N NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

Parallel Programming
Patterns

lecture 04 (2021-04-12)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2020-21 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>

Outline

 Structured programming patterns overview
— Concept of programming patterns
— Serial and parallel control flow patterns
— Serial and parallel data management patterns

— B| b | |O g ro p h y Structured Parallel

Programming

« Chapter 3 of book
McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;

Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21 2

Parallel Patterns

 Parallel Patterns: A recurring combination of task
distribution and data access that solves a
specific problem in parallel algorithm design.

« Patterns provide us with a “vocabulary” for
algorithm design

* [t can be useful to compare parallel patterns
with serial patterns

« Patterns are universal — they can be used in any
parallel programming system

Parallel Patterns

* Nesting Pattern

* Serial / Parallel Control Patterns

 Serial / Parallel Data Management Patterns
« Other Patterns

* Programming Model Support for Patterns

Nesting Pattern
\ Parallel Data j
* Nesting is the abillity to hierarchically compose
patterns

» This pattern appears in both serial and parallel
algorithms

» “Pattern diagrams’ are used to visually show the
pattern idea where each “task block” is a
location of general code in an algorithm

* Each "task block™ can in turn be another pattern
IN the nesting pattern

(Pattern \

Serial Control

Nesting Pattern

Serial Data
[}

e = ST

: :

Nesting Pattern: A compositional pattern. Nesting allows
other patterns to be composed in a hierarchy so that any
task block in the above diagram can be replaced with a
pattern with the same input/output and dependencies.

7
N

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Serial Control Patterns

 Structured serial programming is based on these
patterns: sequence, selection, iteration, and
recursion

* The nesting pattern can also be used to
hierarchically compose these four patterns

» Though you should be familiar with these, it’s
extra important to understand these patterns

when parallelizing serial algorithms based on
these patterns

. (" amem)
Serial Conftrol Patterns:

Parallel Control

Sequence o

Parallel Data

2 ~/

« Sequence: Ordered list of tasks that are
executed in a specific order

« Assumption — program text ordering will be
followed (seems obvious... but this will be
Important when parallelized)

f(A): .> T f(A); \

g(T): & » S = g(A);

— h(S):) B — h(S,T): /
1) ;

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21 8

\S)
o un —
|

Serial Conftrol Patterns:
Selection

] \ Parallel Data J
e Selection: condition c is first evaluated. Either

task a or b is executed depending on the true or
false result of c.

* Assumptions — a and b are never executed

before ¢, and either a or b is executed — never
both

O B N S

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21 9

M f Pattern \
Serial Control Patterns: oo
| -|-e rO --iO n Serial Data

] \ Parallel Data j

* feration: condition c is evaluated. If it is tfrue, a is
evaluated, and then c is evaluated again. This
repeats unftil ¢ is false.

« Complication when parallelizing: potential for
dependencies to exist between previous
iferations for (i =0; 1< n; i++) { N

() T F

}

while (c) {
0 L

} \

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21 10

Serio
Recu

Control Patterns:
rsion

e

Pattern

™

Serial Control

Parallel Control

Serial Data

Parallel Data

2

>4

» Recursion: dynamic form of nesting allowing
functions to call themselves

 Tail recursion is a special recursion that can be

converted info iteration — important for

functional languages

int fact (int n) {

if (n == 0)
return 1
else

return n*fact (n-1);

A
‘I;_

f

‘_

Ing

B

We are using
nesting here!

Parallel Conftrol Patterns

e

Pattern \

Serial Control

Parallel Control

Serial Data

Parallel Data

2

>4

» Parallel conftrol patterns extend serial conftrol

patterns

« Each parallel control pattern is related to at least

one serial control pattern, but relaxes
assumptions of serial control patterns

» Parallel control patterns: fork-join, map, stencil,

reduction, scan, recurrence

Parallel Control Patterns:
Fork-Join

-

Pattern

™\

Serial Control

Parallel Control

Serial Data

Parallel Data

2

~/

 Fork-join: allows conftrol flow to fork into muiltiple

parallel flows, then rejoin later

 Cilk Plus implements this with spawn and sync

— The call tree is a parallel call tfree
and functions are spawned instead
of called

— Functions that spawn another
function call will continue to
execute

— Cadller syncs with the spawned
function to join the two

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Fork—join

13

$

|

(" pattem)
Parallel Confrol Patterns:

Parallel Control

Fork-Join

Parallel Data

S >
 Fork-join: allows conftrol flow to fork into muiltiple

parallel flows, then rejoin later
int fib(int n)
{

Parallel — Cilk+

if (n < 2)
return n;
int x =] cilk _spawn|fib(n-1);
int y = fib(n-2);
int fib(int n) cilk_sync; fib(n-1)
{ return x + y;

if (n < 2) } fib(n-2)
return n;
int x = fib(n-1);

int y = fib(n-2);
return x + y;

Sequential

}

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21 14

[patem)
Parallel Confrol Patterns:

Parallel Control

Map

Parallel Data

—/

 Map: performs a function over every element of a collection

 Map replicates a serial iteration pattern where

— each iteration is independent of the others,
— the number of iterations is known in advance, and
— computation only depends on the iteration count and data from the input

collection
* The rephco’red function is referred to as an “elemental
function” () (7 Data ()

I N

meut | O) 00O OO

-

(

Elemental Function . . . - . . . -
e DO0O0O00000

Apr 12, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21 15

Parallel Control Patterns: e

Stencll

» Stencil: Elemental function accesses a set of
“neighbors”, stencil is a generalization of map

« Often combined with iteration — used with
iterative solvers or to evolve a system through

time

» Boundary conditions must be
handled carefully in the stencill

Q

pattern ({[QQQQQ

XX

X

X

X

1111

M

v
]

0000000

0000080
00080
00
0000
0000
C00000a0
C00000Aa0
C00000Aa0

Conway's Game of Life

« The Game of Life is a cellular automaton created
by John Conway in 1970

* The evolution of the game is entirely based on
the input state — zero player game

» To play: create initial state, observe how the
system evolves over successive time steps

. .:;E!'-

r 2D landscape
"

-

e

Pattern

™

Serial Control

Conway’'s Game of Life

Parallel Control

Serial Data

Parallel Data

>4

» Typical rules for the Game of Life

— Infinite 2D grid of square cells, each cell is either “alive” or

‘dead”
— Each cell will interact with all 8 of its neighbors

« Any cell with < 2 live neighbors dies (under-population)

« Any cell with 2 or 3 live neighbors lives to next gen.
« Any cell with > 3 live neighbors dies (overcrowding)

« Any dead cell with 3 live neighbors becomes a live cell

. .:;E:'-

r 2D landscape

Conway’'s Game of Life:
Examples

e

Pattern

™

Serial Control

Parallel Control

Serial Data

Parallel Data

Apr 12, 2021

19

Parallel Control Patterns: e

Reduction —

* Reduction: Combines every element in a
collection using an associative “combiner
function”

* Because of the associativity of the combiner
function, different orderings of the reduction are
possible

« Examples of combiner functions: addition,
multiplication, maximum, minimum, and Boolean
AND, OR, and XOR

Parallel Control Patterns: o
Reduction —

Serial Reduction Parallel Reduction

000 [@lelelalolalols)

@

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21 21

Parallel Conftrol Patterns:
Scan

———————————— \ Parallel Data j
« Scan: computes all partial reductions of a collection

* For every output in a collection, a reduction of the
INput up to that point is computed

* |t the function being used is associative, the scan
can be parallelized

« Parallelizing a scan is not obvious at first, because of
dependencies to previous iterations in the serial loop

» A parallel scan will require more operations than @
serial version

Parallel Control Patterns:

Scan

Serial Scan

Elelelojelulola)

C

i
T@
i
7@

Parallel Scan

0060000 E O

e

:

:

&

25

[EEN
00
N

OEEELELLL)

1 1 3 4 5 6 7

CPPEaBE®®)

1 1 2 2 3 3 4 3

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

23

(" pattem)
Parallel Confrol Patterns:

Parallel Control

Recurrence —

Parallel Data

- o
» Recurrence: More complex version of map,

where the loop iterations can depend on one
another

« Similar to map, but elements can use outputs of
adjacent elements as inputs Recurrence

* For arecurrence to be
computable, there must be o
serial ordering of the recurrence []
elements so that elements
can be computed using B
previously computed outputs -

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

Serial Data Management e

Patterns

« Serial programs can manage data in many ways

« Data management deals with how data is
allocated, shared, read, written, and copied

 Serial Data Management Patterns: random read
and write, stack allocation, heap allocation,
objects

Serial Data Manag. Pat.:

random read and write

« Memory locations indexed with addresses

» Pointers are typically used to refer to memory
addresses

» Aliasing (uncertainty of two pointers referring to
the same object) can cause problems when
serial code Is parallelized

Serial Data Manag. Pat.:

Stack Allocation

» Stack allocation is useful for dynamically
allocating data in LIFO manner

» Efficient — arbitrary amount of data can be
allocated in constant time

» Stack allocation also preserves locality

 When parallelized, typically each thread will get
Its own stack, so thread locality is preserved

Serial Data Manag. Pat.: o

Heap Allocation

 Heap allocation is useful when data cannot be
allocated in a LIFO fashion

* But heap allocation is slower and more complex
than stack allocation

» A parallelized heap allocator should be used
when dynamically allocating memory in parallel

— This type of allocator will keep separate pools for each
parallel worker

Serial Data Manag. Pat.:

Objects S

« Objects are language constructs to associate
data with code to manipulate and manage that
data

» Objects can have member functions, and they

also are considered members of a class of
objects

» Parallel programming models will generalize
objects in various ways

Parallel Data Management| s

Patterns

» To avoid things like race conditions, it is critically
important to know when data is, and isn'f,
potentially shared by multiple parallel workers

« Some parallel data management patterns help
us with data locality

* Parallel data management patterns: pack,
pipeline, geometric decomposition, gather, and
scatter

Parallel Data Manag. Pat:

Pack

* Pack is used to eliminate unused space in a

collection (like a filter)

Parallel Control

Serial Data

Parallel Data

=

—/

* Elements marked false are discarded, the remaining
elements are placed in a configuous sequence in

the same order

» Useful when used with

map

* Unpack is the inverse
and is used o place
elements back in their

original locations

Apr 12, 2021

Concurren

cy and Parallelism — J. Louren

L,J &) ©) LJ LJ) (8) LHJ

X XX

(8) (c) (F) (8] (H)

co © FCT-UNL 2020-21

31

Parallel Data Manag. Pat:

Pipeline

 Pipeline connects tasks in a producer-
consumer manner

* A linear pipeline is the basic pattern
idea, but a pipeline in a DAG is also

possible

* Pipelines are most useful when used
with other patterns as they can
multiply available parallelism

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

-

Pattern \

Serial Control

Parallel Control

Serial Data

Parallel Data

2

32

Parallel
Geomes

TIC

Data Manag. Pat:
Decomposition

e

Pattern

™

Serial Control

Parallel Control

Serial Data

Parallel Data

2

>

» Geometric Decomposition — arranges data info

subcollections

» Overlapping and non-overlapping
decompositions are possible

 This pattern doesn’t necessarily move dataq, it just

glves us anofher perspective

0800800
00000000
0800806
o0000E800
0000080
0800800
0800860

@000

aees
eees
eees

000000 00|

0000000
00000000
00000000
00000000
00000000
00000000
00000000
©oocooog

eees
eeee
eees

D000

00000000

00000000
00000000
oocoobooog)

[pattem)
Parallel Data Manag. Pat: e

Parallel Control

Gather

Parallel Data

2 —/

« Gather reads a collection of data given o
collection of indices

* Think of a combination of map and random
serial reads

* The output collection shares the same type as
thednbut2colledtion, but?it s [Qreﬁhe;s_amé;sh e
o) (o)

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21 34

[pattem)
Parallel Data Manag. Pat: e

Parallel Control

Scatter

Parallel Data

2 —/

» Scatter is the inverse of gather

* A setf of input and indices is required, but each
element of the input is written to the output at the
given index instead of read from the input at the
given index

« Race conditions can occur when we have two

writes to the same location!
0O 1 2 3 4 5

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21 35

Other Parallel Patterns Sperca sequnc
2
» Superscalar Sequences: write o — 8§

sequence of tasks, ordered only by
dependencies

 Futures: like fork-join, but tasks &
do not nheed to be nested
hierarchically

- Speculative Selection: general =™
version of serial selection where Speculative selection

the condition and both outcomes —M
can all run in parallel T

=

* Workpile: general map pattern where each instance of
elemental function can generate more instances,
adding to the “pile” of work

Apr 12,2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21 36

Other Parallel Patterns

« Search: finds some data in a collection that
meets some criteria

« Segmentation: operations on subdivided, non-
overlapping, hon-uniformly sized partitions of 1D

collections
« Expand: a combination of pack and map

» Category Reduction: Given a collection of
elements each with a label, find all elements
with same label and reduce them

Overview of Parallel Patterns

Superscalar sequence Map

Speculative selection

==

Apr 12, 2021

Geometric decomposition

Stencil

00000

00000000
00000000
00000000

Fork—join Pipeline

:

Gather Reduction

[ooococoocog 21234567 00000000

coooolboo §§§%§g@.h....ﬂ

00000 oo

oogoooog

D0000DOQ| Scater

00000000 %%%2?: &

0000000

lboobopog 9%%78000C@s0eee T 0a00000

Partit Category reduction Recurrence —H

50000000 858

00000000 PP

00000000 | PDODIDDD

00000000 I

00000000 \ / LIL.

oooogooo 00000000

00000000

DO080000 06 %gEDDOO@
Pack Split Iﬁﬁﬁﬁﬁiiﬂ

CePP0NAM PPOAAEE O 8& xoB
@a@@@e@m GIEleIvlelcIeln)
X X X

]
I EoPoEPOE 00000000

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21 38

The END

Apr 12,2021

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2020-21

39

