P-b)/(a+b)

let @ =a/(a+b) be the sequential fraction of
the parallel execution time

* Then the scaled speedup is
S,SA+P-(1-Q)=P- -(P-1)

e |If & =2 0 then S,> P

Gustafson-Barsis’ Law (Example)

« An application executing on 64 processors
spends 5% of the total fime on non-parallelizable
computations. What is the scaled speedup?

e Solution:;

s < P-a-(P—1)
< 64-0.05 (64 — 1)
< 60.85

Gustafson-Barsis' Law

Mar 22, 2021

Speedup - S(P)

120

100

80

60

Gustafson's Law: S(P) = P-a*(P-1)

x-0.1 *(x-1)

x-02*(x-1) /

0.5 *(x-1)
x-0.6%(x-1) -

57.7

20

64
20 40 60 80 100 120

Number of Processors - P

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

30

Gustafson-Barsis’ Law and
Scalability

» Scalability

— Ability of parallel algorithm to achieve performance gains
proportional to the number of processors and the size of
the problem

« When does Gustafson's Law applye

— When the problem size can increase when the number of
Processors increases
— Speedup function includes the number of processors!!!

— Can maintain or increase parallel efficiency as the
problem scales

Amdahl versus Gustafson-Baris

Amdahl Gustafson-Baris

serial work I serial work
parallellzable work I III parallelizable work

aLUI_L

* Time: wall clock time * Time: CPU time

« Sequential part tends to * Sequential part tends to
dominate computation become irrelevant

« Upper-bound on * No upper-bound on
scalability scalability

Mar 22, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 32

The END

Mar 22, 2021

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

33

