A NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

Map and Reduce
Patterns

lecture 09 (2021-04-12)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2020-21 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>



Outline

« Map pattern — Bibliography:

— Optimizations « Chapters 4 and 5 of book
= McCool M., Arch M., Reinders J.;
* sequences of Maps Structured Parallel
« code Fusion Programming: Patterns for

Efficient Computation;

* cache Fusion Morgan Kaufmann (2012);

— Related Patterns ISBN: 978-0-12-415993-8
- Example: Scaled T
Vector Addition Programning
(SAXPY) '
e Reduce

— Example: Dot Product

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19 2



Mapping

» “Do the same thing many times”
foreach 1 in foo:
do something (1)

» Well-known higher order function in languages
like ML, Haskell, Scala

map: Vab.(a— b)List<a> — List<b>

applies a function to each element in a list
and returns a list of results



Independence

* The key to (embarrassing) parallelism is independence

Warning: No shared state!

Map function should be “pure” and should nof
modify shared states

« Modifying shared state breaks perfect independence

» Possible results of accidentally violating independence:
— non-determinism
— data-races
— undefined behavior
— segfaults

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19



Example Maps

Add 1 to every itemin an array Double every item in an array

O 1 2 3 4 5 O 1 2 3 4 5

O/4 53|10 317|014 0

EREEEEEEEREEE.
(1[s]e]ef2]1]

Key Point: An operation is a map if it can be applied 1o
each element without knowledge of its neighbors

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19



Sequential Map

for(int n=0; n < array.length; ++n) {

process (array([n]);
} BEHE

Task

Task

Time
-

Task

Task

viiiL

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19 6

Task




Parallel Map

parallel for each(x in array) {
process (x) ;

}

298¢

Task Task Task Task Task

OBEE

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19 7

Time




Comparing Maps




Simple example: Word count

Keys are
numeric

1] the apple)

is an apple)

not an orange)
because the)
orange)

unlike the apple)
is orange)

not green)

[0 W 0 U B W N

ey range the node
is responsiRIe for

eys are

(apple, 3)
(apple, 1) (appléappléapbld, 1}) (an, 2)
(an, @n(da, 1}) (because, 1)
(because, {}) (green, 1)

(greem, {1)})
(is, @3, (i, 1}) (is, 2)
(not, (Hofinét, 1}) (not, 2)

(orange, 1) (orangelcranigeatige, 11)})
(the, 1) (thicht) {the, 1})

(wmlites, {1)})

(orange, 3)
(the, 3)
(unlike, 1)

@ Each mapper
receives some

of the KV-pairs

as input
Mar 19, 2021

—

@The mappers @Each KV-pair output @The The reducers
process the by the mapper is sent to infrastructure process their
KV-pairs the reducer that is sort their input input one group
one by one responsible for it by key atatime

Concurrency and Parallelism —

J. Lourengo © FCT-UNL ZQﬁ%JgQroup it 9



Implementation and AP

 OpenMP contain a parallel for language
construct

 Map iIs a mode of use of parallel for

« Some languages (CilkPlus, Matlab, Fortran)
provide array notation which makes some maps

more concise

Array Notation

Al:] = A[:]*5;
is CilkPlus array notation for “multiply every element in A by 5"

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19 10



Optimization —

Ma s

\_ J

Sequences of

« Often several map
operations occur in
segquence

— Vector math consists of many
small operations such as
additions and multiplications
applied as maps

* A nadive implementation
may write each
iIntermediate result to
memory, wasting memory
BW and likely overwhelming
the cache

. . . .rr.an.ﬁlelism — J. Lourengo © FCT-UNL 2018-19 11



Optimization — Code Fusion

. * Can sometimes "“fuse”

D000 ®®O®® togetherthe

operations to perform
them at once

« Adds arithmetic
INnfensity, reduces
memory/cache
usage

* |deally, operations
can be performed
using registers alone

(IITIIIT)

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19 12




Related Patterns

» Three patterns related to map are now discussed
here:

— Stencll
— Workpile
— Divide-and-Conqguer

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19 13



Stencll

* Each instance of the map function accesses
neighbors of its input, offset from its usual input

« Common in imaging and PDE solvers

B0 Q0T
N DX

. @oo0os0s




Workpile (master-slave)

* Work items can be added to the map while it is
IN progress, from inside map function instances

« Work grows and is consumed by the map

« Workpile pattern terminates when no more work
IS available



Divide-and-Conquer

===
e]s)els)=]ea]s]
00000000
0000000
00000000
000000 Oo
00000000
SIS S0/ @10 ele)

« Applies it a problem

can be divided info
smaller sub-problems
recursively unftil a base
case is reached that
can be solved serially



Example: Scaled Vector
Addifion (SAXPY)

* y<—ax+y
— Scales vector x by a and adds it fo vectory
— Result is stored in input vector y

« Comes from the BLAS (Basic Linear Algebra
Subprograms) library

* Every element in vector x and vector y are
independent



What does y<ax+y |ook like?
0 1 2 3 4 5 6 7 8 9 10 11
a 4 | 4 |1 4|1 4|44 |4 |4 |4 |4)|4)| 4
X 2 4 2 1 8 3 9 5 5 1 2 1
Y

€~ | W
€ | N
€« | O

€« |

€« | &
€ | ©
€ | ©
<« | &

€< | n

€< | w
€S | =
€< | o

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19

18



Visual: y<—ax+y

< 4+ X %Q
N
H
N
(WY
o0
W
{e)
U
U
(WY
N
(WY

Y

Twelve processors used = one for each
element in the vector

Mar 19, 2021 ncy and Parallelism — J. Lourengco © FCT-UNL 2018-19

19



Visual: y<—ax+y

o 1 2 3 4 5 6 7 8 9 10 11

a 4 | 4 |4 | 4|4 4|14 44 )|4)|4)A4

*

X 214|218 (395|512 ]|1

+

y 317|014 0)0(4|]5 3|10
2R 2R 2R 2R 2R AR 2R AR 2R AR 2R

v [m|m|s|s s|12/3s[as0]7 0|4

SIX processors used - one for every two
elements in the vector

Mar 19, 2021 d Parallelism — J. Lourengo © FCT-UNL 2018-19

20



Visual: y<—ax+y

o 1 2 3 4 5 6 7 8 9 10 11

a 4 ' 4 | 4 | 4|4 4|4 4|4 )|4)|4)A4

*

X 214|121, 8395 |5|1]|2]|1

+

y 3170|1400 (4,5 3|10
20 200 20 20 2R 2 2R 20 20 2N 2

aEICI D EIEIET CIEIRAENEY

TwO processors used - one for every six
elements in the vector

Mar 19, 2021 d Parallelism — J. Lourengo © FCT-UNL 2018-19

21



Serial SAXPY Implementation

1 void saxpy_serial(

2 size t n, // the number of elements in the vectors

3 float a, // scale factor

4 const float xLJ1, / thefirstinput vector

5 float yl] // the output vector and second input vector
6 ) {

7 for (size_t i = 0; i < n; ++1)

8 ylil = a ~ x[i] + y[i];

% }

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19 22



Cilk Plus SAXPY Implementation

void saxpy_cilk(
int n, // the number of elements in the vectors
float a, // scale factor

float xL1, / thefirstinput vector
float yL1 / theoutput vector and second input vector

) A
cilk _for (int i = 0; 1 < n; —++i)
yLil = a » x[i] + y[il;

O 0 N & U AW N

}

{ y[0:n] = a * x[0:n] + y[0:n] J

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19 23



OpenMP SAXPY Implentation

void saxpy_openmp(
int n, // the number of elements in the vectors
float a, // scale factor

float xL1, / the first input vector
float ylL]l / the output vector and second input vector
)
ifpragma omp parallel for
for (int i = 0; 1 < n; ++1)
ylil = a » x[i] + ylil;

O o0 4 O »n Bk~ WO =

[E—
)
o

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19 24



OpenMP SAXPY Performance

SAXPYonaNUC | Vector size = 500,000,000

650

580 Vi \\

510

Time
(seconds)

440

Parallelization
overhead to high
for smaller slices

370

300 \

" — |

1 2 4 8 16 32

Number of Threads
Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19




Reduce

« Reduce is used o combine a collection of
elements info one summary value

e A combiner function combines elements
pairwise

« A combiner function only needs to be
associative to be parallelizable

« Example combiner functions:
— Addition
— Multiplication
— Maximum / Minimum



Reduce

Serial Reduction

00000000

"

)

Mar 19, 2021

template<typename T>
T reduce(

T (xf)(T,T), //combiner function
size_t n, // number of elements in input array

T all // input array

The input array

assertin > 0); cannot be empty!

T accum = a[0]:
for (size_t i =1; i < n; i++) {
accum = f(accum, alil);

}

return accum;

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19 27



Reduce

Serial Reduction

00000000

"

)

Mar 19, 2021

O o0 N4 N U B~ WD =

10

template<typename T>
T reduce(

T (xf)(T,T), //combiner function

size_t n, // number of elements in input array
T all, // input array

T identity / identity of combiner function

T accum = identity;
for (size_t i = 0; 1 < n; ++i) |
accum = f(accum, ali]);

}

return accum;

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19 28



Reduce

Serial Reduction Parallel Reduction

CEEErrrri 0000000

i i

< 5

)

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19 29



Reduce

* Tiling Is used to break chunks of work up for
workers to reduce serially
OCC0 0000 0000 0000

0 0 O

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19 30



Reduce — Add Example

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19

31



Reduce — Add Example

Olelolojolelols)

33ﬁ

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19



Reduce

« We can "“fuse” the map and reduce patterns

O .

Mar 19, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19

33



Reduce

* Precision can become a problem with
reductions on floating point data

 Different orderings of floating-point data can
change the reduction value



The END

Mar 19, 2021

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2018-19

35



