N NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

Parallel Programming
Models and Dependences

lecture 05 (2021-03-29)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2020-21 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>

N NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

Parallel Programming
Models and Dependences

lecture 05 (2021-03-29)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2020-21 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>

Outline

» Parallel programming
models

e Statement
dependences

* Loop dependences

— Bibliography:
 (Part of) Chapter 4 of

book

Yan Solihin;
Fundamentals of Parallel
Computer Architecture;
Solihin Books (2009);
ISBN: 978-0-98-416300-7

FUNDAMENTALS

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Parallelism, Correctness, and
Dependences

» Parallel execution shall always be constrained by
the sequence of operations needed to be
performed for a correct result

e Parallel execution must address control, data, and
system dependences

« A dependence arises when one operation (A)
depends on an earlier operation (B) to complete
and produce a result before (A) can be performed

— We extend this notfion of dependence to resources since some
operations may depend on certain resources (e.g., due to
where data is located)

Executing Two Statements in
Parallel

« Want to execute two statements in parallel
« On a single processor:

Processor 1:
Statement 1;

Statement 2;

* On two processors:
Processor 1: Processor 2:
Statement 1; Statement 2;

« Fundamental (concurrent) execution assumption
— Processors execute independent of each other
— No assumptions made about speed of processor execution

Seqgquential Consistency in
Parallel Execution

* Parallel execution of
Processor 1: Processor 2:
statement 1; statement 2;
« Case I:
Processor 1:
statement 1;
« Case 2:

(Processor 1: W

t statement 1

time
Processor 2:

statement 2;

time
Processor 2:
statement 2;

v

N N N

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Seqgquential Consistency in
Parallel Execution

» Sequential consistency
— Statement execution does not interfere with each other
— Computation result equal to either “Case 1" or “Case 2"

e Case 1:
time
Processor 1: Processor 2:
statement 1;
L statement 2; J

&
<

e Case 2:
time
Processor 1: Processor 2:
statement 2;
t statement 1: JL J

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Independent versus Dependent
Statements

« When the execution of

statementl;
statement2;

IS equivalent to
statement2;
statementl;

* Their order of execution must not matterl!

« That means the statements are independent of
each other

* Two statements are dependent when the order of
their execution affects the computation outcome

True Dependence
and Anti-Dependence

« Given statements S1 and S2 written as,
S1;
S2;

52 has a frue (flow) dependence on S1 *=] 5
X

if and only if $2 reads a value written by S1 - X
(RAW — Read After Write)

« S2 has a anfi-dependence on S| =X] o
.

if and only if $2 writes a value read by S1
(WAR — Write After Read)

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Output Dependence

« Given statements S1 and S2 written as,
S1;
S2;

« S2 has an outpuf dependence on S| X =
if and only if $2 writes a variable written by $1] 00

(WAW — Write After Write)
« Anti- and output dependences are “name”
dependences
— How can we get rid of anfi- and output dependencese

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Examples

« Example 1
S1:a=1;
S2: b=1;

« Example 2
S1: a=1;
S2: b=q;

 Example 3
S1: a=f(x);
S2: a=b;

 Example 4
S1: a=b;
S2: b=1;

Mar 29, 2071

0 Statements are independent

0 Dependent (frue (flow) dependence)
o Second is dependent on first
o Can youremove dependences¢

0 Dependent (outpuf dependence)
o Second is dependent on first
o Can youremove dependences Howe

0 Dependent (anfi-dependence)
o First is dependent on second
o Can youremove dependences Howze

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Statement Dependence
Graphs

« Can use graphs to show dependence relationships

« Example (51D
S] . Q:] : flow
S2: b=q; output co% anti
$3: a=b+1; (s3)
S4: c=q; @

S, 0 S, 1 S,is flow-dependent on S,
« S, 89 S5 :S5is output-dependent on S,
« S, 1S5 :S;is anti-dependent on S,

When can two statements
execute in parallele

« Statements S1 and S2 can execute in parallel if
and only if there are no dependences between

them, I.e., no
— True dependences; nor
— Anti-dependences; nor
— Qufput dependences.

« Some dependences can be removed by
modifying the program
— Rearranging statements
— Eliminating statements

How do you compute
dependencese

« Data dependence relations can be found by
comparing the IN and OUT sets of each node

 The IN and OUT sets of a statement S are defined

as:
— IN(S) : set of memory locations (variables) that may be

used (read) in S
— OUT(S) : set of memory locations (variables) that may be

modified (written) by S

* Note that these sefts include all memory
locations that may be fetched or modified
— As such, the sets can be conservatively large

IN / OUT Sets and Computing
Dependences

« Assuming that there is an execution path from S|
to S22, the following shows how to intersect their
IN and OUT sets to test for data dependence

out(S)Nin(S,)= 5,6 S, flow dependence
in(S)Nout(S,)=B 5,67 S, anti-dependence
out(S)Nout(S,) =< §,6°S, output dependence

Example

S1:
S2:
S3:
S4:

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Loop-Level Parallelism

« Significant parallelism can be identified within loops

parallel for (i=0; i<100; i++)

for (1 0; 1<1@0, 1++) {
2 ali] = S1: a[i]
S2: b[i]

i,

2*a[i]; @

¥

 Dependencese What about i, the loop index?
« DOALL loop (a.k.a. foreach loop)

— All iterations are independent of each other
— All statements will be executed in parallel at the same time

 |s this really truee

General Approach for Loop
Parallelism

-
Find the hotspots
J
. . . \
Eliminate loop-carried
dependences
J
<
Parallelize the loops
J
. . \
Optimize the loop
schedule

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

FInd the hotfspofts

* By code inspection * By using performance
analysis tools

B8 visualvm 1.1.1 9=13
File Applications Yew Tools Window Heb
o PEHAE G @
& sun.applet.Appletviewer (pd 7192) x S E]@
~ e [Overview | W Morikor | [Theeads | (&) Profler () [snapshot] 06:33:56 PM x
< sun.applet.AppletViewer (pid 7192)
Profiler Snapshot
B3 vew: (JMethods v Q% &
Call Tree - Method Time [%] v Time invo... (a)
P— pritManager palntDirtyRegions (]) 383 A
epaintManager paintDirtyRegions I 25420 ms (v 0 383
St | o it paint diately (1, | - 761
swing. JComponent._paintimmediately T ooocoms 761
vax swing, RepantManager . paint 0 cor/ . 26011 s 761
B yavax, swing BufferstrategyPantManager . paint (155 I 26001 ms 761
= W javax,swing. XComponent paint ToOffscreen (155 5 sphics, | o 5457 s 761
=W com, spekacek, boulder view, GamePanel paint st aphi I 26047 ms s 381
= W com.spekacek boulder . view GamePanel. paintLevelData | T 25035 ms 381
+ W aun.java2d. SunGraphics2D. drawlmage (= sl Insoe - 21622 ms (734 313218
— " - (© self time | 969 ms 381
+ W com. spekacel boulder view. GameP anel getCellAnimation | 473 ms 332467
ot (© com. spekacek_boulder engne Level, getCell 199 ms 332501
- g + W 1ava.util. HashMap entrySet 7.4ms 380
+ W 1ava.util HashMap. <init > 5.50 ms 381
,
- + W yva.utll HashMapgEntrySet iterator (5.26 ms 380
B + W com crwkacek hewldar sovins Movahla netDelt A N.A79 me 179 ¥
< >
%5 Cal Troe | £ Hot Spots | B Combined | @) Info

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Eliminate loop-carried
dependences

« Statements’ dependences include true
dependences, anti-dependences and output

dependences.

» Loop dependences also include those, carried
from one execution of the loop to another.

Loop Dependences

* A loop-carried dependence is a dependence
between two statements instances in two
different iterations of a loop

« Otherwise, it Is loop-independent

» Loop-carried dependences can prevent loop
iteration parallelization

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Loop Dependences

* A loop-carried dependence is a dependence
between two statements instances in two
different iterations of a loop

S1: a
S2: b

5;
a,

True dependence — the memory
location ‘@’ is written (in S1) before it is
read (in S2)

S1 0 S2

for (i=1; i<n; i++) {
S1: a[i] = a[i-1];
}

True dependence — a memory location
"a[j]’ is written before it is read in the
next iteration of the loop

S1[j] o S1i[j+1]

Loop Dependences

* A loop-carried dependence is a dependence
between two statements instances in two
different iterations of a loop

S1: b
S2: a

a,
5;

Anti-dependence — the memory
location ‘@’ is read (in S1) before it is
written (in S2)

S1 01 S2

for (i=0; i<n-1; i++) {
S1: a[i] = a[i+1];
}

Anti-dependence — a memory location
"a[j]’ is read before it is written in the
next iteration of the loop

S1[j] 90! S1i[j+1]

Loop Dependences

* A loop-carried dependence is a dependence
between two statements instances in two
different iterations of a loop

S1: c
S2: C

8;
15;

Output dependence — the same

memory location ‘c’ is written (in S1)

and then written once again (in S2)
S1 9° S2

for (i=0; i<n; i++) {
S1: c[i] = 1i;
S2: c[i+l1l] = 5;

}

Output dependence — the same
memory location ‘a[j]’ is written (in S2)
and then written again in the next
iteration of the loop (in S1)

S2[j] 90° S1i[j+1]

Loop dependences: examples

* The following loop cannot be parallelized
(without rewriting)

\
a[o] = 1;
for (i=1; i<N; i++) {
a[i] = a[i] + a[i-1];
} — 7
\C /
i=1: a[l]—=_2a[1] + a[@]; Each iteration depends on
i=2: a[2]_=_a[2] ¥ a[1]; the result of the preceding
i=3: a[3] = a[3] #a[2]; iteration

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Detecting dependences

* Analyze how each variable is used within a loop
itferation:

e |s the variable read and never written?
=> no dependences!

» For each written variable: can there be any
accesses in other iterations than the currente
=> there are dependences!

Simple rule of thumb

* A loop that matches the following criteria has no
dependences and can be parallelized:

1. All assignments to shared data are to arrays:

2. Each element is assigned by at most one
iteration; and

3. No iteration reads elements assigned by any
other iteration.

Example |

* |s this loop parallelizable?

1. All assignments to shared data
for (i=1; i<N; i+=2) { are to arrays:

. . . . 2. Each element is assigned by at
a[l] — a[l] B a[l_l]’ most one iteration; and

} 3. Noiteration reads elements
assigned by any other iteration.

i=1: a[1] = a[1] + a[e]; No dependences!
i=3: a[3] = a[3] + a[2]; YES!! Itis parallelizable!
i=5: a[5] = a[5] + a[4];

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Example 2

* |s this loop parallelizable?

1. All assignments to shared data

for (i=0; i<N/2; i++) { are to arrays:
. _ . . N/27: 2. Each element is assigned by at
a[l] — a[l] B a[1+]’ most one iteration; and

} 3. Noiteration reads elements
assigned by any other iteration.

i=0: a[@] = a[@] + a[@+N/2]; Nodependences!
i=1: a[1] = a[1] + a[1+N/2]; YES!! Itis parallelizable!

i;ﬁlz-lz a[N/2-1] = a[N/2-1] + a[N-1];

Example 3

* |s this loop parallelizable?

1. All assignments to shared data
for (i=0; ikaN/2; i++) { 2 D aiy

. . . . 2. Each element is assigned by at
a[l] — a[l] T a[1+N/2] J most one iteration; and
} 3. Noiteration reads elements

assigned by any other iteration.

i=0: a[9]
i=1: a[1l]

]; Loop carried true
[1+N/2]; dependence
It is NOT parallelizable!

|
Q
| —
=
L
Q

:i.;l;l/ZZ a[[N/2]] = a[N/2] + a[N];

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Example 4

* |s this loop parallelizable?
a 0

for (i=0; i<N; i++) {
a[idx[i1]] = a[idx[1i]] + b[idx[i]];

h

")
i=e: a[?,] = a[?;] + b[?,]; Don’t know which index is
i=1: a[?,] = a[?,] + b[?,]; accessed in each iteration
i=3: a[?3] = a[?3] + b[?3]; of the loop.

It is NOT parallelizable!

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Removing dependences |

 How tfo remove this dependencez?

for (i=0; ikaN/2; i++) {
ali]

¥

= a[i] + a[i+N/2];

for (i=0; i<N/2; i++) {
ali]

}
a[N/2]

= a[i] + a[i+N/2];

a[N/2] + a[N];

Take the
dependent
iteration out
of the loop

Removing dependences 2

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;

al[i] = a[i+1l] + x;

« How to remove this dependence?| »

'FOf‘ (1=@, i< N; i_|__|_) { True dependence inside the loop (x)

Y A

Anti-dependence between iterations (x)

} Anti-dependence between iterations (ali])

 Toremove the dependences on ‘X’ privatize it

Removing dependences 2

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;

al[i] = a[i+1l] + x;

« How to remove this dependence?| »

for (i=0; i<N; i++) {
int xJ= (b[i] + c[i]) / 2;
a[i] = a[i+1l] + Xx;

} Anti-dependence between iterations (ali])

 Toremove the dependence on ‘afi]’
make copy of ‘a’

Removing dependences 2

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;

al[i] = a[i+1l] + x;

« How to remove this dependence?| »

for (i=0; i<N; i++) {
a2[i] = a[i+1];
Ui

for (1=@, i< N; i++) { Anti-dependence between iterations (a[i])
int x = (b[i] + c[i]) / 2;
a[i] =(a2[i]) + x;

« Both ‘for’ are parallelizable!! Should we do ite

Removing dependences 3

 How tfo remove this dependencez?

for (i=1; i<N; i++) {
b[i] += a[i-1];
al[i] += c[i];

i=1: b[1l]=b[1]+a[0@]; ja[1l]Fa[1l]+c[1]
i=2: b[2]=b[2]+a[1]} ai2i=a[2]+c[2]

i;ﬁ-l : b[N-1]=b[N-1]+a[N-2]; a[N-1]=a[N-1]+c[N-1]

Removing dependences 3

 How to remove this dependence?¢

for (i=1; i<N; i++) {
b[i] += a[i-1];
ali] += c[i];

Use soffware pipelining!

b i—1 [i+1 i—1 [i+1

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Removing dependences 3

 How to remove this dependence?¢

/for' (i=1; i<N; i++) {\/

b[i] += a[i-1]; b[1] += a[e@];
a[i] += c[i]; for (i=1; i<N-1; i++) {
} a[i] += c[i];
N) b[i+1] += a[i];
}
a[N] += c[N];

(U

N

/

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Removing dependences 4

Not all loops = ™

(s 3

can be madelpalallel!

The END

Mar 29, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

