N V NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

Concurrency Errors (1)

lecture 22 (2021-05-31)

Master in Computer Science and Engineering
— Concurrency and Parallelism / 2020-21 —

Jodo Lourenc¢o <joao.lourenco@fct.unl.pt>

Agendd

« Concurrency Errors
— Detection of data races
— Detection of high-level data races and stale value errors
— Detection of deadlocks

« Reading list:
— TBD

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21

Concurrency Errors

Data Race Detection

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21

Overview

» Static program analysis

 Dynamic program analysis
— Lock-set algorithm
— Happens-Before
— Noise-Injection

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21

Static Data Race

« Advantages:

Detection

— Reason about all inputs/interleavings

— No run-time overhead

— Adapt well-understood static-analysis fechniques
— Possibly with annotations to document concurrency

invariants

« Example Tools:

- RCC/Java type-based

- ESC/Java "functional verification"
(theorem proving-based)

Static Data Race Detection

« Advantages:
— Reason about all inputs/interleavings
— No run-time overhead
— Adapt well-understood static-analysis fechniques

— Possibly with annotations to document concurrency
invariants

» Disadvantages of statfic approach:
— Tools produce “false positives” and/or “false negatives”
— May be slow, require programmer annotations
— May be hard to interpret results
— May not scale to large or complex programs

Dynamic Data Race Detection

« Advantages
— Soundness
« Every actual data race is reported
— Completeness

- Allreported warnings are actually races (avoid “false
posifives”)

» Disadvantages
— Run-time overhead (5-20x for best tools)
— Memory overhead for analysis state
— Reasons only about observed executions

« sensifive to test coverage
« (some generalization possible...)

Approaches

* Happens-Before

» Lock-set algorithm

— Learns which shared memory locations are protected by
which locks

— Issues warning if finds no lock protects a shared memory
location

e (...)

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21

Concurrency Errors

Dynamic Data Race Detection Using
Happens-before [Lamport '78]

Lock Definition

* Lock: a synchronization object that is either
available, or owned (by a thread)

— Operations: lock(mu) and unlock(mu)

— A lock can only be unlocked by its current owner

—The lock() operation is blocking if the lock is owned by

another thread

The Happens-before Relation

* happens-before defines a partial order for
events in a set of concurrent threads
— In a single thread, happens-before reflects the temporal
order of event occurrence

— Between threads, A happens before B if A is an unlock
access in one thread, and B is a lock access in a different
thread (assuming the threads obey the semantics of the
lock , i.e., can’t have two successive locks, or two
successive unlocks, or a lock in one thread and an unlock
in a different thread)

The Happens-before Relation

 Let event a be in thread 1 and event b be In
thread 2

If a = unlock(mu) and b =lock(mu) then
a—b (a0 happens-before b)

-~

\

Data races between threads are possible if
accesses to shared variables are not ordered
by the happens-before relation

~

)

Example |

May 31, 2021

Thread 1 Thread 2
lock(mu)
{
X=x+1 «_
'
unlock(mu) \\ ?
l \\\ lock(mu)
s\\ ;
e ox=x+1
'
unlock(mu)

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21

13

Example |

Thread 1 Thread 2
1 lock(mu) \
!

2 X=X+ 1

;
3 unlock(mu) \
| \ lock(mu)

¥
8 X=X+ 1

|

evl >ev2>ev3 9 unlock(mu)

ev/ > ev8 > ev9

ev3 > ev/ . _
oV > ov8 No Data Race

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21

14

Example |

Thread 1 Arrows represent Thread 2
lock(mu) happens-before
! relation

unlock(mu

unlock(mu)

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21 15

Example 2

Thread 1 Thread 2
y=y+l
v
lock(mu) .
¥
X=X+1 \
'
unlock(mu) -~ lock(mu)
l ¥
X=X+1
'
unlock(mu)
Accesses to both ‘x’ and 'y’ are ordered by happens- y
before, so no data race occurred. y=y+1

But ... a different execution ordering could get different resultse! Hppens-before only
detects data races if the incorrect order shows up in the execution frace.

IVidy 31, ZUZ1l concurrency dna rdrdiensin — J. Lourengo & rCi-UNL ZUlJ-£Z1

Example 3

Thread 1 Thread 2
lock(mu)
\ ;
X=Xx+1
!
unlock(mu)
| |
y=y+1 y=y+I
¥
lock(mu)
'
X=Xx+1
'
unlock(mu)

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21

17

Example 3

Thread 1 Thread 2

lock(mu)
\ ;
X=Xx+1
!
unlock(mu)
| |
y=y+] y=y+1
¥
lock(mu) Y
'
X=Xx+1

If Thread 2 executes before Thread 1, happens-before
' no longer holds between the two accesses to 'y’, so
unlock(mu) the possibility of a data race occurs and should be
notified to the programmer.

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21 18

Concurrency Errors

The Lock-Set Algorithm — Eraser [Savage et.al. ‘97]

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21

19

Approaches

« Checks a sufficient condition for data-race
freedom

« Consistent locking discipline
— Every data structure is protected by a single lock
— All accesses to the data structure are made while holding

the lock
Thread 1 Thread 2
void Bank: :Deposit(int a) { void Bank::Withdraw(int a) {
int t = bal; int t = bal;
bal = t + a; bal = t - a;

Approaches

« Checks a sufficient condition for data-race
freedom

« Consistent locking discipline

— Every data structure is protected by a single lock
— All accesses to the data structure are made while holding

the lock
Thread 1 Thread 2
void Bank::Deposit(int a) { void Bank::Withdraw(int a) {
acquireLock(ballLock); acquirelLock(ballLock);
int t = bal; int t = bal;
bal = t + a; bal = t - a;
releaseLock(balLock); releaseLock(balLock);

} }

Approach

« Checks a sufficient condition for data-race
freedom

« Consistent locking discipline
— Every data structure is protected by a single lock
— All accesses to the data structure are made while holding

fhe lock Accesses to ‘bal’ are
Thread 1 concistently profected

Thr 2
by ‘balLock’. ead
void Bank::Deposit(int a) { void Bank::Withdraw(int a) {
acquireLock(ballLock); acquirelLock(ballLock);
int t = bal; int t = bal;
bal = t + a; bal = t - a;
releaseLock(balLock); releaseLock(balLock);

} }

Approach

* How to know which locks protect each memory
locatione
— Ask the programmere Cumbersomel
— Infer from the program code? Is it effective?

acquirelLock(A); ‘x’ is protected by
acquirelLock(B); A, or B, or both
X ++;

releaselLock(B); ‘X’ is protected
releaseLock(A); by B

acquireLock(B); ‘X’ is protected by
acquireLock(C): B, or C, or both
X ++;

releaselLock(C);
releaselLock(B);

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21 23

The Lock-Set Algorithm

 TWO data structures:

— LocksHeld(t) = set of locks held currently by thread t
* |nifially set to Empty

— LockSet(x) = set of locks that could potentially be protecting x
* |nifially set to the universal set

« When thread ‘t' acquires lock ‘I’
— LocksHeld(t) = LocksHeld(t) U {1}

« When thread ‘t’ releases lock ‘I’
— LocksHeld(t) = LocksHeld(t) \ {1}

« When thread ‘t' accesses location ‘x’
— LockSet(x) = LockSet(x) N LocksHeld(t)

« “Data race” warning if LockSet(x) becomes empty

Another Example

Program Code LocksHeld

{1} {m1, m2}

lock (m1)
lock(m?2)
v=v+1

unlock(m?2)

v=Vv +2

unlock(m1)
lock(m2)
v=v+1
unlock(m?2)

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21 25

Another Example

Program Code LocksHeld
_— {1} {m1, m2}

lock(m1l)— U —— {m1} {m1, m2}
lock(m?2)

v=v+1

unlock(m?2)

v=Vv +2

unlock(m1)
lock(m2)
v=v+1
unlock(m?2)

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21 26

Another Example

Program Code LocksHeld

{1} {m1, m2}
lock (m1) {m1} {m1, m2}
lock(m?2) {m1, m2} {m1, m2}

v=v+1

unlock(m?2)

v=Vv +2

unlock(m1)
lock(m2)
v=v+1
unlock(m?2)

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21 27

Another Example

Program Code LocksHeld

{} {m1, m2}
lock (m1) {m1} {m1, m2}
lock(m?2) {m1, m2} {m1, m2}
v=v+1 {m1, m2} > > {m1, m2}

unlock(m?2)

v=Vv +2

unlock(m1)
lock(m2)
v=v+1
unlock(m?2)

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21 28

Another Example

Program Code LocksHeld

{1} {m1, m2}
lock (m1) {m1} {m1, m2}
lock(m?2) {m1, m2} {m1, m2}
v=v+1 N/lml, m2} {m1, m2}
unlock(m2)—— \ ——*{m1} {m1, m2}

v=Vv +2

unlock(m1)
lock(m2)
v=v+1
unlock(m?2)

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21 29

Another Example

Program Code LocksHeld

{} {m1, m2}
lock (m1) {m1} {m1, m2}
lock(m?2) {m1, m2} {m1, m2}
v=v+1 {m1, m2} {m1, m2}
unlock(m?2) {m1} /{ml, m2}
v=v +2 {m1} » (| =———> {m1}

unlock(m1)
lock(m2)
v=v+1
unlock(m?2)

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21 30

Another Example

Program Code LocksHeld

{} {m1, m2}
lock (m1) {m1} {m1, m2}
lock(m?2) {m1, m2} {m1, m2}
v=v+1 {m1, m2} {m1, m2}
unlock(m?2) {m1} {m1, m2}
V=V +2 {m1} {m1}
unlock(ml)—— \ L»{} {m1}
lock(m2)
v=v+1
unlock(m?2)

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21 31

Another Example

Program Code LocksHeld

lock (m1)
lock(m?2)

v=v+1

unlock(m?2)

v=Vv +2

{}

{m1}
{m1, m2}
{m1, m2}
{m1}

{m1}

{m1, m2}
{m1, m2}
{m1, m2}
{m1, m2}
{m1, m2}

{m1}

unlock(m1) _ {} {m1}

lock(m2) — U — {m2} {m1}

v=v+1
unlock(m?2)

May 31, 2021 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21 32

Another Example

Program Code LocksHeld

lock (m1)
lock(m?2)
v=v+1

unlock(m?2)

v=Vv +2

unlock(m1)
lock(m2)

v=v+1

unlock(m?2)

May 31, 2021

{}

{m1}
{m1, m2}
{m1, m2}
{m1}

{m1}

{}
{m2}

{m1, m2}
{m1, m2}
{m1, m2}
{m1, m2}
{m1, m2}

{m1}

{m1}

/ {m1}

{m2}

~{}

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21

33

Another Example

Program Code LocksHeld

lock (m1)
lock(m?2)
v=v+1

unlock(m?2)

v=Vv +2

unlock(m1)
lock(m2)

v=v+1

unlock(m?2)

May 31, 2021

{}

{m1}
{m1, m2}
{m1, m2}
{m1}

{m1}

{}
{m2}

{m1, m2}
{m1, m2}
{m1, m2}
{m1, m2}
{m1, m2}

{m1}

{m1}

{m1}
{} — ALARM

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21

34

Another Example

Program Code LocksHeld

lock (m1)
lock(m?2)
v=v+1

unlock(m?2)

v=Vv +2

unlock(m1)

lock(m2)

v=v+1

unlock(m2) — \

Z

——

May 31, 2021

{}

{m1}
{m1, m2}
{m1, m2}
{m1}

{m1}

{}
{m2}

> }

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21

{m1, m2}
{m1, m2}
{m1, m2}
{m1, m2}
{m1, m2}

{m1}

{m1}
{m1}

{} — ALARM

{}

Algorithm Guarantees

« NO warnings => no data races on the current
execution

— The program followed consistent locking discipline in this
execution

« Warnings does not imply a data race
— Thread-local initialization or Bad locking discipline

Algorithm Guarantees

« NO warnings => no data races on the current
execution

— The program followed consistent locking discipline in this
execution

« Warnings does not imply a data race
— Thread-local initialization or Bad locking discipline

Thread 1 Thread 2 Thread 3
acquirelLock(ml); acquirelLock(m2); acquireLock(ml); 4 y
acquirelLock(m2); acquirelLock(m3); acquireLock(m3)&*' _ff"
X =X+ 1; X =X + 1; X =X + 1; 4

releaseLock(m2); releaseLock(m3); PeleaseLock(mB)f%a'
releaselock(ml); releaselLock(m2); releaseLock(ml); ‘uu

Acknowledgments

« Some parts of this presentation was based in
publicly available slides and PDFs
— www.cs.cornell.edu/courses/cs4410/201 1su/slides/lecture 10.pdf
- www.microsoft.com/en-us/research/people/madanm/

— williamstallings.com/OperatingSystems/
— codex.cs.yale.edu/avi/os-book/OS9/slide-dir/

The END

May 31, 2021

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2019-21

39

