i A NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

Solving
Mutual Exclusion (2)

lecture 14 (2021-05-03)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2020-21 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>

Summary

*Solving Mutual Exclusion

—Mutex based on Specialized Hardware
Primitives

» Reading list:

Concurrent

— Chapter 2 of the book Programming:
Raynal M.; Algorithms, Principles,
Concurrent Programming: Algorithms, and Foulagggions

Principles, and Foundations;
Springer-Verlag Berlin Heidelberg (2013);
ISBN: 978-3-642-32026-2

Apr 21, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Mutex Based on
Specialized Hardware Primitives

* In the previous lecture we studied mutual exclusion
algorithms based on atomic read/ write registers

« These algorithms are important because

— Understanding their design and their properties provides us with
precise knowledge of the difficulty and subtleties that have to
be addressed when one has to solve synchronization problems

— They capture the essence of synchronization in a read/write
shared memory model

* Nearly all shared memory multiprocessors propose
built-in primitives (i.e., atomic operations
implemented in hardware) specially designed to
address synchronization issues

The test&seft()/reset() primitives

* This pair of primitives, denoted test&set() and
resel(), is defined as follows:

» Let X be a shared register inifialized to 1

 X.test&sei() sets X to O and returns its previous
value

« X.reset() writes 1 into X (i.e., resets X to ifs initial
value)

» Both test&set() and reset() are atomic

Mutual exclusion
with test&set()/reset()

. 2 n
Invariantse X Zri _ 1_

operation acquire_mutex() is 1=1
repeat r <— X.test&set() until (» = 1) end repeat;
return()

end operation.

operation release_mutex() is
X.reset(); return()
end operation.

mutual exclusion

Apr 21,2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 pr‘ogl"eSS ReaIIy'-"-’

The swap() primitive

» Let X be a shared register

* The primitive X.swap(v) atomically assigns v to X
and retfurns the previous value of X

Mutual exclusion with swap()

operation acquire_mutex() is
r «— 0;

. 2 n
Invariants X Zri 1
i=1

repeat r < X.swap(7) until (» = 1) end repeat;

return()
end operation.

operation release_mutex() is
X.swa ; return()
end operation.

Assumes ‘r' was
not changed
(i.e., r=1)

v'mutual exclusion

Apr 21, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 ‘/pr‘ogr‘eSS Really’-"-’

The compare&swap() primitive

» Let ‘X’ be ashared register and ‘old’ and ‘new’
be two values

* The primitive X.compare&swap(old, new)
— returns a Boolean value

— is defined by the following code that is assumed to be
executed atomically:

X.compare&swap(old, new) is
if (X = old) then X < new; return(true)
else return(false)

end if.

Mutual exclusion
with compare&swap()

X is an atomic compare&swap register initialized to 1

operation acquire_mutex() is | °/° h : new

repeat «— X.compare&swap(1)0) until () end repeat;
return()
end operation.

operation release_mutex() is
X «— 1;return()
end operation.

Apr 21, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

Mutual exclusion
with compare&swap()

X is an atomic compare&swap register initialized 1o 1

operation acquire_mutex() is
repeat r < X.compare&swap(1, 0) until (r) end repeat;
return()

end operation. ,
_ Invariante

operation release_mutex() is X + Z(T'L — TRUE) =1
X <« 1; return() P

end operation.

mutual exclusion

Apr 21,2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20 pr‘ogl"eSS ReaIIy'-"-’

Starvation freedom

 All the previous algorithms,

Implementing

mutexes with

test&set()

mutual exclusion
progress but not for
all the processes

swap()
compare&swap()

are not starvation free!

This means that in presence of contention a process p;
may always “loose the race” and never get the lock

Mutual exclusion: deadlock
and starvation-free algorithm

operation acquire_mutex(z) is

(1) FLAGIi] < up;

(2) wait (TURN =1i) V (FLAG[TURN] = down) ;
(3) LOCK .acquire_lock(z);

(4) return()

end operation.

operation release_mutex(z) is

(5) FLAG](i] « down;

(6) if (FLAG|TURN] = down) then TURN «— (TURN mod n) + 1 end if;
(7) LOCK .release_lock(z);
(8) return() v'mutual exclusion
end operation. v'progress

v'no starvation |-

Apr 21, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-2 X fa“ﬂness 2

The fetch&add() primitive

» Let X be a shared register

* The primitive X.fetch&add() atomically adds 1 to

X and returns the new value

— In some variants the value that is retfurned is the previous
value of X

— In other variants, a value c is passed as a parameter and,
instfead of being increased by 1, X becomes X + C

Mutual exclusion with

fefch&add()

operation acquire_mutex() is

my_turn «— TICKET .fetch&add();
repeat no-op until (my_turn = NEXT) end repeat;

return()
end operation.

operation release_mutex() is

NEXT «— NEXT + 1;

end operation.

return()

Not atomic!
Why does it worke

v'mutual exclusion
v'progress
v'no starvation

v fairness

Apr 21, 2020 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

14

The END

Apr 21, 2020

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-20

15

