
Locking Strategies
lecture 16 (2021-05-10)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2020-21 —

João Lourenço <joao.lourenco@fct.unl.pt>

COMPUTER SCIENCE DEPARTMENT

Locking Strategies

• Contents:
– Coarse-Grained Synchronization
– Fine-Grained Synchronization

• Reading list:
– Chapter 5 of the Textbook
– Chapter 9 (9.1-9.5) of “The Art of

Multiprocessor Programming” by Maurice
Herlihy & Nir Shavit (available at clip)

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 2

Coarse-Grained
Synchronization
• Use a single lock…

• Methods are always executed in mutual
exclusion
– Methods never conflict

• Eliminates all the concurrency within the object

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21May 10, 2021 3

Fine-Grained Synchronization

• Instead of using a single lock…

• Split object into multiple
independently-synchronized components

• Methods conflict when they access
– The same component…
– (And) at the same time!

Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21May 10, 2021 4

Linked List

• Illustrate these patterns …

• Using a list-based Set
– Common application
– Building block for other apps

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 5

Set Interface

• Unordered collection of items

• No duplicates

• Methods
– add(x) put x in set true if x was not in the set
– remove(x) take x out of set true if x was in the set
– contains(x) tests if x in set true if x is in the set

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 6

List-Based Sets

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 7

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

List-Based Sets

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 8

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

Add item to set

List-Based Sets

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 9

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

Remove item from set

List-Based Sets

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 10

public interface Set<T> {
public boolean add(T x);
public boolean remove(T x);
public boolean contains(T x);

}

Is item in set?

List Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 11

public class Node {
public T item;
public int key;
public Node next;

}

List Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 12

public class Node {
public T item;
public int key;
public Node next;

}

item of interest

List Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 13

public class Node {
public T item;
public int key;
public Node next;

}

Usually hash code

List Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 14

public class Node {
public T item;
public int key;
public Node next;

}

Reference to next node

The List-Based Set

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 15

a b c

Sorted with Sentinel nodes
(min & max possible keys)

-∞

+∞

Reasoning about Concurrent
Objects
• Invariant

– Property that always holds
– Established because

• True when object is created
• Truth preserved by each method

– Each step of each method

• Assertion
– Property valid in a specific location (code line)
– Weaker than invariants, but much easier to define

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 16

Abstract Data Types

• Concrete representation

• S() = {a, b}

• Abstract Type
– {a, b}

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 17

a b

a b

Sequential List Based Set

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 18

a c d
Add()

Sequential List Based Set

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 19

a c d

b

Add()

Sequential List Based Set

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 20

a c d

b

a b c

Add()

Remove()

Sequential List Based Set

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 21

a c d

b

a b c

Add()

Remove()

Coarse Grained Locking

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 22

a b d

Coarse Grained Locking

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 23

a b d

c

Coarse Grained Locking

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 24

honk!

a b d

c

Simple but hotspot + bottleneck

honk!

Coarse Grained Locking

• Easy, same as synchronized methods
– “One lock to rule them all …”

• Simple, clearly correct
– Deserves respect!

• Works poorly with contention

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 25

Fine-grained Locking

• Requires careful thought
– “Do not meddle in the affairs of

wizards, for they are subtle and
quick to anger”

• Split object into pieces
– Each piece has own lock
– Methods that work on disjoint pieces need not exclude

each other

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 26

Hand-over-Hand locking

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 27

a b c

Hand-over-Hand locking

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 28

a b c

Hand-over-Hand locking

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 29

a b c

Hand-over-Hand locking

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 30

a b c

Hand-over-Hand locking

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 31

a b c

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 32

a b c d

remove(b)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 33

a b c d

remove(b)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 34

a b c d

remove(b)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 35

a b c d

remove(b)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 36

a b c d

remove(b)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 37

a c d

remove(b)
Why do we need
to always hold 2
locks?

Concurrent Removes

• Holding just one lock (to the node to be
changed)

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 38

a b c d

remove(c)
remove(b)

Concurrent Removes

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 39

a b c d

remove(b)
remove(c)

Concurrent Removes

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 40

a b c d

remove(b)
remove(c)

Concurrent Removes

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 41

a b c d

remove(b)
remove(c)

Concurrent Removes

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 42

a b c d

remove(b)
remove(c)

Concurrent Removes

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 43

a b c d

remove(b)
remove(c)

Concurrent Removes

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 44

a c d

remove(b)
remove(c)

b

Uh, Oh

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 45

a c d

Bad news, C not removed

remove(b)
remove(c)

Insight

• If a node is locked
– No one can delete node’s successor

• If a thread locks
– Node to be deleted
– And its predecessor
– Then it works

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 46

Hand-Over-Hand Again

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 47

a b c d

remove(b)

Hand-Over-Hand Again

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 48

a b c d

remove(b)

Hand-Over-Hand Again

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 49

a b c d

remove(b)

Hand-Over-Hand Again

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 50

a b c d

remove(b) Found it!

Hand-Over-Hand Again

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 51

a b c d

remove(b) Found it!

Hand-Over-Hand Again

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 52

a c d

remove(b)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 53

a b c d

remove(b)
remove(c)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 54

a b c d

remove(b)
remove(c)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 55

a b c d

remove(b)
remove(c)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 56

a b c d

remove(b)
remove(c)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 57

a b c d

remove(b)
remove(c)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 58

a b c d

remove(b)
remove(c)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 59

a b c d

remove(b)
remove(c)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 60

a b c d

remove(b)
remove(c)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 61

a b c d

Must acquire
lock of b

remove(c)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 62

a b c d

Cannot
acquire
lock of b

remove(c)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 63

Wait!!!

a b c d

remove(c)

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 64

Proceed to
remove(b)

a b d

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 65

remove(b)

a b d

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 66

remove(b)

a b d

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 67

remove(b)

a d

Removing a Node

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 68

a d

Remove method

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 69

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
curr.unlock();
pred.unlock();

}}

Remove method

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 70

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
curr.unlock();
pred.unlock();

}}

Key used to order node

Remove method

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 71

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
currNode.unlock();
predNode.unlock();

}}

Predecessor and current nodes

Remove method

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 72

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
curr.unlock();
pred.unlock();

}}

Make sure
locks released

Remove method

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 73

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

…
} finally {
curr.unlock();
pred.unlock();

}}

Everything else

Remove method

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 74

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

Remove method

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 75

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

lock pred == head

Remove method

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 76

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

Lock current

Remove method

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 77

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

Traversing list

Remove: searching

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 78

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Remove: searching

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 79

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Search key range

Remove: searching

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 80

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Lock invariant: At start of each
loop: curr and pred locked

Remove: searching

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 81

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;If item found, remove node

Remove: searching

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 82

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Unlock predecessor

Remove: searching

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 83

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Only one node locked!

Remove: searching

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 84

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

demote current

Remove: searching

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 85

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = currNode;
curr = curr.next;
curr.lock();

}
return false;

Find and lock new current

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = currNode;
curr = curr.next;
curr.lock();

}
return false;

Remove: searching

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 86

Lock invariant restored

Remove: searching

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 87

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Otherwise, not present

The END

May 10, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 88

