N A NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

Parallel Algorithms

lecture 11 (2021-04-26)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2020-21 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>

Outline

» Parallel computations as DAGs
— Parallel computing by divide-and-conquer
— Maps and reductions on tfree-like DAGs
— The Prefix-Sum (Scan) problem and its parallel solution
— An implementation for the Pack parallel pattern

— B| b | |O g ro p h y Structured Parallel

Programming

« Chapter 3, 4 and 5 of book
McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;

Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Apr 26, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 2

The DAG

« A program execution using fork and join can be
seen as a DAG
— Nodes: Pieces of work
— Edges: Source must finish before destination starts

« A fork “ends a node” and makes two outgoing
edges
— New thread
— Continuation of current thread

* A join “ends a node” and makes o ‘\‘<T

node with two incoming edges
— Node just ended
— Last node of thread joined on

Apr 26, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

A simple example

» fork and join are very flexible, but divide-and-
conqguer use them in a very basic way:
— A tree on top of an upside-down tree

— divide

Q 9} o
— conquer

Apr 26, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 201920

Another example: reduce

« SuUMMIng an array went from O(n) sequential to
O(log n) parallel (assuming a lot of processors

and very large n)

AENEEEEEEENNEEEEENNEEEEEEENECEEENECEEEEEEEEEEEEY
NEVEAVEVEVAVEVEW

AR AR W AR AR AR AR WA
Ny N4 N4 T+
\+/ \+

N —

« Anything that can use results from two halves
and merge them in O(1) time has the same
properties and exponential speed-up (in theory)

Applications of “reduce”

e Maximum or minimum element

* |s there an element satistying some propertye
—e.g. istherea 17¢

« Left-most element satistying some propertye
— e.g., index of first occurrence of 17

« Corners of a rectangle containing all points (a
“bounding box")

« Counts
- e.g., # of strings that start with a vowel
— This is just summing with a different base case

More Interesting DAGse

« Of course, the DAGs are not always so simple
(and neither are the related parallel problems)

« Example:

— Suppose combining two results might be expensive
enough that we want to parallelize this combining process

— Then each node in the inverted tree on the previous slide
would itself expand info another set of nodes for that
parallel computation

Reductions

« Reductions produce a single answer from @
collection via an associative operator
— Examples: max, count, leftmost, rightmost, sum, ...
— Non-example: median

» Reduction results don’t have to be single
numbers or strings and can be arrays or objects
with fields

— Example: Histogram of test results

* But some things are inherently sequential

— How we process arr [i] may depend entirely on the result
of processing arr[1i-1]

Maps and Reductions on Trees

» Work just fine on balanced trees
— Divide-and-conqguer each child

— Example:
Finding the minimum element in an unsorted but balanced
binary tree takes O(log n) time given enough processors

e Parallelism also correct for unbalanced trees but
obviously one gets worse speed-ups

Sequential cut-offt

« Even with infinite processors, usually there is a point
where executing a group of reductions sequentially
Is faster than parallelizing the process (by spliting the

group)

* The point (e.qg., set size) where to stop parallelizing
and start xecuting sequentially is called the
sequential cut-off

 How to implement the sequential cut-off for
reductions on frees?¢

— Each node stores number-of-descendants (easy to maintain)
— Or approximate it (e.g., AVL free height)

Linked Lists

« Can you parallelize maps or reduces over linked lists¢
— Example: Increment all elements of a linked list
— Example: Sum all elements of a linked list

b > C > d > e f
f f
front back

* Nope. Once again, data structures matter!

« For parallelism, balanced trees are generally better than
lists so that we can get to all the data exponentially

faster O(log n) vs. O(n)

— Trees have the same flexibility as lists compared to arrays (i.e., no
shifting for insert or remove)

Parallelism:
Division of Responsibility

 Parallel Framework users (e.g., Cilk+, Java ForkJoin)
— Pick a good parallel algorithm and implement it
— Its execution creates a DAG of things to do

— Make all the nodes small(ish) with approximately equal amount
of work

* The framework-writer’s job:
— Assign work to available processors to avoid idling
— Keep constant factors (overhead) low

— Give the expected-time optimal guarantee assuming
framework-user did his/her job

« Expected T, = O((T, / P) + T..)

Examples: To=O((T, / P) + T..)

* SUM an array
-T1=0(n) and T, =0(logn) => T,=0(n/P+logn)

« Suppose
-T1=0(n?) and To=0(n) => T,=0(n?/P+n)

» Of course, these expectations ignore any
overhead or memory issues

The Prefix (Scan) Sum Problem

« Given int [] Input, produce int [] output such
that:
output [1]=input[0]+input[l]+..+input[1]

» A sequential solution for the Prefix Sum problem:

int[] prefix sum(int[] input) {
int[] output = new int[input.length];
output[0] = input[O0];
for(int i=1; i < input.length; i++)
output[i] = output[i-1]+input[i];
return output;

}

Apr 26, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 14

The Prefix (Scan) Sum Problem

int[] prefix sum(int[] input) {
int[] output = new int[input.length];
output[0] = input[O0];
for(int i=1; i < input.length; i++)
output[i] = output[i-1]+input[i];
return output;

}

» The above algorithm does not seem to be
pardllelizable!
— Work (T,): O(n) Span (T.): O(n)

« But a different algorithm gives a span of O(log n)

Parallel Prefix-Sum

* This parallel-prefix algorithm does two passes
— Each pass has O(n) work and Oflog n) span
— In total there is O(n) work and O(log n) span
— Just like array summing, parallelismis O(n / log n)
— An exponential speedup

* The first pass builds a tree bottom-up

* The second pass traverses the free top-down

Historical note:
Original algorithm due to R. Ladner
and M. Fischer at the UW in 1977

Apr 26, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Parallel Prefix: The Up Pass

« We want to build a binary free where
— Root has sum of the range [X,Y]

— If a node has sum of [lo,hi] and hi>lo,

« Left child has sum of [lo,middle]
» Right child has sum of [middle,hi]
« Aleaf has sum of [i,i+1], which is simply input]i]

o It Is critical that we actually create the tree as
we will need it for the down pass
— We do not need an actual linked structure
— We could use an array as we do for heaps

Up Pass Example

input

output

Apr 26, 2021

range 0,8 I
sum @ —> total sum
/ fromleft
range 0,4 range 4,8
sum 36 sum 40
fromleft fromleft
range 0,2 range 2,4 range 4,6 | | range 6,8
sum 10 sum 26 sum 30 | [sum 10
fromleft / 1 fromleft fromleft fromleft
r O, r32 ||r23||r34 | rd45 |/ r56/|r67]|r78
s(4 s 16 s 10 s 16 s 14 s 2 s 8
f f f f f f f f
6 4 16 10 16 14 2 8
0 1 2 3 4 5 6 7

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

18

Parallel Prefix: The Up Pass

* This is an easy fork-join computation:
 buildRange (arr, lo, hi)

— If lo+1 == hi, create new node with sum arr[lo]
— Else, create two new threads:
« buildRange (arr, lo, mid)
« buildRange (arr, mid+1, high)
 Where mid = (low+high)/2
— When threads complete, make new node with
e sum = left.sum + right.sum

* Performance Analysis:
— Work: O(n)
— Span: O(log n)

Parallel Prefix: The

Down Pass

 We now use the tree to get the prefix sums using
another easy fork-join computation

e Starting at the root:
— Root is given a fromLeft of O

— Each node takes its fromLeft value and:

 Passes to the left child: fromLeft

» Passes to the right child: fromLeft + left.sum
— At leaf for position i, output[i]=fromLeft+input(i]

* Invariant: fromlLeft is sum of elements left of the

hode’s range

input

output

Apr 26, 2021

/ sum

range 0,4
sum

fromleft

range

fromleft

0,8
76

Down Pass Example

range 4,8
sum 40
fromleft (36

—

range 0,2 range 2,4 range 4,6 | | range 6,8
sum 10 sum 26 sum 30 [| sum 10
fromleft 0 fromleft 10 fromleft 36 | | fromleft 66
rol ||rl1,2 |r23|r34||r45 ||r56 | ré67/||r78
s 6 s 4 s 16 s 10 s 16 s 14 s 2 s 8
fo f 6 f 10 ||f 26 ||f 36 ||f 52 [|[f 66 ||f 68
6 4 16 10 16 14 2 8

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

21

input

output

Apr 26, 2021

Down Pass Example

range 0,8
sum 76
/ fromleft 0 \
range 0,4 range 4,8
sum 36 sum 40
fromleft O fromleft 36
range 0,2 range 2,4 range 4,6 | | range 6,8
sum 10 sum 26 sum 30 | | sum 10
fromleft O fromleft 10 fromleft 36 || fromleft 66
rol ||rl1,2 |r23|/r34|/r45 ||r56]|ré67]||r78
s 6 s 4 s 16 s 10 s 16 s 14 s 2 s 8
f(0 f 6 f 10 ||[f 26 ||f 36 ||f 52 [|[f 66 ||f 68
A
 (&)\| 4 16 | 10 | 16 | 14 2 8
+
i 6; 10 26 36 52 66 68 76

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

22

Parallel Prefix: The Down Pass

» Note that this parallel algorithm does not return
a value

— Leaves result in an output array
— This is a map-like algorithm, not a reduction-like algorithm

« Performance Analysis:
— Work: O(n)
— Span: Oflog n)

Generalizing Parallel Prefix

» Prefix-sum illustrates a pattern that can be used

IN Many problems
— Minimum, maximum of all elements to the left of i

— Is there an element to the left of i safisfying some
propertye
— Count of elements to the left of i satisfying some property!

» That last one is perfect for an efficient parallel
pack that builds on top of the “parallel prefix
trick”™

Pack (Think Filtering)

« Given an array input and boolean function
f (e) produce an array output containing only
elements e such that £ (e) IS true

« Example:
input [17,4,6,8,11,5,13,19,0, 24]
fl(e):ise > 10¢
output [17, 11, 13, 19, 24]

* [s this parallelizable? Of course!
— Finding elements for the output is easy
— But getting them in the right place seems hard

Pack: Parallel Map + Parallel
Prefix + Parallel Map

1.

Use a parallel map to compute a bit-vector for

true elements
input (17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

bits (1, o0, 6, 0, 1, o0, 1, 1, O, 1]

Parallel-prefix sum on the bit-vector
pitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

Parallel map to produce the output
bitsum [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]
FORALL (1i=0; i < input.length; i++) {
if(bits[i]==1)
output[bitsum[i]-1] = input[i];

The END

e Sources:

— Parallel Computing, CIS 410/510, Department of Computer
and Information Science

— https://courses.cs.washington.edu/courses/cse332/12su/sli
des/lecture12-parallelism-work-span.pdf

Apr 26, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 27

