N NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

Parallel Programming
Models and Architectures

lecture 03 (2021-03-22)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2020-21 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>

Outline

» Performance scalability
— Work-span model
— Brent’s lemma

— Bibliography:

* Chqpier 2 of book Structured Parallel
McCool M., Arch M., Reinders J.; Programming
Structured Parallel Programming: Patterns for
Efficient Computation;

Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 2

Amdhal’s Law
" 1f50% of your application is \

parallel and 50% is serial,
you can’t get more than a factor
of 2 speedup, no matter how
many processors it runs on! J

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 3

BUT...

« Can all the applications be decomposed into
just a serial part and a parallel parte For my
particular application, what speedup should |
expecte

* Most applications are not embarrassing parallel,
because they have a dependencies between
code blocks and have a complex organization

Cilk+ fib() implementation

int fib(int n) {

if (n
else {
int

< 2) return n;

Xy Y

X—=|

cilk spawn

y:

fib(n-2);

Mar 10, 2020

cilk sync;
return X+y;\1

Launch
thread
fib(n-1);
This is a
“future”
Main
thread

Wait for
“future”

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Execution model

o 1 o 1 e e 3 Example:

lYSgnEZ) return (n); fib(4)

1nt & ¥

k_spawn fib(n-1);
y = f1b(n 20) 8
ci1lk_sync;
return (x+y)

"‘Processor
oblivious

The computation dag |
unfolds a’ynam/ca//y

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Computation DAG

initial strand final strand

continue edge ~ strand

spawn edge return edge

A parallel instruction streamisadag ¢ = (V,E).

Each vertex v € Vis a strand: a sequence of instructions not
containing a call, spawn, sync, or return (or thrown excepftion).

An edge e € Eis aspawn, call, return, or continue edge.

Loop parallelism (cilk_for) is converted to spawns and syncs using
recursive divide-and-conquer.

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Performance Measures

T, = execution time on P processors

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Performance Measures

T, = execution time on P processors

T, = work
=18

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Performance Measures

T, = execution time on P processors

T, =work T, = span*
=18 =9

*Also called critical-path length
or computational depth.

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

10

Performance Measures

Mar 10, 2020

T, = execution time on P processors

Con

T, = work T, = span*

WORK LAW
T, =T, /P

Seaw Law

*Also called critical-path length
or computational depth.

currency and Parallelism — J. Lourengco © FCT-UNL 2019-20

11

Serial Composition

Work: T,(AUB) = T,(A) + T,(B)
Span: T_(AUB) = T_(A) + T_(B)

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

12

Parallel Composition

Work: T,(AUB) = T,(A) + T,(B)
Span: T (AUB) = max{T,(A), T..(B)}

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

13

Speedup
Def. T,/T, = speedup on P processors.

If T,/T, = P, we have (perfect) linear speedup.

If T,/Tp > P, we have superilinear speedup,
which is not possible in this performance
model, because of the Work Law T, = T, /P.

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 14

Parallelism

Because the Span Law dictates
that T, = T, the maximum
possible speedup given T,
and T_ is

T,/T. = parallelism

Mar 10, 2020

= the average
amount of work
per step along
the span.

= 18/9
= 2.

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

15

Example: fib(4)

Assume for
simplicity that
each strand in
fib(4) takes unit
time to execute.

Work: T] =17
Span: T, =8
Para//e//sm. T,/T, =2.125

Using many more than 2 processors can
vield only marginal performance gains.

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

16

Quicksort Analysis

Note: the pointer arithmetic is invalid in this example,
but | hope you get the idea!

void gsort (void *base, size t nel, size t width,
int (*compar) (const void *, const void *))

int p = partition(base, nel, width, compar);

cilk spawn gsort (&base[0], p, width, compar);

gsort (&basel[ptl], nel-(p+l), width, compar);

cilk sync;

Mar 10, 2020

Let’s analyze the sorting of 100,000,000 numbers!

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 17

Parallel performance

Mar 10, 2020

16 v T T

14 4 /

‘0 -

°lb
a4 =+
2-I
0 — . ——
0 5 10 15
Cores
#- Measured Speedup =& Lower Performance Bound
=P Upper Performance Bound — fophication Parallelism = 11.21

= |deal Speadup

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

18

Parallel performance

16 T v T

14 +

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

19

Parallel performance

Mar 10, 2020

16 v v T

14 +

0 — e
0 5 10 15
Cores
#- Mwasured Speedup —&— Lower Performance Bound
(=8 Upper Performance Bound — fophication Parallelism = 11.21
= |deal Speedup

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

20

Parallel performance

16

10 +

<
i i i
¥ s ¥ ¥ T ¥ s v L T ¥ ¥ as L T

0 5 10 15
Cores

¥ Measured Speedup —&— Lower Performance Bound

=8— Upper Performance Bound —— Application Parallelism = 11.21

e ldeal Speedup

Mar 10, 2020 Concurrency and Parallelism — J. Lourengo © FCT-UNL 2019-20

21

Parallel performance

Mar 10, 2020

16
14 =+

12 +

104

<
i i
¥ s ¥ s T L s v L T

o 5 10
Cores

. Measured Speedup —&— Lower Performance
=8— Upper Performance Bound —— Application Parallelism
= ldeal Speedup

Concurrency and Parallelism — J. Lourenco © FCT-U

22

Quicksort Analysis

Note: the pointer arithmetic is invalid in this example,
but | hope you get the idea!

void gsort (void *base, size t nel, size t width,
int (*compar) (const void *, const void *))

int p = partition(base, nel, width, compar);
cilk spawn gsort (&base[0], p, width, compar);
gsort (&basel[ptl], nel-(p+l), width, compar);

cilk sync;

Expected Work = O(n Ig n)

=> Parallelism = Ol
Expected Span = O(n) el = Ol)

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 23

Interesting Practical Algorithms

Algorithm Parallelism

Quick sort O(nlgn) O(n) O(lg n)
Merge sort O(nlgn) O(g3n) ©(n/lg?n)
Matrix multiplication ©(n3) O(g n) ©(n3/lg n)
Strassen ©(n'97) ©(g2n) O(n'9’/lg2n)
LU-decomposition O(n3) O(nlgn) O(n?%/lg n)
Tableau construction ©(n?) ©(n'93) ©(n2-193)
FFT O(nlgn) O(g2n) O(n/lg n)

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 24

DAG Model of Computation

« Think of a program as a directed acyclic graph
(DAG) of tasks

- A task can not execute until all the
inputs to the tasks are available

— These come from outputs of earlier
executing tasks

— DAG shows explicitly the task dependencies

 Think of the hardware as consisting
of workers (processors)

« Consider a greedy scheduler of
the DAG tasks to workers

— No worker is idle while there
are tasks still to execute

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

25

Work-Span Model

* Tp = time to run with P workers

i T] = WOF/(
— Time for serial execution
« execution of all tasks by 1 worker

— Sum of all work

e [, =Span
— Time along the critical path

* Critical path

— Sequence of task execution (path) through DAG that takes
the longest time to execute

— Assumes an infinite # workers available

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 26

Work-Span Example

 DAG at the right has 7 tasks
e Let each task take 1 unit of time
° TI — 7

— All tasks have to be executed

— Tasks are executed in a serial order
— Can them execute in any ordere

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

27

Work-Span Example

 DAG at the right has 7 tasks
e Let each task take 1 unit of time
° TI — 7

— All tasks have to be executed

— Tasks are executed in a serial order
— Can them execute in any ordere

o Too =5
— Time along the critical path

— In this case, it is the longest pathlength of
any task order that maintains necessary dependencies

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 28

Lower/Upper Bound on Greedy
Scheduling

» Suppose we only have P workers

« We can write a work-span formula
to derive a lower bound on Tp
~Max(T; /P, T,)< Tp

* [, IS The best possible execution time

* Brent's Lemma derives an upper bound

— Capture the additional cost executing
the other tasks not on the critical path ®

— Assume can do so without overhead
—Tp<(T;-T.) /P +T,

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Consider Brent's Lemma for 2
Processors

e T,=7

*[.=5

T, <(T)-T.)/P+T.
<(/7-5)/2+5
<6

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Consider Brent's Lemma for 2
Processors

.T7:7
.Too:5
pi pi
‘T, S(T,-T.)/P+T. e
S(7=9)12+5 Can we do bettere
<6b Yesl!!

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 31

Consider Brent's Lemma for 2
Processors

.T7:7
.Too:5
3 2
‘T, S(T,-T.)/P+T. oA
S(7=9)12+5 Can we do bettere
<6b Nol!!

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 32

Amdahl was an optimist!

~_—~— —Amdahl's Law

0 2.5
E e
8 2

o

()]

—Work-Span Bound

Brent's Lemma

Mar 10, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

<

Estimating Running Time

 Scalability requires that T, be dominated by T,
Tp < (Ty —T,)/P + T,

To~T,/P + T, if T,<<T,

» Increasing work hurts parallel execution
proportionately

* The span impacts scalability, even for finite P

Parallel Slack

 Sufficient parallelism implies linear speedup

-

(&

~

T,~ T,/P if T,/T,>>P
)

\) \)
| |

Linear speedup Parallel stack

The END

e Sources:

— Parallel Computing, CIS 410/510, Department of Computer
and Information Science

— https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-172-performance-engineering-of-
software-systems-fall-2010/video-lectures/lecture-13-
parallelism-and-performance/MITé6_172F10_lec13.pdf

