
Synchronization
lecture 11 (2021-04-26)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2020-21 —

João Lourenço <joao.lourenco@fct.unl.pt>

COMPUTER SCIENCE DEPARTMENT

Summary

•Synchronization
–Competition and Cooperation
–Properties
– Invariants

• Reading list:
– Chapter 1 of the book:

Raynal M.;
Concurrent Programming: Algorithms,
Principles, and Foundations;
Springer-Verlag Berlin Heidelberg (2013);
ISBN: 978-3-642-32026-2

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 2

Algorithms, Programs and
Processes
• A sequential algorithm is a formal description of

the behavior of a sequential state machine
– The text of the algorithm states the transitions that must be

sequentially executed

• When an algorithm written in a specific
programming language, it is called a program
• A process is an instance of a program

– Hence an instance of an algorithm

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 3

Multiprocess Programs

• A concurrent algorithm (or concurrent program)
is a formal description of the behavior of a set of
sequential state machines that cooperate
through a communication medium, e.g., a
shared memory or by exchanging messages
over a link

• Concurrent algorithm is a multiprocess program
– Each process corresponding to the sequential execution of

a given state machine

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 4

Process Synchronization

• Process synchronization occurs when the
progress of one or several processes depends on
the behavior of other processes

• Two types of process interaction require
synchronization: competition and cooperation

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 5

Synchronization: Competition

• Competition occurs when processes compete to
execute some statements (that access some
shared resource) and only one process at a time
(or a bounded number of them) is allowed to
execute them
– Example: when processes compete for a shared resource

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 6

Competition: Example

• Consider a disk with random (atomic) access I/O
(low-level) block operations
– seek(p) moves the disk head to location ‘p’
– read() reads the contents of block at location ‘p’
– write(v) writes ‘v’ in the block at location ‘p’

(overwriting previous contents)

• High-level process operations to be
implemented/used:
– disk_read(x) returns the contents of disk block ‘x’
– disk_write(x,v) writes ‘v’ into disk block ‘x’

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 7

Operations on disk ‘D’

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 8

An interleaving of disk
operations

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 9

An interleaving of disk
operations

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 10

An interleaving of disk
operations

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 11

An interleaving of disk
operations

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 12

An interleaving of disk
operations

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 13

Synchronization: Cooperation

• Cooperation occurs when one process can only
progress after some event on another process
– Example: when a processes waits for a signal sent by

another process

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 14

Synchronization: Cooperation

• Barrier (or rendezvous)
– A set of control points, one per process involved in the

barrier, such that each process is allowed to pass its control
point only when all other processes have attained their
own control points

– From an operational point of view, each process has to
stop until all other processes have arrived at their control
point

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 15

Synchronization: Cooperation

• A producer–consumer problem
– The producer loops forever on producing data items
– The consumer loops forever on consuming data items

• The problem consists in ensuring that
a) only data items that were produced are consumed, and
b) each data item that was produced is consumed exactly

once

• How to solve this problem?

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 16

Solutions to the prod–cons
problem
• Use a synchronization barrier

– Both the producer (when it has produced a new data
item) and the consumer (when it wants to consume a new
data item) invoke the barrier operation

– When, they have both attained their control point, the
producer gives the data item it has just produced to the
consumer

• This coordination pattern works but…
– …it is not very efficient (overly synchronized): for each

data item, the first process that arrives at its control point
must wait for the other process

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 17

Solutions to the prod–cons
problem
• Use a shared buffer of size n ≥ 1

– I.e., a queue or a circular array
– The producer adds new data items to the end of the

queue
– The consumer withdraws the data item at the head of the

queue

• Properties of a prod-cons with a buffer of size n:
– A producer must wait only when the buffer is full

• It contains n data items produced and not yet consumed
– A consumer must wait only when the buffer is empty

• Occurs each time all data items that have been produced
have been consumed

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 18

Synchronization: Invariants

• The aim of synchronization is to preserve
invariants

• #p = number of data items produced so far

• #c = number of data items consumed so far

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 19

Forbiden area

Fo
rb

id
en

 a
re

a
Synchronization: Invariants

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 20

#c

#p

#p = #c

Fo
rbiden area

Authorize
d area

Fo
rbiden area

#p = #c+n

#c = number of data items consumed so far
#p = number of data items produced so far

(#c ≥ 0)∧(#p ≥ #c)(#c ≥ 0)∧(#p ≥ #c)∧(#p ≤ #c+n)

Synchronization: Invariants

• The aim of synchronization is to preserve
invariants

• #p = number of data items produced so far

• #c = number of data items consumed so far

• Invariant for a buffer of size n is
(#c ≥ 0)∧(#p ≥ #c)∧(#p ≤ #c+n)

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 21

The Mutual Exclusion Problem

• Critical section
– Part of code A (i.e., an algorithm) or several parts of code

A, B, C, … (i.e., different algorithms) that, for some
consistency reasons, must be executed by a single process
at a time
• E.g., if a process is executing code B, no other process can

be simultaneously executing the codes A or B or C or etc.

• The operations disk_read() and disk_write() from
before were critical sections

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 22

Mutual exclusion

• How to provide the application processes with
an appropriate abstraction level?

• Designing
– an entry algorithm (also called entry protocol); and
– an exit algorithm (also called exit protocol)
– that, when used to delimit a critical section cs_code(in),

ensure that the critical section code is executed by at
most one process at a time

• Operations:
– acquire_mutex() and release_mutex()

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 23

Mutual exclusion: concurrent
execs of acquire_mutex()
• Only one of the invocations terminates

– The corresponding process p is called the winner

• The other invocations stay in hold
– The competing processes qi are the losers

• Their invocations remain pending

• A well formed process executes the entry and
exit protocols appropriately

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 24

Mutual exclusion: definition

• The mutual exclusion problem consists in
implementing the operations acquire_mutex()
and release_mutex() in such a way that the
following properties are always satisfied:

• Mutual exclusion, i.e., at most one process at a
time executes the critical section code

• Starvation-freedom, i.e., for any process ‘p’,
each invocation of acquire_mutex() by ‘p’
eventually terminates

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 25

Mutual exclusion: properties

• Safety
– Safety properties state that nothing bad happens
– They can usually be expressed as invariants

• The invariant here is the mutual exclusion property, which states that at
most one process at a time can execute the critical section code

• Note that a solution in which no process is ever allowed to execute the
critical section code would trivially satisfy the safety property

• Example of safety property:
– Deadlock-freedom

• Whatever the time τ, if before τ one or several processes have invoked
the operation acquire_mutex() and none of them has terminated its
invocation at time τ, then there is a time τ′> τ at which a process that
has invoked acquire_mutex() terminates its invocation

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 26

Mutual exclusion: properties

• Liveness
– Liveness properties state that something good eventually

happens

• Example of liveness property:
– Starvation freedom

• Means that a process that wants to enter the critical section
can be bypassed an arbitrary but finite number of times by
each other process

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 27

Mutual exclusion: properties

• Starvation-freedom implies deadlock-freedom
– If a process requests access to the critical section it will

eventually get permission
– To get permission the system cannot be deadlocked

• Deadlock-freedom does not imply starvation-
freedom
– The system is operating
– There is a process willing to get access to the critical

section that is always overcome by another later process

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 28

The Lock Object

• A lock is a shared object with two methods:
– LOCK.acquire_lock() and LOCK.release_lock()

• A lock can be in one of two sates:
– free or locked

• And is initialized
– to the value free

• Its behavior is defined by a sequential specification
– from an external observer point of view, all the acquire_lock()

and release_lock() invocations appear as if they have been
invoked one after the other

– Sequence: (LOCK.acquire_lock(); LOCK.release_lock())*
Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 29

The END

Apr 26, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-20 30

