
Parallel Programming
Models and Architectures

lecture 03 (2021-03-22)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2020-21 —

João Lourenço <joao.lourenco@fct.unl.pt>

COMPUTER SCIENCE DEPARTMENT

Outline

• Performance scalability
– Work-span model
– Brent’s lemma

– Bibliography:
• Chapter 2 of book

McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;
Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Mar 10, 2020 2Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Amdhal’s Law

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 3

If 50% of your application is
parallel and 50% is serial,

you can’t get more than a factor
of 2 speedup, no matter how
many processors it runs on!

But…

• Can all the applications be decomposed into
just a serial part and a parallel part? For my
particular application, what speedup should I
expect?

• Most applications are not embarrassing parallel,
because they have a dependencies between
code blocks and have a complex organization

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 4

Cilk+ fib() implementation

int fib(int n) {
if (n < 2) return n;
else {
int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x+y;

}
}

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 5

Launch
thread

This is a
“future”

Main
thread

Wait for
“future”

Execution model

© 2010 Charles E. Leiserson 6

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Execution Model

The computation dag
unfolds dynamically.

Example:
fib(4)

4

3 2

2 1 1 0

―Processor
oblivious‖

1 0

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 6

Computation DAG

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 7

• A parallel instruction stream is a dag 𝐺 = (𝑉, 𝐸).
• Each vertex 𝑣 ∈ 𝑉 is a strand: a sequence of instructions not

containing a call, spawn, sync, or return (or thrown exception).
• An edge 𝑒 ∈ 𝐸 is a spawn, call, return, or continue edge.
• Loop parallelism (cilk_for) is converted to spawns and syncs using

recursive divide-and-conquer.

© 2010 Charles E. Leiserson 7

Computation Dag

initial strand final strand

continue edge

return edge
spawn edge

•A parallel instruction stream is a dag G = (V, E).
•Each vertex v ∈ V is a strand : a sequence of instructions

not containing a call, spawn, sync, or return (or thrown
exception).

•An edge e ∈ E is a spawn, call, return, or continue edge.

•Loop parallelism (cilk_for) is converted to spawns and
syncs using recursive divide-and-conquer.

strand

call edge

Performance Measures

© 2010 Charles E. Leiserson 8

TP = execution time on P processors

Performance Measures

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 8

Performance Measures

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 9

© 2010 Charles E. Leiserson 9

TP = execution time on P processors

Performance Measures

T1 = work
= 18

Performance Measures

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 10

© 2010 Charles E. Leiserson 10

TP = execution time on P processors

*Also called critical-path length
or computational depth.

Performance Measures

T1 = work T∞ = span*
= 18 = 9

Performance Measures

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 11

© 2010 Charles E. Leiserson 11

TP = execution time on P processors
T1 = work T∞ = span*

*Also called critical-path length
or computational depth.

WORK LAW
∙TP ≥T1/P

Performance Measures

SPAN LAW
∙TP ≥ T∞

Serial Composition

© 2010 Charles E. Leiserson 12

Series Composition

Work: T1(A∪B) =

A B

Work: T1(A∪B) = T1(A) + T1(B)
SpSpaann:: TT∞∞(A(A∪B) ∪B) = T= ∞(A) + T∞(B)

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 12

Parallel Composition

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 13

© 2010 Charles E. Leiserson 13

Parallel Composition

A

B

WWoorrkk:: TT11(A(A∪B) ∪B) = T= 1(A) + T1(B)
SpSpaann:: TT∞∞(A(A∪B) ∪B) == max{T∞(A), T∞(B)}

Speedup

© 2010 Charles E. Leiserson 14

Def. T1/TP = speedup on P processors.

If T1/TP = P, we have (perfect) linear speedup.
If T1/TP > P, we have superlinear speedup,
which is not possible in this performance
model, because of the Work Law TP ≥ T1/P.

Speedup

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 14

Parallelism

© 2010 Charles E. Leiserson 15

Parallelism

Because the Span Law dictates
that TP ≥ T∞, the maximum
possible speedup given T1
and T∞ is
T1/T∞ = parallelism

= the average
amount of work
per step along
the span.

= 18/9
= 2 .

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 15

Example: fib(4)

© 2010 Charles E. Leiserson 16

PPaararallllelelism: ism: TT11/T/T∞∞ == 2.125

Example: fib(4)

Assume for
simplicity that
each strand in
fib(4) takes unit
time to execute.

WWoorrkk:: TT11 = = 17
SpSpaann:: TT∞∞ == 8

4

5

6

1

2 7

8

3

Using many more than 2 processors can
yield only marginal performance gains.

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 16

Quicksort Analysis

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *))

{
int p = partition(base, nel, width, compar);

cilk_spawn qsort(&base[0], p, width, compar);

qsort (&base[p+1], nel-(p+1), width, compar);

cilk_sync;

}

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 17

Note: the pointer arithmetic is invalid in this example,
but I hope you get the idea!

Let’s analyze the sorting of 100,000,000 numbers!

Parallel performance

© 2010 Charles E. Leiserson 19

Cilkview Output

Measured
speedup

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 18

Parallel performance

© 2010 Charles E. Leiserson 20

Cilkview Output

Parallelism

11.21
Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 19

Parallel performance

© 2010 Charles E. Leiserson 21

Cilkview Output

Span
Law

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 20

Parallel performance

© 2010 Charles E. Leiserson 22

Cilkview Output

Work Law
(linear speedup)

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 21

Parallel performance

© 2010 Charles E. Leiserson 23

Cilkview Output

Burdened
parallelism
— estimates
scheduling
overheads

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 22

Quicksort Analysis

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *))

{
int p = partition(base, nel, width, compar);

cilk_spawn qsort(&base[0], p, width, compar);

qsort (&base[p+1], nel-(p+1), width, compar);

cilk_sync;

}

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 23

Note: the pointer arithmetic is invalid in this example,
but I hope you get the idea!

Expected Work = O(n lg n)
Expected Span = O(n) => Parallelism = O(lg n)

Interesting Practical Algorithms

Algorithm Work Span Parallelism
Quick sort Θ(n lg n) Θ(n) Θ(lg n)
Merge sort Θ(n lg n) Θ(lg3 n) Θ(n/lg2 n)
Matrix multiplication Θ(n3) Θ(lg n) Θ(n3/lg n)
Strassen Θ(nlg7) Θ(lg2 n) Θ(nlg7/lg2n)
LU-decomposition Θ(n3) Θ(n lg n) Θ(n2/lg n)
Tableau construction Θ(n2) Θ(nlg3) Θ(n2-lg3)
FFT Θ(n lg n) Θ(lg2n) Θ(n/lg n)

Mar 10, 2020 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 24

DAG Model of Computation

• Think of a program as a directed acyclic graph
(DAG) of tasks
– A task can not execute until all the

inputs to the tasks are available
– These come from outputs of earlier

executing tasks
– DAG shows explicitly the task dependencies

• Think of the hardware as consisting
of workers (processors)
• Consider a greedy scheduler of

the DAG tasks to workers
– No worker is idle while there

are tasks still to execute

Mar 10, 2020 25Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Work-Span Model

• TP = time to run with P workers
• T1 = work

– Time for serial execution
• execution of all tasks by 1 worker

– Sum of all work

• T∞ = span
– Time along the critical path

• Critical path
– Sequence of task execution (path) through DAG that takes

the longest time to execute
– Assumes an infinite # workers available

Mar 10, 2020 26Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Work-Span Example

• DAG at the right has 7 tasks

• Let each task take 1 unit of time

• T1 = 7
– All tasks have to be executed
– Tasks are executed in a serial order
– Can them execute in any order?

Mar 10, 2020 27Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

1

5

4
2

3

6

7

Work-Span Example

• DAG at the right has 7 tasks

• Let each task take 1 unit of time

• T1 = 7
– All tasks have to be executed
– Tasks are executed in a serial order
– Can them execute in any order?

• T∞ = 5
– Time along the critical path
– In this case, it is the longest pathlength of

any task order that maintains necessary dependencies
Mar 10, 2020 28Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

1

2

2
2

3

4

5

Lower/Upper Bound on Greedy
Scheduling
• Suppose we only have P workers
• We can write a work-span formula

to derive a lower bound on TP
– Max(T1 / P , T∞) ≤ TP

• T∞ is the best possible execution time
• Brent’s Lemma derives an upper bound

– Capture the additional cost executing
the other tasks not on the critical path

– Assume can do so without overhead
– TP ≤ (T1 - T∞) / P + T∞

Mar 10, 2020 29Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Consider Brent’s Lemma for 2
Processors
• T1 = 7

• T∞ = 5

• T2 ≤ (T1 - T∞) / P + T∞
≤ (7 – 5) / 2 + 5

≤ 6

Mar 10, 2020 30Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Consider Brent’s Lemma for 2
Processors
• T1 = 7

• T∞ = 5

• T2 ≤ (T1 - T∞) / P + T∞
≤ (7 – 5) / 2 + 5

≤ 6

Mar 10, 2020 31Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

1

2 2

3

4

5

6

Can we do better?
Yes!!

Consider Brent’s Lemma for 2
Processors
• T1 = 7

• T∞ = 5

• T2 ≤ (T1 - T∞) / P + T∞
≤ (7 – 5) / 2 + 5

≤ 6

Mar 10, 2020 32Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

1

2

23

3

4

5

Can we do better?
No!!

Amdahl was an optimist!

Mar 10, 2020 33Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Estimating Running Time

• Scalability requires that 𝑇∞ be dominated by 𝑇1

𝑇𝑃 ≈ 𝑇1 / 𝑃 + 𝑇∞ 𝑖𝑓 𝑇∞ << 𝑇1

• Increasing work hurts parallel execution
proportionately

• The span impacts scalability, even for finite 𝑃

Mar 10, 2020 34

𝑇𝑃 ≤ (𝑇1 − 𝑇∞) / 𝑃 + 𝑇∞

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

Parallel Slack

• Sufficient parallelism implies linear speedup

Mar 10, 2020 35Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

𝑇𝑃 ≈ 𝑇1/𝑃 𝑖𝑓 𝑇1/𝑇∞ >> 𝑃

Linear speedup Parallel stack

The END

• Sources:

– Parallel Computing, CIS 410/510, Department of Computer
and Information Science

– https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-172-performance-engineering-of-
software-systems-fall-2010/video-lectures/lecture-13-
parallelism-and-performance/MIT6_172F10_lec13.pdf

Mar 10, 2020 36Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20

