
Alternative Synchronization Strategies
— Lock-Free Algorithms (1) —

lecture 19 (2021-05-24)

Master in Computer Science and Engineering

— Concurrency and Parallelism / 2020-21 —

João Lourenço <joao.lourenco@fct.unl.pt>

COMPUTER SCIENCE DEPARTMENT

Alternative Synchronization
Strategies

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 2

Today

Past lectures

• Contents:
– Liveness: Types of Progress
– Coarse-Grained Synchronization
– Fine-Grained Synchronization
– Optimistic Synchronization
– Lazy Synchronization
– Lock-Free Synchronization

• Reading list:
– chapter 5 of the Textbook
– Chapter 9 of “The Art of Multiprocessor Programming” by

Maurice Herlihy & Nir Shavit (available at clip)

Basics for a lock-free Queue

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 3

add dequeue

Basics for a lock-free Queue

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 4

headtail

Empty queue

Dummy Node

Enqueue

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 5

headtaillnode

Dequeue

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 6

headtail

Compare & set(CAS)

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 7

CAS (A, B, C)

if A==B then AßC; return(true)
else return(false)

shared
register old new

Supported by Intel, AMD, Arm, …

Reminder: Lock-Free Data
Structures

• No matter what …

• Guarantees minimal progress in any execution
– i.e., some thread will always complete a method call

• Even if others halt at malicious times

• Implies that implementation can’t use locks

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 8

Lock-free Lists

• Next logical step (after the lazy list) is…

• Eliminate locking entirely
– contains() wait-free
– add() lock-free
– remove() lock-free

• Use only compareAndSet()

• What could go wrong?

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 9

Remove Using CAS

• remove(c)

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 10

a 0 0 0a b c 0e1c

Logical Removal =
Set Mark Bit

Physical
Removal
CAS pointer

Use CAS to verify
if pointer is correct

Not enough! Why?

Problem…

• remove(c) | add(d)

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 11

a 0 0 0a b c 0e1c

Logical Removal =
Set Mark Bit

Physical
Removal
CAS

0dProblem:
‘d’ not added to list…
Must Prevent
manipulation of
removed node’s pointer

Node added
Before
Physical
Removal CAS

Problem…

• remove(c) | add(d)

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 12

a 0 0 0a b c 0e1c

Logical Removal =
Set Mark Bit

Physical
Removal
CAS

0dProblem:
‘d’ not added to list…
Must Prevent
manipulation of
removed node’s pointer

Node added
Before
Physical
Removal CAS

The Solution: Combine Bit and
Pointer

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 13

a 0 0 0a b c 0e1c

Logical Removal =
Set Mark Bit

0d

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)

Fail CAS: Node not
added after logical
Removal

Physical
Removal
CAS

Solution

• Use AtomicMarkableReference

• Atomically
– Swing reference and
– Update flag

• Remove in two steps
– Set mark bit in next field
– Redirect predecessor’s pointer with a CAS

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 14

Marking a Node

• AtomicMarkableReference class
– java.util.concurrent.atomic package

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 15

address F

mark bit

Reference

Extracting Reference & Mark

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 16

public Object get(boolean[] marked);

Extracting Reference & Mark

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 17

public Object get(boolean[] marked);

Returns
reference

Returns mark at
array index 0!

Extracting Reference Only

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 18

public boolean isMarked();

Value of
mark

Changing State

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 19

public boolean compareAndSet(
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark);

Changing State

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 20

public boolean compareAndSet(
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark);

If this is the current
reference …

And this is the
current mark …

Changing State

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 21

public boolean compareAndSet(
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark);

…then change to this
new reference …

… and this new
mark

Changing State

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 22

public boolean attemptMark(
Object expectedRef,
boolean updateMark);

Changing State

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 23

public boolean attemptMark(
Object expectedRef,
boolean updateMark);

If this is the current
reference …

Changing State

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 24

public boolean attemptMark(
Object expectedRef,
boolean updateMark);

.. then change to
this new mark.

Removing a Node

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 25

a b c d

remove c

CAS

Removing a Node

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 26

a b d

remove
b

remove
c

cCASCAS

failed

Removing a Node

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 27

a b d

remove
b

remove
c

c

Removing a Node

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 28

a d

remove
b

remove
c

Traversing the List

• Q: what do you do when you find a “logically”
deleted node in your path?

• A: finish the job.
– CAS the predecessor’s next field
– Proceed (repeat as needed)

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 29

Lock-Free Traversal
(only Add and Remove)

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 30

a b c d
CAS

Uh-oh

pred currpred curr

The END

May 24, 2021 Concurrency and Parallelism — J. Lourenço © FCT-UNL 2019-21 31

