
Parallel Programming
Overview
lecture 06 (2021-04-12)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2020-21 —

João Lourenço <joao.lourenco@fct.unl.pt>

COMPUTER SCIENCE DEPARTMENT

Outline

• Structured programming patterns overview
– Concept of programming patterns
– Serial and parallel control flow patterns
– Serial and parallel data management patterns

– Bibliography:
• Chapter 3 of book

McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;
Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Mar 29, 2021 2Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21

How to Create a Parallel
Application

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 3

Original problem Tasks, local and shared data

Decompose into
tasks

Group into

execution units

Units if execution + new
shared data for extracted

dependencies

program thread 0 {

}

program thread 1 {

}

program thread 2 {
…
for (;;) {

…
}

}

Code with a
parallel prog, env.

Before writing parallel programs

• Parallel programs often start as sequential
programs
– Easy to write and debug
– Already developed/tested

• Identify program hot spots

• Parallelization
– Start with hot spots first
– Make sequences of small changes, each followed by

testing
– (Parallel) patterns provide guidance

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 4

Steps to Parallel Programming

• Step 1: Find concurrency

• Step 2: Structure the algorithm so that
concurrency can be exploited

• Step 3 : Implement the algorithm in a suitable
programming environment

• Step 4: Execute and tune the performance
of the code on a parallel system

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 5

1. Finding Concurrency

• Things to consider: Flexibility, Efficiency, Simplicity

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 6

Decomposition
Task

decomposition

Data
decomposition

Dependency
Analysis

Group Tasks

Order Tasks

Data Sharing

Design
Evaluation

Guidelines for Task
Decomposition
• Flexibility

– Program design should afford flexibility in the number and the
size of tasks generated
• Tasks should not tie to a specific architecture
• Fixed tasks vs. Parameterized tasks

• Efficiency
– Tasks (usually) should have enough work to amortize the cost of

creating and managing them
– Tasks should be sufficiently independent so that managing

dependencies doesn’t become the bottleneck

• Simplicity
– The code must remain readable and easy to understand and

debug

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 7

Decomposition
Task

decomposition

Data
decomposition

Guidelines for Data
Decomposition
• Data decomposition is often implied by task

decomposition
• Programmers need to address task and data

decomposition to create a parallel program
– Which decomposition to start with?

• Data decomposition is a good starting point
when
– Main computation is organized around manipulation of a

large data structure
– Similar operations are applied to different parts of the data

structure

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 8

Decomposition
Task

decomposition

Data
decomposition

Guidelines for Data
Decomposition
• Flexibility

– Size and number of data chunks should support a wide range of
executions

• Efficiency
– Data chunks should generate considerable amounts of work

(adequate grain), to minimize impact of communication and
management

– Data chunks should generate comparable amounts of work, for
load balancing

• Simplicity
– Complex data compositions can get difficult to manage and

debug

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 9

Decomposition
Task

decomposition

Data
decomposition

Common Data
Decomposition

• Geometric data structures
– Decomposition of n-dimensional arrays along rows,

column, blocks

• Recursive data structures
– Example: list, tree, graph

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 10

Decomposition
Task

decomposition

Data
decomposition

2. Algorithmic Structure Design
Space

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 11

Task Parallelism Divide and
Conquer

Geometric
Decomposition

Recursive Data
Structure Pipeline Event-based

Coordination

Linear Recursive Linear Recursive Linear Recursive

Organize by
Tasks

Organize by
Data Decomposition

Organize by
Flow of Data

START

3. Implement the algorithm in a
suitable progr. environment

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 12

Program Structures

SPMD

Master / Worker

Data Structures

Loop Parallelism

Fork / Join

Shared Data

Shared Queue

Distributed Array

SPMD Pattern

• Single program, multiple data
• All tasks execute the same program in parallel,

but each has its own set of data
– Initialize
– Obtain a unique identifier
– Run the same program each processor

• Operate on distributed data
• Try to use local accumulators

– Finalize
• Merge partial results

• CUDA

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 13

Program Structures
SPMD

Master / Worker

Loop Parallelism

Fork / Join

Master / Worker Pattern

• A master process or thread set up a pool of worker processes
of threads and a bag of tasks

• The workers execute concurrently, with each worker
repeatedly removing a tasks from the bag of the tasks

• Embarrassingly parallel problems

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 14

Master
Initiate Computation

Set up problem
Create bag of jobs

Launch workers

Wait for results
Collect results

Terminate computation

Worker 1
do work

Worker 2
do work

Worker 3
do work

Worker N
do work

Program Structures
SPMD

Master / Worker

Loop Parallelism

Fork / Join

Loop Parallelism Pattern

• Many programs are expressed using iterative
constructs
– Programming models like OpenMP provide directives to

automatically assign loop iteration to execution units
– Especially good when code cannot be massively

restructured

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 15

#pragma omp parallel for
for (i = 0; i < 16; i++)

c[i] = A[i]+B[I];

i = 0
i = 1
i = 2
i = 3

i = 4
i = 5
i = 6
i = 7

i = 8
i = 8
i = 10
i = 11

i = 12
i = 13
i = 14
i = 16

Program Structures
SPMD

Master / Worker

Loop Parallelism

Fork / Join

Fork / Join Pattern

• A main task forks off some number of other tasks
that then continue in parallel to accomplish
some portion of the overall work

• Parent tasks creates new tasks (fork) then waits
until all they complete (join) before continuing
with the computation

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 16

Parallel region

Program Structures
SPMD

Master / Worker

Loop Parallelism

Fork / Join

Pipeline Pattern

• Tasks are applied in sequence to data

• Examples:
– Instruction pipeline

in modern CPUs
– Algorithm level pipelining
– Signal processing
– Graphics
– Shell programs

• cat sampleFile | grep “word” | wc

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 17

Program Structures
SPMD

Master / Worker

Loop Parallelism

Fork / Join

Pipeline

U0

U1

U2

U3

4 stages pipeline

Pipeline Pattern

• Tasks are applied in sequence to data

• Examples:
– Instruction pipeline

in modern CPUs
– Algorithm level pipelining
– Signal processing
– Graphics
– Shell programs

• cat sampleFile | grep “word” | wc

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 18

Program Structures
SPMD

Master / Worker

Loop Parallelism

Fork / Join

Pipeline

4 stages pipeline

U0

U1

U2

U3

Pipeline Pattern

• Tasks are applied in sequence to data

• Examples:
– Instruction pipeline

in modern CPUs
– Algorithm level pipelining
– Signal processing
– Graphics
– Shell programs

• cat sampleFile | grep “word” | wc

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 19

Program Structures
SPMD

Master / Worker

Loop Parallelism

Fork / Join

Pipeline

U0

U1

U2

U3

4 stages pipeline

Pipeline Pattern

• Tasks are applied in sequence to data

• Examples:
– Instruction pipeline

in modern CPUs
– Algorithm level pipelining
– Signal processing
– Graphics
– Shell programs

• cat sampleFile | grep “word” | wc

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 20

Program Structures
SPMD

Master / Worker

Loop Parallelism

Fork / Join

Pipeline

U0

U1

U2

U3

4 stages pipeline

Pipeline Pattern

• Tasks are applied in sequence to data

• Examples:
– Instruction pipeline

in modern CPUs
– Algorithm level pipelining
– Signal processing
– Graphics
– Shell programs

• cat sampleFile | grep “word” | wc

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 21

Program Structures
SPMD

Master / Worker

Loop Parallelism

Fork / Join

Pipeline

T0 T1 T2 T3 T4 T5 T6 T7

U0

U1

U2

U3

4 stages pipeline

Choosing the Patterns

Task
Parallel

Divide /
Conquer

Geometric
Decomp.

Recursive
Data

Pipeline Event-
based

SPMD JJJJ JJJ JJJJ JJ JJJ JJ

Loop
parallel JJJJ JJ JJJ

Master /
Worker JJJJ JJ J J J J

Fork / Join JJ JJJJ JJ JJJJ JJJJ

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 22

Structure

Pattern

Choosing the Programming
Environment

OpenMP MPI CUDA

SPMD JJJ JJJJ JJJJJ

Loop
parallel JJJJ J

Master /
Worker JJ JJJ

Fork / Join JJJ

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 23

Prog. Env.

Pattern

3. The Implementations
Mechanisms Design Space

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 24

Task
Management

Thread control

Process control

Synchronization

Non-blockin
programming

Monitors

Mutual exclusion

Communication

Message passing

Collective commun

Shared memory

Barriers

The END

Mar 29, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2020-21 25

