
Parallel Programming
Models and Dependences

lecture 05 (2021-03-29)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2020-21 —

João Lourenço <joao.lourenco@fct.unl.pt>

COMPUTER SCIENCE DEPARTMENT

Parallel Programming
Models and Dependences

lecture 05 (2021-03-29)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2020-21 —

João Lourenço <joao.lourenco@fct.unl.pt>

COMPUTER SCIENCE DEPARTMENT

Outline
• Parallel programming

models
• Statement

dependences
• Loop dependences

– Bibliography:
• (Part of) Chapter 4 of

book
Yan Solihin;
Fundamentals of Parallel
Computer Architecture;
Solihin Books (2009);
ISBN: 978-0-98-416300-7

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

Parallelism, Correctness, and
Dependences
• Parallel execution shall always be constrained by

the sequence of operations needed to be
performed for a correct result

• Parallel execution must address control, data, and
system dependences

• A dependence arises when one operation (A)
depends on an earlier operation (B) to complete
and produce a result before (A) can be performed
– We extend this notion of dependence to resources since some

operations may depend on certain resources (e.g., due to
where data is located)

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

Executing Two Statements in
Parallel
• Want to execute two statements in parallel
• On a single processor:

Processor 1:
Statement 1;
Statement 2;

• On two processors:
Processor 1: Processor 2:

Statement 1; Statement 2;

• Fundamental (concurrent) execution assumption
– Processors execute independent of each other
– No assumptions made about speed of processor execution

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

• Parallel execution of

• Case 1:

• Case 2:

Processor 1:
statement 1;

Processor 2:

statement 2;

Processor 2:
statement 2;

Processor 1:
statement 1;

Sequential Consistency in
Parallel Execution

time

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

Processor 1:

statement 1;

Processor 2:
statement 2;

time

• Parallel execution of

• Case 1:

• Case 2:

Processor 1:
statement 1;

Processor 2:

statement 2;

Processor 2:
statement 2;

Processor 1:
statement 1;

Sequential Consistency in
Parallel Execution

time

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

Processor 1:

statement 1;

Processor 2:
statement 2;

time

• Sequential consistency
– Statement execution does not interfere with each other
– Computation result equal to either “Case 1” or “Case 2”

Independent versus Dependent
Statements
• When the execution of

statement1;
statement2;

is equivalent to
statement2;
statement1;

• Their order of execution must not matter!
• That means the statements are independent of

each other
• Two statements are dependent when the order of

their execution affects the computation outcome

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

True Dependence
and Anti-Dependence

• Given statements S1 and S2 written as,
S1;
S2;

• S2 has a true (flow) dependence on S1
if and only if S2 reads a value written by S1
(RAW – Read After Write)

• S2 has a anti-dependence on S1
if and only if S2 writes a value read by S1
(WAR – Write After Read)

X =

= X

... d

= X

X =

... d-1

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

Output Dependence

• Given statements S1 and S2 written as,
S1;
S2;

• S2 has an output dependence on S1
if and only if S2 writes a variable written by S1

(WAW – Write After Write)

• Anti- and output dependences are “name”
dependences
– How can we get rid of anti- and output dependences?

X =

X =

... d0

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

Examples
• Example 1

S1: a=1;
S2: b=1;

• Example 2
S1: a=1;
S2: b=a;

• Example 3
S1: a=f(x);
S2: a=b;

• Example 4
S1: a=b;
S2: b=1;

r Statements are independent

r Dependent (true (flow) dependence)
¦ Second is dependent on first
¦ Can you remove dependence?

r Dependent (output dependence)
¦ Second is dependent on first
¦ Can you remove dependence? How?

r Dependent (anti-dependence)
¦ First is dependent on second
¦ Can you remove dependence? How?

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

Statement Dependence
Graphs
• Can use graphs to show dependence relationships
• Example

S1: a=1;
S2: b=a;
S3: a=b+1;
S4: c=a;

• S1 d S2 : S2 is flow-dependent on S1

• S1 d0 S3 : S3 is output-dependent on S1

• S2 d-1 S3 : S3 is anti-dependent on S2

S1

S2

S3

S4

flow

anti
output

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

When can two statements
execute in parallel?
• Statements S1 and S2 can execute in parallel if

and only if there are no dependences between
them, i.e., no
– True dependences; nor
– Anti-dependences; nor
– Output dependences.

• Some dependences can be removed by
modifying the program
– Rearranging statements
– Eliminating statements

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

How do you compute
dependences?
• Data dependence relations can be found by

comparing the IN and OUT sets of each node
• The IN and OUT sets of a statement S are defined

as:
– IN(S) : set of memory locations (variables) that may be

used (read) in S
– OUT(S) : set of memory locations (variables) that may be

modified (written) by S

• Note that these sets include all memory
locations that may be fetched or modified
– As such, the sets can be conservatively large

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

IN / OUT Sets and Computing
Dependences
• Assuming that there is an execution path from S1

to S2 , the following shows how to intersect their
IN and OUT sets to test for data dependence

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

() ()

dependenceoutput)()(

dependence-anti)()(

dependence flow

2
0

121

2
1

121

2121

SSSoutSout

SSSoutSin

SSSinSout

δ

δ

δ

∅≠∩

∅≠∩

∅≠∩
−

Example

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

S1: B=A
S2: C=C+B
S3: B=D
S4: E=B

S1

S4

S2 S3

∂ ∂O

∂

∂-1∂-1

Loop-Level Parallelism
• Significant parallelism can be identified within loops

for (i=0; i<100; i++)
S1: a[i] = i;

• Dependences? What about i, the loop index?
• DOALL loop (a.k.a. foreach loop)

– All iterations are independent of each other
– All statements will be executed in parallel at the same time

• Is this really true?

parallel_for (i=0; i<100; i++)
{

S1: a[i] = i;
S2: b[i] = 2*a[i];

}

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

?

General Approach for Loop
Parallelism

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

Find the hotspots

Eliminate loop-carried
dependences

Parallelize the loops

Optimize the loop
schedule

Find the hotspots
• By code inspection • By using performance

analysis tools

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

Eliminate loop-carried
dependences
• Statements’ dependences include true

dependences, anti-dependences and output
dependences.

• Loop dependences also include those, carried
from one execution of the loop to another.

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

Loop Dependences

• A loop-carried dependence is a dependence
between two statements instances in two
different iterations of a loop

• Otherwise, it is loop-independent

• Loop-carried dependences can prevent loop
iteration parallelization

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

Loop Dependences

• A loop-carried dependence is a dependence
between two statements instances in two
different iterations of a loop

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

S1: a = 5;
S2: b = a;

True dependence — the memory
location ‘a’ is written (in S1) before it is
read (in S2)

S1 ∂ S2

for (i=1; i<n; i++) {
S1: a[i] = a[i-1];

}

True dependence — a memory location
’a[j]’ is written before it is read in the
next iteration of the loop

S1[j] ∂ S1[j+1]

Loop Dependences

• A loop-carried dependence is a dependence
between two statements instances in two
different iterations of a loop

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

S1: b = a;
S2: a = 5;

Anti-dependence — the memory
location ‘a’ is read (in S1) before it is
written (in S2)

S1 ∂-1 S2

for (i=0; i<n-1; i++) {
S1: a[i] = a[i+1];

}

Anti-dependence — a memory location
’a[j]’ is read before it is written in the
next iteration of the loop

S1[j] ∂-1 S1[j+1]

Loop Dependences

• A loop-carried dependence is a dependence
between two statements instances in two
different iterations of a loop

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

S1: c = 8;
S2: c = 15;

Output dependence — the same
memory location ‘c’ is written (in S1)
and then written once again (in S2)

S1 ∂O S2

for (i=0; i<n; i++) {
S1: c[i] = i;
S2: c[i+1] = 5;

}

Output dependence — the same
memory location ’a[j]’ is written (in S2)
and then written again in the next
iteration of the loop (in S1)

S2[j] ∂O S1[j+1]

i=1: a[1] = a[1] + a[0];
i=2: a[2] = a[2] + a[1];
i=3: a[3] = a[3] + a[2];
...

Loop dependences: examples

• The following loop cannot be parallelized
(without rewriting)

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

a[0] = 1;
for (i=1; i<N; i++) {

a[i] = a[i] + a[i-1];
}

i=1: a[1] = a[1] + a[0];
i=2: a[2] = a[2] + a[1];
i=3: a[3] = a[3] + a[2];
...

Each iteration depends on
the result of the preceding
iteration

Detecting dependences

• Analyze how each variable is used within a loop
iteration:

• Is the variable read and never written?
=> no dependences!

• For each written variable: can there be any
accesses in other iterations than the current?

=> there are dependences!

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

Simple rule of thumb

• A loop that matches the following criteria has no
dependences and can be parallelized:

1. All assignments to shared data are to arrays:

2. Each element is assigned by at most one
iteration; and

3. No iteration reads elements assigned by any
other iteration.

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

Example 1

• Is this loop parallelizable?

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

for (i=1; i<N; i+=2) {
a[i] = a[i] + a[i-1];

}

i=1: a[1] = a[1] + a[0];
i=3: a[3] = a[3] + a[2];
i=5: a[5] = a[5] + a[4];
...

No dependences!
YES!! It is parallelizable!

1. All assignments to shared data
are to arrays:

2. Each element is assigned by at
most one iteration; and

3. No iteration reads elements
assigned by any other iteration.

Example 2

• Is this loop parallelizable?

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

for (i=0; i<N/2; i++) {
a[i] = a[i] + a[i+N/2];

}

i=0: a[0] = a[0] + a[0+N/2];
i=1: a[1] = a[1] + a[1+N/2];
...
i=N/2-1: a[N/2-1] = a[N/2-1] + a[N-1];

No dependences!
YES!! It is parallelizable!

1. All assignments to shared data
are to arrays:

2. Each element is assigned by at
most one iteration; and

3. No iteration reads elements
assigned by any other iteration.

Example 3

• Is this loop parallelizable?

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

for (i=0; i<=N/2; i++) {
a[i] = a[i] + a[i+N/2];

}

i=0: a[0] = a[0] + a[0+N/2];
i=1: a[1] = a[1] + a[1+N/2];
...
i=N/2: a[N/2] = a[N/2] + a[N];

Loop carried true
dependence
It is NOT parallelizable!

1. All assignments to shared data
are to arrays:

2. Each element is assigned by at
most one iteration; and

3. No iteration reads elements
assigned by any other iteration.

Example 4

• Is this loop parallelizable?

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

for (i=0; i<N; i++) {
a[idx[i]] = a[idx[i]] + b[idx[i]];

}

i=0: a[?1] = a[?1] + b[?1];
i=1: a[?2] = a[?2] + b[?2];
i=3: a[?3] = a[?3] + b[?3];
...

Don’t know which index is
accessed in each iteration
of the loop.
It is NOT parallelizable!

Removing dependences 1

• How to remove this dependence?

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

for (i=0; i<=N/2; i++) {
a[i] = a[i] + a[i+N/2];

}

for (i=0; i<N/2; i++) {
a[i] = a[i] + a[i+N/2];

}
a[N/2] = a[N/2] + a[N];

Take the
dependent
iteration out
of the loop

Removing dependences 2

• How to remove this dependence?

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;
a[i] = a[i+1] + x;

}

• To remove the dependences on ‘x’ privatize it

True dependence inside the loop (x)

Output dependence between iterations (x)

Anti-dependence between iterations (x)

Anti-dependence between iterations (a[i])

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;
a[i] = a[i+1] + x;

}

Removing dependences 2

• How to remove this dependence?

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

for (i=0; i<N; i++) {
int x = (b[i] + c[i]) / 2;
a[i] = a[i+1] + x;

}

• To remove the dependence on ‘a[i]’
make copy of ‘a’

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;
a[i] = a[i+1] + x;

}

Anti-dependence between iterations (a[i])

Removing dependences 2

• How to remove this dependence?

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

for (i=0; i<N; i++) {
a2[i] = a[i+1];

}
for (i=0; i<N; i++) {

int x = (b[i] + c[i]) / 2;
a[i] = a2[i] + x;

}

• Both ‘for’ are parallelizable!! Should we do it?

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;
a[i] = a[i+1] + x;

}

Anti-dependence between iterations (a[i])

Removing dependences 3

• How to remove this dependence?

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

for (i=1; i<N; i++) {
b[i] += a[i-1];
a[i] += c[i];

}

i=1: b[1]=b[1]+a[0]; a[1]=a[1]+c[1]
i=2: b[2]=b[2]+a[1]; a[2]=a[2]+c[2]
...
i=N-1 : b[N-1]=b[N-1]+a[N-2]; a[N-1]=a[N-1]+c[N-1]

Removing dependences 3

• How to remove this dependence?

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

for (i=1; i<N; i++) {
b[i] += a[i-1];
a[i] += c[i];

}

i–1 i i+1

i–1 i i+1

i–1 i i+1

b

c

a

Use software pipelining!

i–1 i i+1

i–1 i i+1

i–1 i i+1

Removing dependences 3

• How to remove this dependence?

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

b[1] += a[0];
for (i=1; i<N-1; i++) {

a[i] += c[i];
b[i+1] += a[i];

}
a[N] += c[N];

for (i=1; i<N; i++) {
b[i] += a[i-1];
a[i] += c[i];

}

Removing dependences 4

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

The END

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

