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CHAPTER

Background 2
Good parallel programming requires attention to both the theory and the reality of parallel computers.
This chapter covers background material applicable to most forms of parallel programming, includ-
ing a (short) review of relevant computer architecture and performance analysis topics. Section 2.1
introduces basic vocabulary and the graphical notation used in this book for patterns and algorithms.
Section 2.2 defines and names some general strategies for designing parallel algorithms. Section 2.3
describes some general mechanisms used in modern processors for executing parallel computations.
Section 2.4 discusses basic machine architecture with a focus on mechanisms for parallel computa-
tion and communication. The impact of these on parallel software design is emphasized. Section 2.5
explains performance issues from a theoretical perspective, in order to provide guidance on the design
of parallel algorithms. Section 2.6 discusses some common pitfalls of parallel programming and how
to avoid them. By the end of this chapter, you should have obtained a basic understanding of how mod-
ern processors execute parallel programs and understand some rules of thumb for scaling performance
of parallel applications.

2.1 VOCABULARY AND NOTATION
The two fundamental components of algorithms are tasks and data. A task operates on data, either
modifying it in place or creating new data. In a parallel computation multiple tasks need to be managed
and coordinated. In particular, dependencies between tasks need to be respected. Dependencies result
in a requirement that particular pairs of tasks be ordered. Dependencies are often but not always asso-
ciated with the transfer of data between tasks. In particular, a data dependency results when one task
cannot execute before some data it requires is generated by another task. Another kind of dependency,
usually called a control dependency, results when certain events or side effects, such as those due to
I/O operations, need to be ordered. We will not distinguish between these two kinds of dependency,
since in either case the fundamental requirement is that tasks be ordered in time.

For task management the fork–join pattern is often used in this book. In the fork–join pattern, new
serial control flows are created by splitting an existing serial control flow at a fork point. Conversely,
two separate serial control flows are synchronized by merging them together at a join point. Within a
single serial control flow, tasks are ordered according to the usual serial semantics. Due to the implicit
serial control flow before and after these points, control dependencies are also needed between fork
and join points and tasks that precede and follow them. In general, we will document all dependencies,
even those generated by serial control flows.
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Task Data Fork Join Dependency

FIGURE 2.1

Our graphical notation for the fundamental components of algorithms: tasks and data. We use two additional
symbols to represent the splitting and merging of serial control flows via fork and join and arrows to represent
dependencies.

We use the graphical notation shown in Figure 2.1 to represent these fundamental concepts through-
out this book. These symbols represent tasks, data, fork and join points, and dependencies. They are
used in graphs representing each of the patterns we will present, and also to describe parallel algo-
rithms. This notation may be augmented from time to time with polygons representing subgraphs or
common serial control flow constructs from flow-charts, such as diamonds for selection.

2.2 STRATEGIES
The best overall strategy for scalable parallelism is data parallelism [HSJ86, Vis10]. Definitions
of data parallelism vary. Some narrow definitions permit only collection-oriented operations, such as
applying the same function to all elements of an array, or computing the sum of an array. We take
a wide view and define data parallelism as any kind of parallelism that grows as the data set grows
or, more generally, as the problem size grows. Typically the data is split into chunks and each chunk
processed with a separate task. Sometimes the splitting is flat; other times it is recursive. What matters
is that bigger data sets generate more tasks.

Whether similar or different operations are applied to the chunks is irrelevant to our definition. Data
parallelism can be applied whether or not a problem is regular or irregular. For example, the symmet-
ric rank update in Section 15.4 does different operations in parallel: two symmetric rank reductions
and one matrix multiplication. This is an example of an irregular computation, but the scalable data
parallelism comes from recursively applying this three-way decomposition.

In practice applying more than few different operations in parallel, at least at a given conceptual
level, can make a program hard to understand. However, whether operations are considered “different”
can depend on the level of detail. For example, consider a collection of source files to be compiled. At
a high level, this is matter of applying the same “compile a file” operation across all source files. But
each compilation may involve radically different control flow, because each source file may contain
radically different content. When considering these low-level details, the operations look different.
Still, since the amount of work grows with the number of input files, this is still data parallelism.

The opposite of data parallelism is functional decomposition, an approach that runs different pro-
gram functions in parallel. At best, functional decomposition improves performance by a constant
factor. For example, if a program has functions f , g, and h, running them in parallel at best triples
performance, but only if all three functions take exactly the same amount of time to execute and do not
depend on each other, and there is no overhead. Otherwise, the improvement will be less.

Sometimes functional decomposition can deliver an additional bit of parallelism required to meet a
performance target, but it should not be your primary strategy, because it does not scale. For example,
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consider an interactive oil prospecting visualization application that simulates seismic wave propa-
gation, reservoir behavior, and seismogram generation [RJ10]. A functional decomposition that runs
these three simulations in parallel might yield enough speedup to reach a frame rate target otherwise
unobtainable on the target machine. However, for the application to scale, say for high-resolution dis-
plays, it needs to employ data parallelism, such as partitioning the simulation region into chunks and
simulating each chunk with a separate task.

We deliberately avoid the troublesome term task parallelism, because its meaning varies. Some
programmers use it to mean (unscalable) functional decomposition, others use it to mean (scalable)
recursive fork–join, and some just mean any kind of parallelism where the tasks differ in control flow.

A more useful distinction is the degree of regularity in the dependencies between tasks. We use the
following terminology for these:

• Regular parallelism: The tasks are similar and have predictable dependencies.
• Irregular parallelism: The tasks are dissimilar in a way that creates unpredictable dependencies.

Decomposing a dense matrix multiplication into a set of dot products is an example of a regular paral-
lelization. All of the dot products are similar and the data dependencies are predictable. Sparse matrix
multiplication may be less regular—any unpredictable zeros eliminate dependencies that were present
for the dense case. Even more irregular is a chess program involving parallel recursive search over
a decision tree. Branch and bound optimizations on this tree may dynamically cull some branches,
resulting in unpredictable dependencies between parallel branches of the tree.

Any real application tends to combine different approaches to parallelism and also may combine
parallel and serial strategies. For example, an application might use a (serial) sequence of parallelized
phases, each with its own parallel strategy. Within a parallel phase, the computations are ultimately
carried out by serial code, so efficient implementation of serial code remains important. Section 2.5.6
formalizes this intuition: You cannot neglect the performance of your serial code, hoping to make up
the difference with parallelism. You need both good serial code and a good parallelization strategy to
get good performance overall.

2.3 MECHANISMS
Various hardware mechanisms enable parallel computation. The two most important mechanisms are
thread parallelism and vector parallelism:

• Thread parallelism: A mechanism for implementing parallelism in hardware using a separate flow
of control for each worker. Thread parallelism supports both regular and irregular parallelism, as
well as functional decomposition.

• Vector parallelism: A mechanism for implementing parallelism in hardware using the same flow
of control on multiple data elements. Vector parallelism naturally supports regular parallelism but
also can be applied to irregular parallelism with some limitations.

A hardware thread is a hardware entity capable of independently executing a program (a flow
of instructions with data-dependent control flow) by itself. In particular it has its own “instruction
pointer” or “program counter.” Depending on the hardware, a core may have one or multiple hardware
threads. A software thread is a virtual hardware thread. An operating system typically enables many
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more software threads to exist than there are actual hardware threads by mapping software threads
to hardware threads as necessary. A computation that employs multiple threads in parallel is called
thread parallel.

Vector parallelism refers to single operations replicated over collections of data. In mainstream
processors, this is done by vector instructions that act on vector registers. Each vector register holds
a small array of elements. For example, in the Intel Advanced Vector Extensions (Intel AVX) each
register can hold eight single-precision (32 bit) floating point values. On supercomputers, the vectors
may be much longer, and may involve streaming data to and from memory. We consider both of these
to be instances of vector parallelism, but we normally mean the use of vector instructions when we use
the term in this book.

The elements of vector units are sometimes called lanes. Vector parallelism using N lanes requires
less hardware than thread parallelism using N threads because in vector parallelism only the registers
and the functional units have to be replicated N times. In contrast, N-way thread parallelism requires
replicating the instruction fetch and decode logic and perhaps enlarging the instruction cache. Fur-
thermore, because there is a single flow of control, vector parallelism avoids the need for complex
synchronization mechanisms, thus enabling efficient fine-grained parallelism. All these factors can
also lead to greater power efficiency. However, when control flow must diverge, thread parallelism is
usually more appropriate.

Thread parallelism can easily emulate vector parallelism—just apply one thread per lane. However,
this approach can be inefficient since thread synchronization overhead will often dominate. Threads
also have different memory behavior than vector operations. In particular, in vector parallelism we
often want nearby vector lanes to access nearby memory locations, but if threads running on different
cores access nearby memory locations it can have a negative impact on performance (due to false
sharing in caches, which we discuss in Section 2.4). A simple way around both problems is to break
large vector operations into chunks and run each chunk on a thread, possibly also vectorizing within
each chunk.

Less obviously, vector hardware can emulate a limited form of thread parallelism, specifically
elemental functions including control flow. We call such pseudo-threads fibers.1 Two approaches to
implementing elemental functions with control flow are masking and packing. The latter implemen-
tation mechanism is also known as stream compaction [BOA09, Wal11, LLM08, HLJH09].

Masking conditionally executes some lanes. The illusion of independent flows of control can be
achieved by assigning one fiber per lane and executing all control-flow paths that any of the fibers
take. When executing code for paths not taken by a particular fiber, that fiber’s lane is masked to
not execute, or at least not update any memory or cause other side effects. For example, consider the
following code:

if (a&1)
a = 3*a + 1;

else
a = a/2;

1Warning: This definition of “fiber” should not be confused with the meaning on Microsoftr Windows, where it means an
application-scheduled software thread.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 43 — #43

2.3 Mechanisms 43

In the masking approach, the vector unit executes both both a=3⇤a+1 and a=a/2. However, each
lane is masked off for one of the two statements, depending upon whether a&1 is zero or not. It is as if
the code were written:

p = (a&1);
t = 3*a + 1;
if (p) a = t;
t = a/2;
if (!p) a = t;

where if (...)a = t represents a single instruction that does conditional assignment, not a branch.
Emulation of control flow with masking does not have the same performance characteristics as true
threads for irregular computation. With masking, a vector unit executes both arms of the original if
statement but keeps only one of the results. A thread executes only the arm of interest. However, this
approach can be optimized by actually branching around code if all test results in the mask are either
true or false [Shi07]. This case, coherent masks, is the only case in which this approach actually avoids
computation when executing conditionals. This is often combined with using actual multiple threads
over vectorized chunks, so that the masks only have to be coherent within a chunk to avoid work.
Loops can be also be emulated. They are iterated until all lanes satisfy the exit conditions, but lanes
that have already satisfied their exit conditions continue to execute but don’t write back their results.

Packing is an alternative implementation approach that rearranges fibers so that those in the same
vector have similar control flow. Suppose many fibers execute the previous example. Packing first
evaluates the condition in parallel for all fibers. Then, fibers with (a&1)!= 0 are packed into a single
contiguous vector, and all elements of this vector execute a = 3*a + 1. All fibers with (a&1)== 0
are packed into another continguous vector and execute a = a/2. Note that packing can in theory
operate in place on a single vector in memory since we can pack the false and true values into opposite
ends of a single vector. This is sometimes also known as a split operation. Finally, after the divergent
computations are performed, the results are interleaved (unpacked) back into a single result vector in
their original order. Though packing retains the asymptotic performance characteristics of true threads,
it involves extra overhead that can become prohibitive when there are many branches. One option to
avoid the overhead is to only use packing for “large” blocks of code where the cost can be amortized,
and use masking otherwise.

Section 2.4.3 says more about the emulation of elemental functions (functions which act on all
elements of a collection at once) with control flow on vector hardware.

The process of compiling code to vector instructions is called vectorization. When applied
automatically to serial code it is called auto-vectorization. Auto-vectorization is fairly limited in
applicability so often explicit approaches are necessary to get the best performance.

Vector intrinsics are a low-level, direct approach to explicit vectorization. Intrinsics are special
data types and functions that map directly onto specific instructions. For example, on x86 processors
the intrinsic function mm addps(x,y) performs vector addition of vectors x and y. Both arguments
must be 4-element vectors declared as intrinsic type m128. Vector intrinsics are not the same as
assembly language since the compiler still handles register allocation and other matters. However,
intrinsics are definitely low level. Relatively simple mathematical formula become obscure when
expressed with intrinsics, and the resulting code becomes dependent on a particular instruction set
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and hardware vector length. For example, code written with 4-element intrinsics becomes suboptimal
when 8-element vector units become available. This book stresses high-level machine-independent
approaches that enable portable, efficient vector code.

We use task to refer to a unit of potentially parallel work with a separate flow of control. Tasks
are executed by scheduling them onto software threads, which in turn the OS schedules onto hard-
ware threads. A single software thread may run many tasks, though it actively runs only one task
at a time. Scheduling of software threads onto hardware threads is usually preemptive—it can hap-
pen at any time. In contrast, scheduling of tasks onto software threads is typically non-preemptive
(cooperative)—a thread switches tasks only at predictable switch points. Non-preemptive scheduling
enables significantly lower overhead and stronger reasoning about space and time requirements than
threads. Hence, tasks are preferable to software threads as an abstraction for scalable parallelism.

In summary, threads and vectors are two hardware features for parallel execution. Threads deal with
all kinds of parallelism but pay the cost of replicating control-flow hardware whether the replication is
needed or not. Vectors are more efficient at regular computations when suitable vector instructions
exist but can emulate irregular computations with some limitations and inefficiencies. In the best
case, especially for large-scale regular computations, careful design can combine these mechanisms
multiplicatively.

2.4 MACHINE MODELS
In order to write efficient programs, it is important to have a clear mental model of the organization of
the hardware resources being used. We can do this without a deep dive into computer architecture. To
write portable programs, by necessity this model needs to be somewhat abstract. However, there are key
mechanisms shared by most modern computers that are likely to be in future computers. These concepts
include cores, vector units, cache, and non-uniform memory systems. In addition, heterogeneous
computing introduces the concept of an attached co-processor. We describe these key concepts
here so that the book is self-contained, and to define the terminology used throughout the rest of the
book.

2.4.1 Machine Model
Figure 2.2 is a sketch of a typical multicore processor. Inside every core there are multiple func-
tional units, each such functional unit being able to do a single arithmetic operation. By considering
functional units as the basic units of computation rather than cores, we can account for both thread
and vector parallelism. A cache memory hierarchy is typically used to manage the tradeoff between
memory performance and capacity.

Instruction Parallelism
Since cores usually have multiple functional units, multiple arithmetic operations can often be per-
formed in parallel, even in a single core. Parallel use of multiple functional units in a single core can be
done either implicitly, by superscalar execution of serial instructions, hardware multithreading, or by
explicit vector instructions. A single-core design may use all three. A superscalar processor analyzes
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FIGURE 2.2

Multicore processor with hierarchical cache. Each core has multiple functional units and (typically) an
instruction cache and a data cache. Larger, slower caches are then shared between increasing numbers of
cores in a hierarchy.

an instruction stream and executes multiple instructions in parallel as long as they do not depend
on each other. A core with hardware multithreading supports running multiple hardware threads at
the same time. There are multiple implementation approaches to this, including simultaneous multi-
threading, where instructions from multiple streams feed into a superscalar scheduler [TEL95, KM03],
and switch-on-event multithreading, where the hardware switches rapidly to a different hardware
thread when a long-latency operation, such as a memory read, is encountered [ALKK90]. Vector
instructions enable explicit use of multiple functional units at once by specifying an operation on a
small collection of data elements. For example, on Intel architectures vector instructions in Streaming
SIMD Extension (SSE) allows specification of operations on 128-bit vectors, which can be two 64-bit
values, four 32-bit values, eight 16-bit values, or sixteen 8-bit values. The new Advanced Vector Exten-
sions (AVX) extends this feature to 256-bit vectors, and the Many Integrated Cores (MIC) architecture
extends it yet again to 512-bit vectors.

Memory Hierarchy
Processors also have a memory hierarchy. Closest to the functional units are small, very fast memories
known as registers. Functional units operate directly on values stored in registers. Next there are
instruction and data caches. Instructions are cached separately from data at this level since their usage
patterns are different. These caches are slightly slower than registers but have more space. Additional
levels of cache follow, each cache level being slower but more capacious than the one above it, typi-
cally by an order of magnitude in both respects. Access to main memory is typically two orders of
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magnitude slower than access to the last level of cache but is much more capacious, currently up to
hundreds of gigabytes on large servers. Currently, large on-chip cache memories are on the order of
10 MB, which is nonetheless a tiny sliver of the total physical memory typically available in a modern
machine.

Caches are organized into blocks of storage called cache lines. A cache line is typically much larger
than a single word and often (but not always) bigger than a vector. Some currently common sizes for
cache lines are 64 bytes and 128 bytes. Compared with a 128-bit SSE register, which is 16 bytes wide,
we see that these cache lines are 4 to 8 SSE vector registers wide. When data is read from memory,
the cache is populated with an entire cache line. This allows subsequent rapid access to nearby data in
the same cache line. Transferring the entire line from external memory makes it possible to amortize the
overhead for setting up the transfer. On-chip, wide buses can be used to increase bandwidth between
other levels of the memory hierarchy. However, if memory accesses jump around indiscriminately in
memory, the extra data read into the cache goes unused. Peak memory access performance is therefore
only obtained for coherent memory accesses, since that makes full use of the line transfers. Writes
are usually more expensive than reads. This is because writes actually require reading the line in,
modifying the written part, and (eventually) writing the line back out.

There are also two timing-related parameters to consider when discussing memory access: latency
and bandwidth. Bandwidth is the amount of data that can be transferred per unit time. Latency is
the amount of time that it takes to satisfy a transfer request. Latency can often be a crucial factor in
performance. Random reads, for example due to “pointer chasing,” can leave the processor spending
most of its time waiting for data to be returned from off-chip memory. This is a good case where
hardware multithreading on a single core be beneficial, since while one thread is waiting for a memory
read another can be doing computation.

Caches maintain copies of data stored elsewhere, typically in main memory. Since caches are
smaller than main memory, only a subset of the data in the memory (or in the next larger cache) can be
stored, and bookkeeping data needs to be maintained to keep track of where the data came from. This
is the other reason for using cache lines: to amortize the cost of the bookkeeping. When an address is
accessed, the caches need to be searched quickly to determine if that address’ data is in cache. A fully
associative cache allows any address’ data to be stored anywhere in the cache. It is the most flexible
kind of cache but expensive in hardware because the entire cache must be searched. To do this quickly,
a large number of parallel hardware comparators is required.

At the other extreme are direct-mapped caches. In a direct-mapped cache, data can be placed in
only one location in cache, typically using a modular function of the address. This is very simple.
However, if the program happens to access two different main memory locations that map to the same
location in the cache, data will get swapped into that same location repeatedly, defeating the cache.
This is called a cache conflict. In a direct-mapped cache, main memory locations with conflicts are
located far apart, so a conflict is theoretically rare. However, these locations are typically located at a
power of two separation, so certain operations (like accessing neighboring rows in a large image whose
dimensions are a power of two) can be pathological.

A set-associative cache is a common compromise between full associativity and direct mapping.
Each memory address maps to a set of locations in the cache; hence, searching the cache for an
address involves searching only the set it maps to, not the entire cache. Pathological cases where
many accesses hit the same set can occur, but they are less frequent than for direct-mapped caches.
Interestingly, a k-way set associative cache (one with k elements in each set) can be implemented



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 47 — #47

2.4 Machine Models 47

using k direct-mapped caches plus a small amount of additional external hardware. Usually k is a small
number, such as 4 or 8, although it is as large as 16 on some recent Intel processors.

Caches further down in the hierarchy are typically also shared among an increasing number of
cores. Special hardware keeps the contents of caches consistent with one another. When cores commu-
nicate using “shared memory,” they are often really just communicating through the cache coherence
mechanisms. Another pathological case can occur when two cores access data that happens to lie in
the same cache line. Normally, cache coherency protocols assign one core, the one that last modifies a
cache line, to be the “owner” of that cache line. If two cores write to the same cache line repeatedly,
they fight over ownership. Importantly, note that this can happen even if the cores are not writing to
the same part of the cache line. This problem is called false sharing and can significantly decrease
performance. In particular, as noted in Section 2.3, this leads to a significant difference in the benefit
of memory coherence in threads and vector mechanisms for parallelism.

Virtual Memory
Virtual memory lets each processor use its own logical address space, which the hardware maps to
the actual physical memory. The mapping is done per page, where pages are relatively large blocks of
memory, on the order of 4 KB to 16 KB. Virtual memory enables running programs with larger data
sets than would fit in physical memory. Parts of the virtual memory space not in active use are kept in a
disk file called a swap file so the physical memory can be remapped to other local addresses in use. In
a sense, the main memory acts as cache for the data stored on disk. However, since disk access latency
is literally millions of times slower than memory access latency, a page fault—an attempt to access
a location that is not in physical memory—can take a long time to resolve. If the page fault rate is
high, then performance can suffer. Originally, virtual memory was designed for the situation in which
many users were time-sharing a computer. In this case, applications would be “swapped out” when a
user was not active, and many processes would be available to hide latency. In other situations, virtual
memory may not be able to provide the illusion of a large memory space efficiently, but it is still useful
for providing isolation between processes and simplifying memory allocation.

Generally speaking, data locality is important at the level of virtual memory for two reasons. First,
good performance requires that the page fault rate be low. This means that the ordering of accesses to
data should be such that the working set of the process—the total amount of physical memory that
needs to be accessed within a time period that is short relative to the disk access time—should fit in the
set of physical memory pages that can be assigned to the process. Second, addresses must be translated
rapidly from virtual addresses to physical addresses. This is done by specialized hardware called a
Translation Lookaside Buffer (TLB). The TLB is a specialized cache that translates logical addresses
to physical addresses for a small set of active pages. Like ordinary caches, it may have hierarchical
levels and may be split for instructions versus data. If a memory access is made to a page not currently
in the TLB, then a TLB miss occurs. A TLB miss requires walking a page table in memory to find the
translation. The walk is done by either specialized hardware or a trap to the operating system. Since
the TLB is finite, updating the TLB typically requires the eviction of some other translation entry.

The important issue is that the number of page translation entries in the TLB is relatively small, on
the order of 8 to 128 entries for the first-level TLB, and TLB misses, while not as expensive as page
faults, are not cheap. Therefore, accessing a large number of pages in a short timeframe can cause TLB
thrashing, a high TLB miss rate that can significantly degrade performance.
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A typical case for this issue is a stencil on a large 3D array. Suppose a program sweeps through
the array in the obvious order—row, column, page—accessing a stencil of neighboring elements for
each location. If the number of pages touched by a single row sweep is larger than the size of the TLB,
this will tend to cause a high TLB miss rate. This will be true even if the page fault rate is low. Of
course, if the 3D array is big enough, then a high page fault rate might also result. Reordering the
stencil to improve locality (for example, as in Chapter 10) can lower the TLB miss rate and improve
performance. Another way to address this is to use large pages so that a given number of TLB entries
can cover a larger amount of physical memory. Some processors partition the TLB into portions for
small and large pages, so that large pages can be used where beneficial, and not where they would do
more harm than good.

Multiprocessor Systems
Processors may be combined together to form multiple-processor systems. In modern systems, this is
done by attaching memory directly to each processor and then connecting the processors (or actu-
ally, their caches) with fast point-to-point communications channels, as in Figure 2.3. The cache
coherency protocol is extended across these systems, and processors can access memory attached to
other processors across the communication channels.

However, access to memory attached to a remote processor is slower (has higher latency and also
typically reduced bandwidth) than access to a local memory. This results in non-uniform memory
access (NUMA). Ideally, threads should be placed on cores close to the data they should process,
or vice versa. The effect is not large for machines with a small number of processors but can be
pronounced for large-scale machines. Because NUMA also affects cache coherency, other problems,
such as false sharing, can be magnified in multiprocessor machines.

One basic theoretical model of parallel computation, the Parallel Random Access Machine
(PRAM), assumes uniform memory-access times for simplicity, and there have been attempts to build
real machines like this [Vis11]. However, both caching and NUMA invalidate this assumption. Caches
make access time depend on previous accesses, and NUMA makes access time depend on the location
of data. The constants involved are not small, either. Access to main memory can be hundreds of times
slower than access to cache. Designing algorithms to have good cache behavior is important for serial
programs, but becomes even more important for parallel programs.

Theoretical models that extend PRAM to quantify overhead of interprocessor communication
include the Synchronous Parallel (BSP) [Val90] and the LogP [CKP+96] models.

Attached Devices
Other devices are often attached to the processor. For example, a PCIe bus allows devices to be
installed by end users. A Network Interface Controller (NIC) is a typical PCIe device that pro-
vides access to the network. High-performance NICs can require high bandwidth and additionally the
overall system performance of a cluster can depend crucially on communication latency. The PCIe
bus protocol allows for such devices to perform direct memory access (DMA) and read or write data
directly to memory, without involving the main processor (except for coordination).

Other devices with high memory requirements may also use DMA. Such devices included attached
processing units such as graphics accelerators and many-core processors.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 49 — #49

2.4 Machine Models 49

Mem

Mem

Mem

Mem

Proc Proc

ProcProc

MemcoProcNIC

PCIe bus

Bridge

Network

DC Disk

FIGURE 2.3

Multiprocessor system organization. Each processor has its own memory bank(s), and processors are
interconnected using point-to-point communication channels. A processor can access its own memory directly
and other banks over the communication channels. A bridge chip connects the processors to other devices,
often through a bus such as a PCIe bus. Communication devices (Network Interface Controllers, or NICs) and
other processors (GPUs or attached co-processors) can be attached to the PCIe bus (actually, the PCIe bus is
not an actual shared bus but another set of point-to-point data links).

Such co-processors can be quite sophisticated systems in their own right. The Intel Many Inte-
grated Core (MIC) architecture, for example, is a high-performance processor with a large number of
simple cores (over 50) and its own cache and memory system. Each MIC core also has wide vector
units, 512 bits, which is twice as wide as AVX. These characteristics make it more suitable for highly
parallelizable and vectorizable workloads with regular data parallelism than multicore processors,
which are optimized for high scalar performance.

While the main function of graphics accelerators is the generation of images, they can also be used
to provide supplemental processing power, since they also have wide vector units and many cores.
Graphics accelerators used as computational engines are usually programmed using the SIMT model
discussed in Section 2.4.3 through a programming model such as OpenCL or (for graphics accelerators
from NVIDIA) CUDA.

However, while graphics accelerators must be programmed with a specialized programming model
such as OpenCL, the Intel MIC architecture runs a full operating system (Linux) and can be pro-
grammed with nearly any parallel programming model available on multicore processors. This includes
(but is not limited to) all the programming models discussed in this book.
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2.4.2 Key Features for Performance
Given the complexities of computer architecture, and the fact that different computers can vary
significantly, how can you optimize code for performance across a range of computer architectures?

The trick is to realize that modern computer architectures are designed around two key assumptions:
data locality and the availability of parallel operations. Get these right and good performance can be
achieved on a wide range of machines, although perhaps after some per-machine tuning. However, if
you violate these assumptions, you cannot expect good performance no matter how much low-level
tuning you do. In this section, we will also discuss some useful strategies for avoiding dependence on
particular machine configurations: cache oblivious algorithms and parameterized code.

Data Locality
Good use of memory bandwidth and good use of cache depends on good data locality, which is the
reuse of data from nearby locations in time or space. Therefore, you should design your algorithms to
have good data locality by using one or more of the following strategies:

• Break work up into chunks that can fit in cache. If the working set for a chunk of work does not fit
in cache, it will not run efficiently.

• Organize data structures and memory accesses to reuse data locally when possible. Avoid unneces-
sary accesses far apart in memory and especially simultaneous access to multiple memory locations
located a power of two apart. The last consideration is to avoid cache conflicts on caches with low
associativity.

• To avoid unnecessary TLB misses, avoid accessing too many pages at once.
• Align data with cache line boundaries. Avoid having unrelated data accesses from different cores

access the same cache lines, to avoid false sharing.

Some of these may require changes to data layout, including reordering items and adding padding
to achieve (or avoid) alignments with the hardware architecture. Not only is breaking up work into
chunks and getting good alignment with the cache good for parallelization but these optimizations can
also make a big difference to single-core performance.

However, these guidelines can be hard to follow when writing portable code, since then you have
no advance knowledge of the cache line sizes, the cache organization, or the total size of the caches.
In this case, use memory allocation routines that can be customized to the machine, and parameterize
your code so that the grain size (the size of a chunk of work) can be selected dynamically. If code is
parameterized in this way, then when porting to a new machine the tuning process will involve only
finding optimal values for these parameters rather than re-coding. If the search for optimal parameters
is done automatically it is known as autotuning, which may also involve searching over algorithm
variants as well.

Another approach to tuning grain size is to design algorithms so that they have locality at all scales,
using recursive decomposition. This so-called cache oblivious approach avoids the need to know the
size or organization of the cache to tune the algorithm. Section 8.8 says more about the cache oblivious
approach.

Another issue that affects the achievable performance of an algorithm is arithmetic intensity. This
is the ratio of computation to communication. Given the fact that on-chip compute performance is still
rising with the number of transistors, but off-chip bandwidth is not rising as fast, in order to achieve
scalability approaches to parallelism should be sought that give high arithmetic intensity. This ideally



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 51 — #51

2.4 Machine Models 51

means that a large number of on-chip compute operations should be performed for every off-chip
memory access. Throughout this book we discuss several optimizations that are aimed at increasing
arithmetic intensity, including fusion and tiling.

Sometimes there is conflict between small grain sizes (which give high parallelism) and high arith-
metic intensity. For example, in a 2D recurrence tiling (discussed in Chapter 7), the amount of work
in a tile might grow as 2(n2) while the communication grows as 2(n). In this case the arithmetic
intensity grows by 2(n) = 2(n2)/2(n), which favors larger grain sizes. In practice, the largest grain
size that still fits in cache will likely give the best performance with the least overhead. However, a
large grain size may also reduce the available parallelism (“parallel slack”) since it will reduce the
total number of work units.

Parallel Slack
Parallel slack is the amount of “extra” parallelism available (Section 2.5.6) above the minimum
necessary to use the parallel hardware resources. Specifying a significant amount of potential paral-
lelism higher than the actual parallelism of the hardware gives the underlying software and hardware
schedulers more flexibility to exploit machine resources.

Normally you want to choose the smallest work units possible that reasonably amortize the over-
head of scheduling them and give good arithmetic intensity. Breaking down a problem into exactly
as many chunks of work as there are cores available on the machine is tempting, but not necessarily
optimal, even if you know the number of cores on the machine. If you only have one or a few tasks on
each core, then a delay on one core (perhaps due to an operating system interrupt) is likely to delay the
entire program.

Having lots of parallel slack works well with the Intel Cilk Plus and Intel TBB task schedulers
because they are designed to exploit slack. In contrast when using OS threading interfaces such as
POSIX threads, too much actual parallelism can be detrimental. This problem often does not happen
on purpose but due to nesting parallelism using direct threading. Suppose on a 16-core system that an
algorithm f creates 15 extra threads to assist its calling thread, and each thread calls a library routine g.
If the implementer of g applies the same logic, now there are 16 ⇥ 15 threads running concurrently!
Because these threads have mandatory concurrency semantics (they must run in parallel), the OS
must time-slice execution among all 240 threads, incurring overhead for context switching and reload-
ing items into cache. Using tasks instead is better here, because tasks have semantics that make actual
parallelism optional. This enables the task scheduler to automatically match actual parallelism to the
hardware capability, even when parallelism is nested or irregular.

As mentioned earlier, having more potential parallelism than cores can also help performance
when the cores support hardware multithreading. For example, if pointer-chasing code using depen-
dent memory reads cannot be avoided, then additional parallelism can enable hardware-multithreading
to hide the latency of the memory reads. However, if additional parallelism is used for this purpose,
the total working set needs to be considered so that the cache size is not exceeded for all concurrently
active threads. If parallelism is increased for this purpose, the grain size might have to be reduced for
best performance.

2.4.3 Flynn’s Characterization
One way to coarsely characterize the parallelism available in processor types is by how they com-
bine control flow and data management. A classic categorization by Flynn [Fly72] divides parallel
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processors into categories based on whether they have multiple flows of control, multiple streams of
data, or both.

• Single Instruction, Single Data (SISD): This is just a standard non-parallel processor. We usually
refer to this as a scalar processor. Due to Amdahl’s Law (discussed in Section 2.5.4), the
performance of scalar processing is important; if it is slow it can end up dominating performance.

• Single Instruction, Multiple Data (SIMD): A single operation (task) executes simultaneously on
multiple elements of data. The number of elements in a SIMD operation can vary from a small
number, such as the 4 to 16 elements in short vector instructions, to thousands, as in streaming
vector processors. SIMD processors are also known as array processors, since they consist of an
array of functional units with a shared controller.

• Multiple Instruction, Multiple Data (MIMD): Separate instruction streams, each with its own
flow of control, operate on separate data. This characterizes the use of multiple cores in a single
processor, multiple processors in a single computer, and multiple computers in a cluster. When
multiple processors using different architectures are present in the same computer system, we say
it is a heterogeneous computer. An example would be a host processor and a co-processor with
different instruction sets.

The last possible combination, MISD, is not particularly useful and is not used.
Another way often used to classify computers is by whether every processor can access a common

shared memory or if each processor can only access memory local to it. The latter case is called
distributed memory. Many distributed memory systems have local shared-memory subsystems. In
particular, clusters are large distributed-memory systems formed by connecting many shared-memory
computers (“nodes”) with a high-speed communication network. Clusters are formed by connecting
otherwise independent systems and so are almost always MIMD systems. Often shared-memory com-
puters really do have physically distributed memory systems; it’s just that the communication used to
create the illusion of shared memory is implicit.

There is another related classification used especially by GPU vendors: Single Instruction, Mul-
tiple Threads (SIMT). This corresponds to a tiled SIMD architecture consisting of multiple SIMD
processors, where each SIMD processor emulates multiple “threads” (fibers in our terminology) using
masking. SIMT processors may appear to have thousands of threads, but in fact blocks of these share
a control processor, and divergent control flow can significantly reduce efficiency within a block. On
the other hand, synchronization between fibers is basically free, because when control flow is emulated
with masking the fibers are always running synchronously.

Memory access patterns can also affect the performance of a processor using the SIMT model.
Typically each SIMD subprocessor in a SIMT machine is designed to use the data from a cache line. If
memory access from different fibers access completely different cache lines, then performance drops
since often the processor will require multiple memory cycles to resolve the memory access. These are
called divergent memory accesses. In contrast, if all fibers in a SIMD core access the same cache lines,
then the memory accesses can be coalesced and performance improved. It is important to note that this
is exactly the opposite of what we want to do if the fibers really were separate threads. If the fibers
were running on different cores, then we want to avoid having them access the same cache line. There-
fore, while code written to use fibers may be implemented using hardware threads on multiple cores,
code properly optimized for fibers will actually be suboptimal for threads when it comes to memory
access.
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2.4.4 Evolution
Predictions are very difficult, especially about the future.

(Niels Bohr)

Computers continue to evolve, although the fundamentals of parallelism and data locality will continue
to be important. An important recent trend is the development of attached processing such as graphics
accelerators and co-processors specialized for highly parallel workloads.

Graphics accelerators are also known as GPUs. While originally designed for graphics, GPUs have
become general-purpose enough to be used for other computational tasks.

In this book we discuss, relatively briefly, a standard language and application programming
interface (API) called OpenCL for programming many-core devices from multiple vendors, including
GPUs. GPUs from NVIDIA can also be programmed with a proprietary language called CUDA. For
the most part, OpenCL replicates the functionality of CUDA but provides the additional benefit of
portability. OpenCL generalizes the idea of computation on a GPU to computation on multiple types
of attached processing. With OpenCL, it is possible to write a parallel program that can run on the
main processor, on a co-processor, or on a GPU. However, the semantic limitations of the OpenCL
programming model reflect the limitations of GPUs.

Running computations on an accelerator or co-processor is commonly referred to as offload. As
an alternative to OpenCL or CUDA, several compilers (including the Intel compiler) now support
offload pragmas to move computations and data to an accelerator or co-processor with minimal code
changes. Offload pragmas allow annotating the original source code rather than rewriting the “kernels”
in a separate language, as with OpenCL. However, even with an offload pragma syntax, any code being
offloaded still has to fit within the semantic limitations of the accelerator or co-processor to which it
is being offloaded. Limitations of the target may force multiple versions of code. For example, if the
target processor does not support recursion or function pointers, then it will not be possible to offload
code that uses these language features to that processor. This is true even if the feature is being used
implicitly. For example, the “virtual functions” used to support C++ class inheritance use function
pointers in their implementation. Without function pointer support in the target hardware it is therefore
not possible to offload general C++ code.

Some tuning of offloaded code is also usually needed, even if there is a semantic match. For
example, GPUs are designed to handle large amounts of fine-grained parallelism with relatively small
working sets and high coherence. Unlike traditional general-purpose CPUs, they have relatively small
on-chip memories and depend on large numbers of active threads to hide latency, so that data can
be streamed in from off-chip memory. They also have wide vector units and simulate many fibers
(pseudo-threads) at once using masking to emulate control flow.

These architectural choices can be good tradeoffs for certain types of applications, which has given
rise to the term heterogeneous computing: the idea that different processor designs are suitable for
different kinds of workloads, so a computer should include multiple cores of different types. This
would allow the most efficient core for a given application, or stage of an application, to be used. This
concept can be extended to even more specialized hardware integrated into a processor, such as video
decoders, although usually it refers to multiple types of programmable processor.

GPUs are not the only offload device available. It is also possible to use programmable hardware
such as field programmable gate arrays (FPGAs) and co-processors made of many-core processors,



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 54 — #54

54 CHAPTER 2 Background

such as the Intel MIC (Many Integrated Cores) architecture. While the MIC architecture can be pro-
grammed with OpenCL, it is also possible to use standard CPU programming models with it. However,
the MIC architecture has many more cores than most CPUs (over 50), and each core has wide vector
units (16 single-precision floats). This is similar in some ways to GPU architectures and enables high
peak floating point performance. The tradeoff is that cache size per core is reduced, so it is even more
important to have good data locality in implementations.

However, the main difference between MIC and GPUs is in the variety of programming models
supported: The MIC is a general-purpose processor running a standard operating system (Linux) with
full compiler support for C, C++, and Fortran. It also appears as a distributed-memory node on the
network. The MIC architecture is therefore not limited to OpenCL or CUDA but can use any program-
ming model (including, for instance, MPI) that would run on a mainstream processor. It also means that
offload pragma syntax does not have to be limited by semantic differences between the host processor
and the target processor.

Currently, GPUs are primarily available as discrete devices located on the PCIe bus and do not
share memory with the host. This is also the current model for the MIC co-processor. However, this
model has many inefficiencies, since data must be transferred across the PCIe bus to a memory local
to the device before it can be processed.

As another possible model for integrating accelerators or co-processors within a computer system,
GPUs cores with their wide vector units have been integrated into the same die as the main proces-
sor cores by both AMD and Intel. NVIDIA also makes integrated CPU/GPU processors using ARM
main cores for the embedded and mobile markets. For these, physical memory is shared by the GPU
and CPU processors. Recently, APIs and hardware support have been rapidly evolving to allow data
sharing without copying. This approach will allow much finer-grained heterogeneous computing, and
processors may in fact evolve so that there are simply multiple cores with various characteristics on
single die, not separate CPUs, GPUs, and co-processors.

Regardless of whether a parallel program is executed on a CPU, a GPU, or a many-core
co-processor, the basic requirements are the same: Software must be designed for a high level of par-
allelism and with good data locality. Ultimately, these processor types are not that different; they just
represent different points on a design spectrum that vary in the programming models they can support
most efficiently.

2.5 PERFORMANCE THEORY
The primary purpose of parallelization, as discussed in this book, is performance. So what is
performance? Usually it is about one of the following:

• Reducing the total time it takes to compute a single result (latency; Section 2.5.1)
• Increasing the rate at which a series of results can be computed (throughput; Section 2.5.1)
• Reducing the power consumption of a computation (Section 2.5.3)

All these valid interpretations of “performance” can be achieved by parallelization.
There is also a distinction between improving performance to reduce costs or to meet a deadline.

To reduce costs, you want to get more done within a fixed machine or power budget and usually are
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not willing to increase the total amount of computational work. Alternatively, to meet a deadline, you
might be willing to increase the total amount of work if it means the jobs gets done sooner. For instance,
in an interactive application, you might need to complete work fast enough to meet a certain frame rate
or response time. In this case, extra work such as redundant or speculative computation might help
meet the deadline. Choose such extra work with care, since it may actually decrease performance, as
discussed in Section 2.5.6.

Once you have defined a performance target, then generally you should iteratively modify an
application to improve its performance until the target is reached. It is important during this opti-
mization process to start from a working implementation and validate the results after every program
transformation. Fast computation of wrong answers is pointless, so continuous validation is strongly
recommended to avoid wasting time tuning a broken implementation.

Validation should be given careful thought, in light of the original purpose of the program. Obtain-
ing results “bit identical” to the serial program is sometimes unrealistic if the algorithm needs to be
modified to support parallelization. Indeed, the parallel program’s results, though different, may be as
as good for the overall purpose as the original serial program, or even better.

During the optimization process you should measure performance to see if you are making progress.
Performance can be measured empirically on real hardware or estimated using analytic models based
on ideal theoretical machines. Both approaches are valuable. Empirical measures account for real-
world effects but often give little insight into root causes and therefore offer little guidance as to how
performance could be improved or why it is limited. Analytic measures, particularly the work-span
model explained in Section 2.5.6, ignore some real-world effects but give insight into the fundamental
scaling limitations of a parallel algorithm. Analytic approaches also allow you to compare paralleliza-
tion strategies at a lower cost than actually doing an implementation. We recommend using analytic
measures to guide selection of an algorithm, accompanied by “back of the envelope” estimates of plau-
sibility. After an algorithm is implemented, use empirical measures to understand and deal with effects
ignored by the analytic model.

2.5.1 Latency and Throughput
The time it takes to complete a task is called latency. It has units of time. The scale can be anywhere
from nanoseconds to days. Lower latency is better.

The rate a which a series of tasks can be completed is called throughput. This has units of work per
unit time. Larger throughput is better. A related term is bandwidth, which refers to throughput rates
that have a frequency-domain interpretation, particularly when referring to memory or communication
transactions.

Some optimizations that improve throughput may increase the latency. For example, processing
of a series of tasks can be parallelized by pipelining, which overlaps different stages of processing.
However, pipelining adds overhead since the stages must now synchronize and communicate, so the
time it takes to get one complete task through the whole pipeline may take longer than with a simple
serial implementation.

Related to latency is response time. This measure is often used in transaction processing systems,
such as web servers, where many transactions from different sources need to be processed. To maintain
a given quality of service each transaction should be processed in a given amount of time. However,
some latency may be sacrificed even in this case in order to improve throughput. In particular, tasks
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may be queued up, and time spent waiting in the queue increases each task’s latency. However, queuing
tasks improves the overall utilization of the computing resources and so improves throughput and
reduces costs.

“Extra” parallelism can also be used for latency hiding. Latency hiding does not actually reduce
latency; instead, it improves utilization and throughput by quickly switching to another task whenever
one task needs to wait for a high-latency activity. Section 2.5.9 says more about this.

2.5.2 Speedup, Efficiency, and Scalability
Two important metrics related to performance and parallelism are speedup and efficiency. Speedup
compares the latency for solving the identical computational problem on one hardware unit (“worker”)
versus on P hardware units:

speedup = SP = T1

TP
(2.1)

where T1 is the latency of the program with one worker and TP is the latency on P workers.
Efficiency is speedup divided by the number of workers:

efficiency = SP

P
= T1

PTP
. (2.2)

Efficiency measures return on hardware investment. Ideal efficiency is 1 (often reported as 100%),
which corresponds to a linear speedup, but many factors can reduce efficiency below this ideal.

If T1 is the latency of the parallel program running with a single worker, Equation 2.1 is sometimes
called relative speedup, because it shows relative improvement from using P workers. This uses a
serialization of the parallel algorithm as the baseline. However, sometimes there is a better serial algo-
rithm that does not parallelize well. If so, it is fairer to use that algorithm for T1, and report absolute
speedup, as long as both algorithms are solving an identical computational problem. Otherwise, using
an unnecessarily poor baseline artificially inflates speedup and efficiency.

In some cases, it is also fair to use algorithms that produce numerically different answers, as long
as they solve the same problem according to the problem definition. In particular, reordering floating
point computations is sometimes unavoidable. Since floating point operations are not truly associative,
reordering can lead to differences in output, sometimes radically different if a floating point comparison
leads to a divergence in control flow. Whether the serial or parallel result is actually more accurate
depends on the circumstances.

Speedup, not efficiency, is what you see in advertisements for parallel computers, because speedups
can be large impressive numbers. Efficiencies, except in unusual circumstances, do not exceed 100%
and often sound depressingly low. A speedup of 100 sounds better than an efficiency of 10%, even if
both are for the same program and same machine with 1000 cores.

An algorithm that runs P times faster on P processors is said to exhibit linear speedup. Linear
speedup is rare in practice, since there is extra work involved in distributing work to processors and
coordinating them. In addition, an optimal serial algorithm may be able to do less work overall than an
optimal parallel algorithm for certain problems, so the achievable speedup may be sublinear in P, even
on theoretical ideal machines. Linear speedup is usually considered optimal since we can serialize
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the parallel algorithm, as noted above, and run it on a serial machine with a linear slowdown as a
worst-case baseline.

However, as exceptions that prove the rule, an occasional program will exhibit superlinear
speedup—an efficiency greater than 100%. Some common causes of superlinear speedup include:

• Restructuring a program for parallel execution can cause it to use cache memory better, even when
run on with a single worker! But if T1 from the old program is still used for the speedup calculation,
the speedup can appear to be superlinear. See Section 10.5 for an example of restructuring that often
reduces T1 significantly.

• The program’s performance is strongly dependent on having a sufficient amount of cache memory,
and no single worker has access to that amount. If multiple workers bring that amount to bear,
because they do not all share the same cache, absolute speedup really can be superlinear.

• The parallel algorithm may be more efficient than the equivalent serial algorithm, since it may be
able to avoid work that its serialization would be forced to do. For example, in search tree problems,
searching multiple branches in parallel sometimes permits chopping off branches (by using results
computed in sibling branches) sooner than would occur in the serial code.

However, for the most part, sublinear speedup is the norm.
Section 2.5.4 discusses an important limit on speedup: Amdahl’s Law. It considers speedup as P

varies and the problem size remains fixed. This is sometimes called strong scalability. Section 2.5.5
discusses an alternative, Gustafson-Barsis’ Law, which assumes the problem size grows with P.
This is sometimes called weak scalability. But before discussing speedup further, we discuss another
motivation for parallelism: power.

2.5.3 Power
Parallelization can reduce power consumption. CMOS is the dominant circuit technology for current
computer hardware. CMOS power consumption is the sum of dynamic power consumption and static
power consumption [VF05]. For a circuit supply voltage V and operating frequency f , CMOS dynamic
power dissipation is governed by the proportion

Pdynamic / V2f .

The frequency dependence is actually more severe than the equation suggests, because the highest
frequency at which a CMOS circuit can operate is roughly proportional to the voltage. Thus dynamic
power varies as the cube of the maximum frequency. Static power consumption is nominally inde-
pendent of frequency but is dependent on voltage. The relation is more complex than for dynamic
power, but, for sake of argument, assume it varies cubically with voltage. Since the necessary volt-
age is proportional to the maximum frequency, the static power consumption varies as the cube of the
maximum frequency, too. Under this assumption we can use a simple overall model where the total
power consumption varies by the cube of the frequency.

Suppose that parallelization speeds up an application by 1.5⇥ on two cores. You can use this
speedup either to reduce latency or reduce power. If your latency requirement is already met, then
reducing the clock rate of the cores by 1.5⇥ will save a significant amount of power. Let P1 be the
power consumed by one core running the serial version of the application. Then the power consumed
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Table 2.1 Running Fewer Cores Faster [Cor11c].

The table shows how the maximum core frequency for

an Intel core i5-2500T chip depends on the number

of active cores. The last column shows the parallel

efficiency over all four cores required to match the

speed of using only one active core.

Active Cores Maximum
Frequency (GHz)

Breakeven
Efficiency

4 2.4 34%
3 2.8 39%
2 3.2 52%
1 3.3 100%

by two cores running the parallel version of the application will be given by:

P2 = 2
✓

1
1.5

◆3

P1

⇡ 0.6P1,

where the factor of 2 arises from having two cores. Using two cores running the parallelized version
of the application at the lower clock rate has the same latency but uses (in this case) 40% less power.

Unfortunately, reality is not so simple. Current chips have so many transistors that frequency and
voltage are already scaled down to near the lower limit just to avoid overheating, so there is not much
leeway for raising the frequency. For example, Intel Turbo Boost Technology enables cores to be put
to sleep so that the power can be devoted to the remaining cores while keeping the chip within its
thermal design power limits. Table 2.1 shows an example. Still, the table shows that even low parallel
efficiencies offer more performance on this chip than serial execution.

Another way to save power is to “race to sleep” [DHKC09]. In this strategy, we try to get the
computation done as fast as possible (with the lowest latency) so that all the cores can be put in a sleep
state that draws very little power. This approach is attractive if a significant fraction of the wakeful
power is fixed regardless of how many cores are running.

Especially in mobile devices, parallelism can be used to reduce latency. This reduces the time the
device, including its display and other components, is powered up. This not only improves the user
experience but also reduces the overall power consumption for performing a user’s task: a win-win.

2.5.4 Amdahl’s Law
. . . the effort expended on achieving high parallel processing rates is wasted unless it is accompanied
by achievements in sequential processing rates of very nearly the same magnitude.

(Gene Amdahl [Amd67])
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Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP 
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f )T1.

Substitute these into Equation 2.3 and simplify to get:

SP  1
f + (1 � f )/P

. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.
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Now consider what happens when P tends to infinity:

S1  1
f

. (2.5)

Speedup is limited by the fraction of the work that is not parallelizable, even using an infinite number
of processors. If 10% of the application cannot be parallelized, then the maximum speedup is 10⇥.
If 1% of the application cannot be parallelized, then the maximum speedup is 100⇥. In practice, an
infinite number of processors is not available. With fewer processors, the speedup may be reduced,
which gives an upper bound on the speedup. Amdahl’s Law is graphed in Figure 2.5, which shows the
bound for various values of f and P. For example, observe that even with f = 0.001 (that is, only 0.1%
of the application is serial) and P = 2048, a program’s speedup is limited to 672⇥. This limitation on
speedup can also be viewed as inefficient use of parallel hardware resources for large serial fractions,
as shown in Figure 2.6.

2.5.5 Gustafson-Barsis’ Law
. . . speedup should be measured by scaling the problem to the number of processors, not by fixing the
problem size.

(John Gustafson [Gus88])

Amdahl’s Law views programs as fixed and the computer as changeable, but experience indicates
that as computers get new capabilities, applications change to exploit these features. Most of today’s

672Serial
fraction
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1
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1 2 4 8 16 32 64 128 256 512 1024 2048

Number of workers

Speedup
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1%

10%

30%

50%

FIGURE 2.5

Amdahl’s Law: speedup. The scalability of parallelization is limited by the non-parallelizable (serial) portion of
the workload. The serial fraction is the percentage of code that is not parallelized.
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FIGURE 2.6

Amdahl’s Law: efficiency. Even when speedups are possible, the efficiency can easily become poor. The serial
fraction is the percentage of code that is not parallelized.

applications would not run on computers from 10 years ago, and many would run poorly on machines
that are just 5 years old. This observation is not limited to obvious applications such as games; it
applies also to office applications, web browsers, photography software, DVD production and editing
software, and Google Earth.

More than two decades after the appearance of Amdahl’s Law, John Gustafson2 noted that several
programs at Sandia National Labs were speeding up by over 1000⇥. Clearly, Amdahl’s Law could be
evaded.

Gustafson noted that problem sizes grow as computers become more powerful. As the problem
size grows, the work required for the parallel part of the problem frequently grows much faster than
the serial part. If this is true for a given application, then as the problem size grows the serial fraction
decreases and speedup improves.

Figure 2.7 visualizes this using the assumption that the serial portion is constant while the parallel
portion grows linearly with the problem size. On the left is the application running with one worker. As
workers are added, the application solves bigger problems in the same time, not the same problem in
less time. The serial portion still takes the same amount of time to perform, but diminishes as a fraction
of the whole. Once the serial portion becomes insignificant, speedup grows practically at the same rate
as the number of processors, thus achieving linear speedup.

2His paper gives credit to E. Barsis, hence we call it Gustafson-Barsis’ Law. It is sometimes called just Gustafson’s Law.
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FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T1.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P = 1 and P = 1 are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T1 is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of
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FIGURE 2.8

Work and span. Arrows denote dependencies between tasks. Work is the total amount of computation, while
span is given by the critical path. In this example, if each task takes unit time, the work is 18 and the span is 6.

tasks that must be evaluated one after the other contains 6 tasks.
Work and span each put a limit on speedup. Superlinear speedup is impossible in the work-span

model:

SP = T1

TP
 T1

T1/P
= P. (2.6)

On an ideal machine with greedy scheduling, adding processors never slows down an algorithm:

SP = T1

TP
 T1

T1
. (2.7)

Or more colloquially:

speedup  work
span

.

For example, the speedup for Figure 2.8 can never exceed 3, because T1/T1 = 18/6 = 3. Real
machines introduce synchronization overhead, not only for the synchronization constructs themselves,
but also for communication. A span that includes these overheads is called a burdened span [HLL10].

The span provides more than just an upper bound on speedup. It can also be used to estimate a lower
bound on speedup for an ideal machine. An inequality known as Brent’s Lemma [Bre74] bounds TP
in terms of the work T1 and the span T1:

TP  (T1 � T1)/P + T1. (2.8)

Here is the argument behind the lemma. The total work T1 can be divided into two categories:
perfectly parallelizable work and imperfectly parallelizable work. The imperfectly parallelizable work
takes time T1 no matter how many workers there are. The perfectly parallelizable work remaining
takes time T1 � T1 with a single worker, and since it is perfectly parallelizable it speeds up by P if
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FIGURE 2.9

Amdahl was an optimist. Using the work and span of Figure 2.8, this graph illustrates that the upper bound by
Amdahl’s Law is often much higher than what work-span analysis reveals. Furthermore, work-span analysis
provides a lower bound for speedup, too, assuming greedy scheduling on an ideal machine.

all P workers are working on it. But if not all P workers are working on it, then at least one worker
is working on the T1 component. The argument resembles Amdahl’s argument, but generalizes the
notion of an inherently serial portion of work to imperfectly parallelizable work.

Though the argument resembles Amdahl’s argument, it proves something quite different. Amdahl’s
argument put a lower bound on TP and is exact only if the parallelizable portion of a program is
perfectly parallelizable. Brent’s Lemma puts an upper bound on TP. It says what happens if the worst
possible assignment of tasks to workers is chosen.

In general, work-span analysis is a far better guide than Amdahl’s Law, because it usually provides
a tighter upper bound and also provides a lower bound. Figure 2.9 compares the bounds given by
Amdahl’s Law and work-span analysis for the task graph in Figure 2.8. There are 18 tasks. The first
and last tasks constitute serial work; the other tasks constitute parallelizable work. Hence, the fraction
of serial work is 2/18 = 1/9. By Amdahl’s Law, the limit on speedup is 9. Work-span analysis says the
speedup is limited by the min(P,T1/T1) = min(P,18/6), which is at most 3, a third of what Amdahl’s
law indicates. The difference is that the work-span analysis accounted for how parallelizable the par-
allel work really is. The bottom curve in the figure is the lower bound provided by Brent’s lemma.
It says, for example, that with 4 workers a speedup of 2 is guaranteed, no matter how the tasks are
assigned to workers.

Brent’s Lemma leads to a useful formula for estimating TP from the work T1 and span T1. To get
much speedup, T1 must be significantly larger than T1, In this case, T1 � T1 ⇡ T1 and the right side
of 2.8 also turns out to be a good lower bound estimate on TP. So the following approximation works
well in practice for estimating running time:

TP ⇡ T1/P + T1 if T1 ⌧ T1. (2.9)
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The approximation says a lot:

• Increasing the total work T1 hurts parallel execution proportionately.
• The span T1 impacts scalability, even when P is finite.

When designing a parallel algorithm, avoid creating significantly more work for the sake of paral-
lelization, and focus on reducing the span, because the span is the fundamental asymptotic limit on
scalability. Increase the work only if it enables a drastic decrease in span. An example of this is the
scan pattern, where the span can be reduced from linear to logarithmic complexity by doubling the
work (Section 8.11).

Brent’s Lemma also leads to a formal motivation for overdecomposition. From Equation 2.8 the
following condition can be derived:

SP = T1/TP ⇡ P if T1/T1 � P. (2.10)

It says that greedy scheduling achieves linear speedup if a problem is overdecomposed to create much
more potential parallelism than the hardware can use. The excess parallelism is called the parallel
slack, and is defined by:

parallel slack = S1
P

= T1

PT1
(2.11)

In practice, a parallel slack of at least 8 works well.
If you remember only one thing about time estimates for parallel programs, remember Equation 2.9.

From it, you can derive performance estimates just by knowing the work T1 and span T1 of an
algorithm. However, this formula assumes the following three important qualifications:

• Memory bandwidth is not a limiting resource.
• There is no speculative work. In other words, the parallel code is doing T1 total work, period.
• The scheduler is greedy.

The task schedulers in Intel Cilk Plus and Intel TBB are close enough to greedy that you can use the
approximation as long as you avoid locks. Locks make scheduling non-greedy, because a worker can
get stuck waiting to acquire a contended lock while there is other work to do. Making performance
predictable by Equation 2.9 is another good reason to avoid locks. Another trait that can make a sched-
uler non-greedy is requiring that certain tasks run on certain cores. In a greedy scheduler, if a core is
free it should immediately be able to start work on any available task.

2.5.7 Asymptotic Complexity
Asymptotic complexity is the key to comparing algorithms. Comparing absolute times is not partic-
ularly meaningful, because they are specific to particular hardware. Asymptotic complexity reveals
deeper mathematical truths about algorithms that are independent of hardware.

In a serial setting, the time complexity of an algorithm summarizes how the execution time of
algorithm grows with the input size. The space complexity similarly summarizes how the amount of
memory an algorithm requires grows with the input size. Both these complexity measures ignore con-
stant factors, because those depend on machine details such as instruction set or clock rate. Complexity
measures instead focus on asymptotic growth, which is independent of the particular machine and thus
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permit comparison of different algorithms without regard to particular hardware. For sufficiently large
inputs, asymptotic effects will dominate any constant factor advantage.

Asymptotic time complexity computed from the work-span model is not perfect as a tool for pre-
dicting performance. The standard work-span model considers only computation, not communication
or memory effects. Still, idealizations can be instructive, such as the ideal massless pulleys and fric-
tionless planes encountered in physics class. Asymptotic complexity is the equivalent idealization for
analyzing algorithms; it is a strong indicator of performance on large-enough problem sizes and reveals
an algorithm’s fundamental limits.

Here is a quick reminder of asymptotic complexity notation [Knu76]:

• The “big O notation” denotes a set of functions with an upper bound. O( f (N)) is the set of all
functions g(N) such that there exist positive constants c and N0 with |g(N)|  c · f (N) for N � N0.

• The “big Omega notation” denotes a set of functions with an lower bound. �( f (N)) is the set of
all functions g(N) such that there exist constants c and N0 with g(N) � c · f (N) for N � N0.

• The “big Theta notation” denotes a set of functions with both upper and lower bounds. 2( f (N))

means the set of all functions g(N) such that there exist positive constants c1, c2, and N0 with
c1 · f (N)  g(N)  c2 · f (N) for N � N0.

We follow the traditional abuse of “=” in complexity notation to mean, depending on context, set
membership or set inclusion. The “equality” T(N) = O( f (N)) really means the membership T(N) 2
O( f (N)). That is equivalent to saying T(N) is bounded from above by c · f (N) for sufficiently large
c and N. Similarly, the “equality” O( f (N)) = O(h(N)) really means the set inclusion O( f (N)) ✓
O(h(N)). So when we write T(N) = O(N2) = O(N3), we really mean T(N) 2 O(N2) ✓ O(N3), but the
latter would depart from tradition.

In asymptotic analysis of serial programs, “O” is most common, because the usual intent is to prove
an upper bound on a program’s time or space. For parallel programs, “2” is often more useful, because
you often need to prove that a ratio, such as a speedup, is above a lower bound, and this requires
computing a lower bound on the numerator and an upper bound on the denominator. For example,
you might need to prove that using P workers makes a parallel algorithm run at least

p
P times faster

than the serial version. That is, you want a lower bound (“�”) on the speedup. That requires proving a
lower bound (“�”) on the serial time and an upper bound (“O”) on the parallel time. When computing
speedup, the parallel time appears in the denominator and the serial time appears in the numerator.
A larger parallel time reduces speedup while a larger serial time increases speedup. However, instead
of dealing with separate bounds like this for each measure of interest, it is often easier to deal with the
“2” bound.

For a simple example of parallel asymptotic complexity, consider computing the dot product of two
vectors of length N with P workers. This can be done by partitioning the vectors among the P workers
so each computes a dot product of length N/P. These subproducts can be summed in a tree-like fashion,
with a tree height of lgP, assuming that P  N. Note that we use lg for the base 2 logarithm. Hence,
the asymptotic running time is:

TP(N) = 2(N/P + lgP). (2.12)

For now, consider what that equation says. As long as lgp is insignificant compared to N/P:

• For fixed P, doubling the input size doubles the time.
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• For fixed N, doubling the number of workers halves the execution time.
• Doubling both the input size and workers keeps the execution time about the same. In other words,

the code exhibits weak scaling.

The equation also warns you that if lgP is not insignificant compared to N, doubling the workers will
not halve the execution time.

2.5.8 Asymptotic Speedup and Efficiency
Speedup and efficiency can be treated asymptotically as well, using a ratio of 2 complexities. For the
previous dot product example, the asymptotic speedup is:

T1

TP
= 2(N)

2(N/P + lgP)

= 2

✓
N

N/P + lgP

◆
.

When lgP is insignificant compared to N, the asymptotic speedup is 2(P). The asymptotic efficiency
is:

T1

P · TP
= 2

✓
N

N + P lgP

◆
. (2.13)

When N = 2(P lgP), the asymptotic efficiency is 2(1). Note that extra lgP factor. Merely scaling up
the input by a factor of P is not enough to deliver 2(1) weak scaling as P grows.

Remember that if there is a better serial algorithm that does not parallelize well, it is fairer to use
that algorithm for T1 when comparing algorithms. Do not despair if a parallelized algorithm does not
get near 100% parallel efficiency, however. Few algorithms do. Indeed, an efficiency of 2(1/

p
P) is

“break even” in a sense. At the turn of the century, speed improvements from adding transistors were
diminishing, to the point where serial computer speed was growing as the square root of the number
of transistors on a chip. So if the transistors for P workers were all devoted to making a single super-
worker faster, that super-worker would speed up by about

p
P. That’s an efficiency of only 1/

p
P. So

if your efficiency is significantly better than 1/
p

P, your algorithm really is still benefitting from the
parallel revolution.

2.5.9 Little’s Formula
Little’s formula relates the throughput and latency of a system to its concurrency. Consider a system
in steady state that has items to be processed arriving at regular intervals, where the desired throughput
rate is R items per unit time, the latency to process each item is L units of time, and the number of
items concurrently in the system is C. Little’s formula states the following relation between these three
quantities:

C = R · L. (2.14)

Concurrency is similar but not identical to parallelism. In parallelism, all work is going on at the same
time. Concurrency is the total number of tasks that are in progress at the same time, although they may
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not all be running simultaneously. Concurrency is a more general term that includes actual parallelism
but also simulated parallelism, for example by time-slicing on a scalar processor.

Extra concurrency can be used to improve throughput when there are long latency operations in
each task. For example, memory reads that miss in cache can take a long time to complete, relative
to the speed at which the processor can execute instructions. While the processor is waiting for such
long-latency operations to complete, if there is other work to do, it can switch to other tasks instead
of just waiting. The same concept can be used to hide the latency of disk transactions, but since the
latency is so much higher for disk transactions correspondingly more parallelism is needed to hide it.

Suppose a core executes 1 operation per clock, and each operation waits on one memory access
with a latency L of 3 clocks. The latency is fully hidden when there are C = R · L = 1 · 3 operations
in flight. To be in flight simultaneously, those operations need to be independent. Hardware often tries
to detect such opportunities in a single thread, but often there are not enough to reach the desired
concurrency C. Hardware multithreading can be used to increase the number of operations in flight, if
the programmer specifies sufficient parallelism to keep the hardware threads busy. Most famously, the
Tera MTA had 128 threads per processor, and each thread could have up to 8 memory references in
flight [SCB+98]. That allowed it to hide memory latency so well that its designers eliminated caches
altogether!

The bottom line is that parallelizing to hide latency and maximize throughput requires over-
decomposing a problem to generate extra concurrency per physical unit.

Be warned, however, that hardware multithreading can worsen latency in some cases. The problem
is that the multiple threads typically share a fixed-size cache. If n of these threads access disjoint sets
of memory locations, each gets a fraction 1/n of the cache. If the concurrency is insufficient to fully
hide the latency of the additional cache misses, running a single thread might be faster.

2.6 PITFALLS
Parallel programming entails additional pitfalls any time there are dependencies between parallel tasks.
Dependencies between parallel tasks require synchronization. Too little synchronization can lead to
non-deterministic behavior. Too much synchronization can unnecessarily limit scaling, or worse yet,
cause deadlock.

2.6.1 Race Conditions
A race condition occurs when concurrent tasks perform operations on the same memory location
without proper synchronization, and one of the memory operations is a write. Code with a race may
operate correctly sometimes but fail unpredictably at other times. Consider the code in Table 2.2, where
two tasks attempt to add 1 and 2 respectively to a shared variable X. The intended net effect is likely
to be X += 3. But because of the lack of synchronization, two other net effects are possible: X += 1
or X += 2. To see how one of the updates could be lost, consider what happens if both tasks read X
before either one writes to it. When the writes to X occur, the effect of the first write will be lost when
the second write happens. Eliminating temporary variables and writing X += 1 and Y += 1 does not
help, because the compiler might generate multiple instructions anyway, or the hardware might even
break += into multiple operations.
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Table 2.2 Two tasks race to update

shared variable X. Interleaving can

cause one of the updates to be lost.

Task A Task B
a = X; b = X;

a += 1; b += 2;

X = a; X = b;

Table 2.3 Race not explainable by serial

interleaving. Assume that X and Y are initially

zero. After both tasks complete, both a and b
can be zero, even though such an outcome

is impossible by serial interleaving of the

instruction streams.

Task A Task B
X = 1; Y = 1;

a = Y; b = X;

Race conditions are pernicious because they do not necessarily produce obvious failures and yet
can lead to corrupted data [Adv10, Boe11]. If you are unlucky, a program with a race can work fine
during testing but fail once it is in the customer’s hands. Races are not limited to memory locations.
They can happen with files and I/O too. For example, if two tasks try to print Hello at the same time,
the output might look like HeHelllloo.

Surprisingly, analyzing all possible interleaving of instructions is not enough to predict the outcome
of a race, because different hardware threads may see the same events occur in different orders. The
cause is not relativistic physics, but the memory system. However, the effects can be equally counterin-
tuitive. Table 2.3 shows one such example. It is representative of the key part of certain synchronization
algorithms. Assume that X and Y are initially zero. After tasks A and B execute the code, what are the
possible values for a and b? A naive approach is to assume sequential consistency, which means that
the instructions behave as if they were interleaved in some serial order. Figure 2.10 summarizes the
possible interleavings. The first two graphs show two possible interleavings. The last graph shows a
partial ordering that accounts for four interleavings. Below each graph is the final outcome for a and b.

Yet when run on modern hardware, the set of all possible outcomes can also include a = 0 and
b = 0! Modern hardware is often not sequentially consistent. For example, the compiler or hardware
may reorder the operations so that Task A sees Task B read Y before it writes X. Task B may see Task A
similarly reordered. Each task sees that it executed instructions in the correct order and sees the other
task deviate. Table 2.4 shows what the two tasks might see. Both are correct, because there is no global
ordering of operations to different memory locations. There are system-specific ways to stop the com-
piler or hardware from reordering operations, called memory fences [AMSS10, Cor11a, TvPG06], but
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X = 1

Y = 1

Y = 1

Y = 1

a = Y

b = X

a = 1, b = 0 a = 1, b = 1Outcome:

Interleaving:

FIGURE 2.10

All sequentially consistent outcomes of Table 2.3. The graphs summarize all possible interleavings of
instructions from Table 2.3, yet real hardware can deliver the outcome a = 0 and b = 0.

Table 2.4 No global ordering of operations to

different locations. The hardware might reorder the

operations from Table 2.3 so that different tasks

see the operations happen in different orders. In

each view, a task sees its own operations in the

order specified by the original program.

Viewpoint of Task B Viewpoint of Task A
a = Y b = X

b = X a = Y

Y = 1 X = 1

X = 1 Y = 1

these are beyond the scope of this book. Instead, we will emphasize machine-independent techniques
to avoid races altogether.

The discussion here should impress upon you that races are tricky. Fortunately, the patterns in this
book, as well as the programming models we will discuss, let you avoid races and not have to think
about tricky memory ordering issues. This is a good thing because memory ordering is exactly the
kind of thing that is likely to change with future hardware. Depending too much on the low-level
implementation of current memory systems will likely lead to code that will be difficult to port to
future processors.

2.6.2 Mutual Exclusion and Locks
Locks are a low-level way to eliminate races. This section explains what locks are and why they should
be a means of last resort. Perhaps surprisingly, none of the examples in the rest of this book requires a
lock. However, sometimes locks are the best way to synchronize part of a program.
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Table 2.5 Mutex eliminates the race in Table 2.2.

The mutex M serializes updates of X, so neither update

corrupts the other one.

Task A Task B
extern tbb::mutex M; extern tbb::mutex M;

M.lock(); M.lock();

a = X; b = X;

a += 1; b += 2;

X = a; X = b;

M.unlock(); M.unlock();

The race in Table 2.2 can be eliminated by a mutual exclusion region. Using mutual exclusion,
the tasks can coordinate so they take turns updating X, rather than both trying to do it at once. Mutual
exclusion is typically implemented with a lock, often called a mutex. A mutex has two states, locked
and unlocked, and two operations:

Lock: Change the state from unlocked to locked.
Unlock: Change the state from locked to unlocked.

These operations are implemented atomically, meaning that they appear instantaneous to other tasks
and are sequentially consistent.

The lock operation on an already locked mutex must wait until it becomes unlocked. Once a task
completes a lock operation, it is said to own the mutex or hold a lock until it unlocks it. Table 2.5
shows how to use a mutex to remove the race in Table 2.2. Mutex M is presumed to be declared
where X is declared. The lock–unlock operations around the updates of X ensure that the threads take
their turn updating it. Furthermore, the lock–unlock pair of operations demarcate a “cage.” Instruction
reordering is prohibited from allowing instructions inside the cage to appear to execute outside the
cage, preventing counterintuitive surprises. However, be aware that other threads might see instructions
written outside the cage appear to execute inside the cage.

An important point about mutexes is that they should be used to protect logical invariants, not
memory locations. In our example, the invariant is “the value of X is the sum of the values added to it.”
What this means is that the invariant is true outside the mutual exclusion region, but within the region
we may have a sequence of operations that might temporarily violate it. However, the mutex groups
these operations together so they can be treated essentially as a single operation that does not violate
the invariant. Just using a mutex around each individual read or write would protect the memory loca-
tion, but not the invariant. In particular, such an arrangement might expose temporary states in which
the invariant is violated. In more complex examples, such as with data structures, a mutex protects an
invariant among multiple locations. For example, a mutex protecting a linked list might protect the
invariant “the next field of each element points to the next element in the list.” In such a scheme, any
time a task traverses the list, it must first lock the mutex; otherwise, it might walk next fields under
construction by another task.
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2.6.3 Deadlock
Deadlock occurs when at least two tasks wait for each other and each cannot resume until the other
task proceeds. This happens easily when code requires locking of multiple mutexes at once. If Task A
needs to lock mutexes M and N, it might lock M first and then try to lock N. Meanwhile, if Task B needs
the same two locks but locks N first and then tries to lock M, both A and B will wait forever if the timing
is such that each performs the first locking operation before attempting the second. This situation is
called deadlock. The impasse can be resolved only if one task releases the lock it is holding.

There are several ways to avoid deadlock arising from mutexes:

Avoid mutexes when possible. Consider replicating the resource protected by the mutex. Alterna-
tively, synchronize access to it using a higher-level pattern. For example, Section 12.2 shows
how to use tbb::pipeline to serialize access to input and output files without any mutexes.
In Intel Cilk Plus, hyperobjects (see Section 8.10) often eliminate the need for explicit mutual
exclusion by way of implicit replication. The Intel ArBB programming model uses determinis-
tic data-parallel patterns and manages without locks at all. In some cases, the TBB concurrent
collections, which are based on atomic operations rather than locks, can be used for shared data
structures.

Hold at most one lock at a time. An important corollary of this rule is never call other people’s code
while holding a lock unless you are certain that the other code never acquires a lock.

Always acquire locks on multiple mutexes in the same order. In the earlier example, deadlock is
avoided if Task A and Task B both always try to lock mutex X first before trying to lock mutex Y.

Some common tactics for achieving the “same order” strategy include:

Stratify the mutexes. Assign each mutex a level such that two mutexes on the same level are never
locked at the same time, then always acquire locks in level order. For example, in a tree where there
is a mutex for each tree node, the levels might correspond to levels in a tree.

Sort the mutexes to be locked. If you always know the entire set of locks to be acquired before
acquiring any of them, sort the mutex addresses and acquire the locks in that order. Note: if the
memory allocations are not the same from run to run of the program, which might be accidental
(non-deterministic memory allocation) or intentional (randomization of memory allocations for
increased security), then the order may be different on different runs, complicating debugging and
profiling.

Backoff. When acquiring a set of locks, if any lock cannot be acquired immediately, release all
locks already acquired. This approach requires that the mutex support a “try lock” operation that
immediately returns if the lock cannot be acquired.

Locks are not intrinsically evil. Sometimes they are the best solution to a synchronization problem.
Indeed, TBB provides several kinds of mutexes for use with it and other programming models. But
consider the alternatives to locks and avoid them if you can. If you must use locks, be careful to avoid
situations that can cause deadlock.

Locks are not the only way to stumble into deadlock. Any time you write code that involves “wait
until something happens,” you need to ensure that “something” is not dependent on the current task
doing anything else.
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2.6.4 Strangled Scaling
Deadlock is not the only potential problem arising from synchronization. By definition, a mutex seri-
alizes execution and adds a potential Amdahl bottleneck. When tasks contend for the same mutex,
the impact on scaling can be severe, even worse than if the protected code was serial. Not only
does Amdahl bottleneck come into play, but the status of the protected memory locations must be
communicated between cores, thus adding communication costs not paid by the serial equivalent.

Sometimes when profiling a piece of parallel code, the profiler reports that most of the time is spent
in a lock operation. A common mistake is to blame the implementation of the mutex and say “if only
I had a faster mutex.” The real problem is using the mutex at all. It is just doing its job—serializing
execution.

A mutex is only a potential bottleneck. If tasks rarely contend for the same mutex, the impact of the
mutex on scaling is minor. Indeed, the technique of fine-grain locking replaces a single highly con-
tended lock with many uncontended locks, and this can improve scalability by reducing contention.
For example, each row of a matrix might be protected by a separate mutex, rather than a single
lock for the entire matrix, if there are no invariants across different rows. As long as tasks rarely
contend for the same row, the impact on scaling should be beneficial. Fine grain locking is tricky, how-
ever, and we do not discuss it further in this book. It is sometimes used inside the implementation of
Intel Cilk Plus and Intel TBB, but you do not have to know that. The point is that mutexes can limit
scalability if misused. The high-level patterns in the rest of this book let you avoid mutexes in most
cases.

As a final note, you can sometimes use atomic operations in place of mutexes if the logical invariant
involves a single memory location, and much of the synchronization constructs inside Intel Cilk Plus
and Intel TBB are built with atomic operations. Atomic operations are discussed briefly in Section C.10.

2.6.5 Lack of Locality
Locality is the other key to scaling. Remember that work, span, and communication are the three key
concerns. Locality refers to two bets on future memory accesses after a core accesses a location:

Temporal locality: The core is likely to access the same location again in the near future.
Spatial locality: The core is likely to access nearby locations in the near future.

Having good locality in a program means the hardware can win its bets since the above statements are
more likely to be true. Hardware based on these assumptions being true can reduce communication.
For example, as noted in Section 2.4.1, a memory access pulls an entire cache line (a small block of
memory) around that memory location onto the chip and into the cache. Using the data on that line
repeatedly while the cache line is resident is faster than pulling it in multiple times. To take advantage
of this, programs should be written so they process data thoroughly and completely before moving to
process other data. This increases the number of times the data will be found in cache, and will avoid
reading the same data multiple times from off-chip memory. Cache oblivious algorithms [ABF05]
(Section 8.8) are a formal way of exploiting this principle. Such algorithms are designed to have good
locality at multiple scales, so it does not matter what specific size the cache line is.

Communication is so expensive and computation so cheap that sometimes it pays to increase the
work in exchange for reducing communication. On current hardware, a cache miss can take up to the
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order of a hundred cycles. So it often pays to duplicate trivial calculations rather than try to do them in
one place and share, and there is nascent research into communication avoiding algorithms [GDX08].

2.6.6 Load Imbalance
A load imbalance is the uneven distribution of work across workers. Figure 2.11 shows how load
imbalance can impact scalability. In this figure, the parallel work was broken up into tasks, with one
task per worker. The time taken by the longest-running task contributes to the span, which limits how
fast the parallelized portion can run.

Load imbalance can be mitigated by over-decomposition, dividing the work into more tasks than
there are workers. Like packing suitcases, it is easier to spread out many small items evenly than a few
big items. This is shown in Figure 2.12. Some processors have fewer tasks than others. There is still a
possibility that a very long task will get scheduled at the end of a run, but the parallel slack nonetheless
improves the predictability of parallel execution times.

2.6.7 Overhead
Parallelization introduces additional overhead to launch and synchronize tasks, as shown in
Figure 2.13. This overhead increases both work and span. The additional tasks incurred by overde-
composition tends to increase this overhead, since there is usually a fixed amount of overhead for
managing every task. Making tasks too small can increase execution time and can also decrease arith-
metic intensity. Therefore, there is a tension between providing sufficient overdecomposition to allow
for balancing the load while still making tasks large enough to amortize synchronization overhead and
maximize arithmetic intensity.

Serial work

Parallelizable work

P = 8

Serial work

FIGURE 2.11

Load imbalance. Variation in the execution time of parallel tasks can reduce scalability.

Serial work

Parallelizable work

P = 8

FIGURE 2.12

Overdecomposition can improve load balancing. Subdividing the parallel work into more tasks than workers
permits the scheduler to pack tasks onto workers and improve load balance.
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P = 8
Serial work

Synchronization

Parallel work

FIGURE 2.13

Overhead can reduce scalability. Distributing tasks to workers, starting tasks, and synchronizing completion
adds to execution time. Tree-based schemes can reduce, but not eliminate, this overhead.

Careful synchronization design can reduce overhead, but cannot completely eliminate it. In the
example in Figure 2.13, the overhead for launching and synchronizing a large number of independent
tasks can use a tree structure, so that startup is logarithmic in the number of workers, instead of lin-
ear as would occur if all parallel tasks were launched from one task. This makes the launching and
synchronization time logarithmic in the number of workers rather than linear, but it nonetheless grows
with the number of workers.

2.7 SUMMARY
This chapter covered a lot of theoretical and practical background. Although we do not want to dwell on
computer architecture in this book, we have presented a simple summary of current trends in computer
architecture as a basis for later discussion.

We also discussed many factors related to performance and presented some key definitions, includ-
ing those of latency and throughput. Amdahl’s Law and Gustafson’s Law were presented and give
bounds on performance, but we highly recommend the use of the work-span model for more accuracy.
The work-span model not only accounts for imperfect parallelization but also gives a lower bound as
well as an upper bound on speedup.

We also discussed several pitfalls that can lead to problems in parallel programs, from poor scalabil-
ity to incorrect behavior. Race conditions and deadlock can be avoided with careful design. Assuming
you achieve a correct program, of course you then want it to scale in performance. Scalability can be
difficult to achieve, but here are some key rules of thumb:

• Make the available parallelism scale with the data.
• Keep the span short; avoid adding extra work for parallelism.
• Over-decompose to provide parallel slack.
• Minimize synchronization. Avoid locks.
• Use locality to minimize memory traffic. Be aware that the quantum of memory traffic is a

cache line.
• Exploit both vector and thread parallelism if possible.

The rest of this book is about structured ways to achieve these goals.
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