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Alternative Synchronization
Strategies

« Contents:
— Liveness: Types of Progress
— Coarse-Grained Synchronization
— Fine-Grained Synchronization
— Optimistic Synchronization
— Lazy Synchronization
— Lock-Free Synchronization . i A

» Past lectures

MULT]PI‘OCES SOR
PROGRAMMING

« Reading list:
— chapter 5 of the Textbook

— Chapter 9 of “The Art of Multiprocessor Progrommlng” by
Maurice Herlihy & Nir Shavit (available at clip)
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Basics for a lock-free Queue
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Basics for a lock-free Queue

Empty queue

N - pummy Node |
o




Enqueue

Inode tail head
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Compare & set(CAS)

shared
register old new

.

CAS (A, B, C)

if A==B then A<C; return(true)
else return(false)

Supported by Intel, AMD, Arm, ...
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Reminder: Lock-Free Dato
Structures

« NOo matter what ... @

« Guarantees minimal progress in any execution
- i.e., some thread will always complete a method call

 Even if others halt at malicious times

* Implies that implementation can’t use locks
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Lock-free Lists

» Next logical step (after the lazy list) is...

 Eliminate locking entirely

— contains() wait-free
— add() lock-free
— remove() lock-free

» Use only compareAndSet()

 What could go wronge



Remove Using CAS

* remove(c)

Ll [ =5=>{alo] 5=>(blO} &

Use CAS to verify
If pointer is correct

Not enough! Why?¢

Logical Removal =
Set Mark Bit

el0]

Physical
Removal
CAS pointer
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Problem...

 remove(c) | add(d) Logical Removal =
Set Mark Bit

‘Prc,>blem: : Physical

d’' not added to list... pemoval  Node added
Must Prevent CAS Before
manipulation of Physical

removed node's pointer Removal CAS
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Problem...

 remove(c) | add(d) Logical Removal =
Set Mark Bit

‘Prc,>blem: : Physical

d’' not added to list... pemoval  Node added
Must Prevent CAS Before
manipulation of Physical

removed node's pointer Removal CAS
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The Solution: Combine Bit and
Pointer

Logical Removal =
Set Mark Bit

Removal
Mark-Bit and Pointer CAS Fail CAS: Node nof

added after logical
Removal

are CASed together
(AtomicMarkableReference)
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Solution

e Use AtomicMarkableReference

« Atomically

— Swing reference and
— Update flag

« Remove In two steps
— Set mark bit in next field
— Redirect predecessor’s pointer with a CAS
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Marking a Node

» AtomicMarkableReference class
- java.util.concurrent.atomic package

Reference
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Extracting Reference & Mark

public Object get(boolean[] marked);
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Extracting Reference & Mark

public object]get{boo1ean[] marked) ;

Returns mark at

Returns array index 0!

reference
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Extracting Reference Only

public boo1ean]1sMarked();

Value of
mark
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Changing State

public boolean compareAndSet(
Object expectedRef,
Object updateRef,
boolean expectedMmark,
boolean updateMark) ;
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Changing State

If this is the current
O reference ...

public boo1ean/c66£§£%Andset(
lObject expectedRef,
[O_bject updateRef,
b

oolean expectedMmark,
booTean updateMark) ;

And this is the

current mark ...
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Changing State

...then change to this
new reference ...

public boolean/compareAndSet(
Object expetctefRef,
(Object updateRe
boolean expectedmark,

[boo1ean updateMark) ;
... and this new

mark
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Changing State

May 24, 2021

public boolean attemptMark(
Object expectedRef,
boolean updateMark) ;
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Changing State
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public boolean attemptMark(
Object expectedRef,]
boglean updatemark) ;

If this is the current
reference ...
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Changing State

May 24, 2021

public boolean attemptMark(
Object expectedRef,
[boolean updateMark));

.. then change to
this new mark.
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Removing a Node




Removing a Node
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Removing a Node
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Removing a Node

EEagCI

remove
b Ooo

May 24, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21

(¢ ]

28



Traversing the List

* Q: what do you do when you find a “logically”
deleted node in your pathe

* A: finish the job.
— CAS the predecessor’s next field
— Proceed (repeat as needed)



Lock-Free Traversal
(only Add and Remove)




The END
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