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Amdhal’s Law
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If 50% of your application is 
parallel and 50% is serial,

you can’t get more than a factor 
of 2 speedup, no matter how 
many processors it runs on!



But…

• Can all the applications be decomposed into 
just a serial part and a parallel part? For my 
particular application, what speedup should I 
expect?

• Most applications are not embarrassing parallel, 
because they have a dependencies between 
code blocks and have a complex organization
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Cilk+  fib()  implementation

int fib(int n) {
if (n < 2) return n;
else {  
int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x+y;

}
}
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Launch 
thread

This is a 
“future”

Main 
thread

Wait for 
“future”



Execution model
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int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Execution Model

The computation dag
unfolds dynamically.

Example:
fib(4)

4

3 2

2 1 1 0

―Processor 
oblivious‖

1 0
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Computation DAG
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• A parallel instruction stream is a dag 𝐺 = (𝑉, 𝐸 ).
• Each vertex 𝑣 ∈ 𝑉 is a strand: a sequence of instructions not 

containing a call, spawn, sync, or return (or thrown exception).
• An edge 𝑒 ∈ 𝐸 is a spawn, call, return, or continue edge.
• Loop parallelism (cilk_for) is converted to spawns and syncs using 

recursive divide-and-conquer.
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Computation Dag

initial strand final strand

continue edge

return edge
spawn edge

•A parallel instruction stream is a dag G = (V, E ).
•Each vertex v ∈ V is a strand : a sequence of instructions 

not containing a call, spawn, sync, or return (or thrown 
exception).

•An edge e ∈ E is a spawn, call, return, or continue edge.

•Loop parallelism (cilk_for) is converted to spawns and 
syncs using recursive divide-and-conquer.

strand

call edge



Performance Measures
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TP = execution time on P processors

Performance Measures
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Performance Measures
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TP = execution time on P processors

Performance Measures

T1 = work
= 18



Performance Measures
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TP = execution time on P processors

*Also called critical-path length
or computational depth.

Performance Measures

T1 = work T∞ = span*
= 18 = 9



Performance Measures
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TP = execution time on P processors
T1 = work T∞ = span*

*Also called critical-path length
or computational depth.

WORK LAW
∙TP ≥T1/P

Performance Measures

SPAN LAW
∙TP ≥ T∞



Serial Composition 
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Series Composition

Work: T1(A∪B) =

A B

Work: T1(A∪B) = T1(A) + T1(B)
SpSpaann:: TT∞∞(A(A∪B) ∪B) = T= ∞(A) + T∞(B)
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Parallel Composition
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Parallel Composition

A

B

WWoorrkk:: TT11(A(A∪B) ∪B) = T= 1(A) + T1(B)
SpSpaann:: TT∞∞(A(A∪B) ∪B) == max{T∞(A), T∞(B)}



Speedup
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Def. T1/TP = speedup on P processors.

If T1/TP = P, we have (perfect) linear speedup.
If T1/TP > P, we have superlinear speedup, 
which is not possible in this performance 
model, because of the Work Law TP ≥ T1/P.

Speedup
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Parallelism
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Parallelism

Because the Span Law dictates 
that TP ≥ T∞, the maximum 
possible speedup given T1
and T∞ is
T1/T∞ = parallelism

= the average 
amount of work 
per step along 
the span.

= 18/9
= 2 .
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Example: fib(4)
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PPaararallllelelism: ism:  TT11/T/T∞∞ == 2.125

Example: fib(4)

Assume for 
simplicity that 
each strand in 
fib(4) takes unit 
time to execute.

WWoorrkk:: TT11 = = 17
SpSpaann:: TT∞∞ == 8

4

5

6

1

2 7

8

3

Using many more than 2 processors can 
yield only marginal performance gains.

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 16



Quicksort Analysis

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *))

{
int p = partition(base, nel, width, compar);

cilk_spawn qsort(&base[0], p, width, compar);

qsort (&base[p+1], nel-(p+1), width, compar);

cilk_sync;

}
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Note: the pointer arithmetic is invalid in this example,
but I hope you get the idea!

Let’s analyze the sorting of 100,000,000 numbers! 



Parallel performance
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Cilkview Output

Measured 
speedup
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Parallel performance

© 2010 Charles E. Leiserson 20

Cilkview Output

Parallelism

11.21
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Parallel performance
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Cilkview Output

Span 
Law
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Parallel performance
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Cilkview Output

Work Law
(linear speedup)
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Parallel performance
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Cilkview Output

Burdened 
parallelism
— estimates 
scheduling 
overheads
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Quicksort Analysis

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *))

{
int p = partition(base, nel, width, compar);

cilk_spawn qsort(&base[0], p, width, compar);

qsort (&base[p+1], nel-(p+1), width, compar);

cilk_sync;

}
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Note: the pointer arithmetic is invalid in this example,
but I hope you get the idea!

Expected Work = O(n lg n)
Expected Span = O(n) =>   Parallelism = O(lg n)



Interesting Practical Algorithms

Algorithm Work Span Parallelism 
Quick sort Θ(n lg n) Θ(n) Θ(lg n) 
Merge sort Θ(n lg n) Θ(lg3 n) Θ(n/lg2 n) 
Matrix multiplication Θ(n3) Θ(lg n) Θ(n3/lg n) 
Strassen Θ(nlg7) Θ(lg2 n) Θ(nlg7/lg2n) 
LU-decomposition Θ(n3) Θ(n lg n) Θ(n2/lg n) 
Tableau construction Θ(n2) Θ(nlg3) Θ(n2-lg3) 
FFT Θ(n lg n) Θ(lg2n) Θ(n/lg n) 

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 24



DAG Model of Computation

• Think of a program as a directed acyclic graph 
(DAG) of tasks
– A task can not execute until all the

inputs to the tasks are available
– These come from outputs of earlier

executing tasks
– DAG shows explicitly the task dependencies

• Think of the hardware as consisting
of workers (processors)
• Consider a greedy scheduler of

the DAG tasks to workers
– No worker is idle while there

are tasks still to execute
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Work-Span Model

• TP = time to run with P workers
• T1 = work

– Time for serial execution
• execution of all tasks by 1 worker

– Sum of all work

• T∞ = span
– Time along the critical path

• Critical path
– Sequence of task execution (path) through DAG that takes 

the longest time to execute
– Assumes an infinite # workers available
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Work-Span Example

• DAG at the right has 7 tasks

• Let each task take 1 unit of time

• T1 = 7
– All tasks have to be executed
– Tasks are executed in a serial order
– Can them execute in any order?
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Work-Span Example

• DAG at the right has 7 tasks

• Let each task take 1 unit of time

• T1 = 7
– All tasks have to be executed
– Tasks are executed in a serial order
– Can them execute in any order?

• T∞ = 5
– Time along the critical path
– In this case, it is the longest pathlength of

any task order that maintains necessary dependencies
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Lower/Upper Bound on Greedy 
Scheduling
• Suppose we only have P workers
• We can write a work-span formula

to derive a lower bound on TP
– Max(T1 / P , T∞  ) ≤  TP

• T∞  is the best possible execution time
• Brent’s Lemma derives an upper bound

– Capture the additional cost executing
the other tasks not on the critical path

– Assume can do so without overhead
– TP  ≤ (T1 - T∞  ) / P + T∞
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Consider Brent’s Lemma for 2 
Processors
• T1 = 7

• T∞ = 5

• T2 ≤ (T1 - T∞  ) / P + T∞
≤ (7 – 5) / 2 + 5

≤ 6
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Consider Brent’s Lemma for 2 
Processors
• T1 = 7

• T∞ = 5

• T2 ≤ (T1 - T∞  ) / P + T∞
≤ (7 – 5) / 2 + 5

≤ 6

Mar 10, 2020 31Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

1

2 2

3

4

5

6

Can we do better?
Yes!!



Consider Brent’s Lemma for 2 
Processors
• T1 = 7

• T∞ = 5

• T2 ≤ (T1 - T∞  ) / P + T∞
≤ (7 – 5) / 2 + 5

≤ 6
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Amdahl was an optimist!
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Estimating Running Time

• Scalability requires that 𝑇∞ be dominated by 𝑇1

𝑇𝑃 ≈ 𝑇1 / 𝑃 + 𝑇∞ 𝑖𝑓 𝑇∞ << 𝑇1

• Increasing work hurts parallel execution 
proportionately

• The span impacts scalability, even for finite 𝑃
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𝑇𝑃 ≤ (𝑇1 − 𝑇∞ ) / 𝑃 + 𝑇∞
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Parallel Slack

• Sufficient parallelism implies linear speedup
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𝑇𝑃 ≈ 𝑇1/𝑃 𝑖𝑓 𝑇1/𝑇∞ >> 𝑃

Linear speedup Parallel stack



The END

• Sources: 

– Parallel Computing, CIS 410/510, Department of Computer 
and Information Science

– https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-172-performance-engineering-of-
software-systems-fall-2010/video-lectures/lecture-13-
parallelism-and-performance/MIT6_172F10_lec13.pdf
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