CHAPTER

Patterns

Patterns have become popular recently as a way of codifying best practices for software engineering
[GHIV95]. While patterns were originally applied to object-oriented software, the basic idea of
patterns—identifying themes and idioms that can be codified and reused to solve specific problems
in software engineering—also applies to parallel programming. In this book, we use the term parallel
pattern to mean a recurring combination of task distribution and data access that solves a specific
problem in parallel algorithm design.

A number of parallel patterns are described in this book. We will characterize and discuss various
algorithms in terms of them. We give each pattern a specific name, which makes it much easier to suc-
cinctly describe, discuss, and compare various parallel algorithms. Algorithms are typically designed
by composing patterns, so a study of patterns provides a high-level “vocabulary” for designing your
own algorithms and for understanding other people’s algorithms.

This chapter introduces all of the patterns discussed in this book in one place. We also introduce
a set of serial patterns for comparison because parallel patterns are often composed with, or gener-
alized from, these serial patterns. The serial patterns we discuss are the foundation of what is now
known as structured programming. This helps make clear that the pattern-based approach to parallel
programming used in this book can, to some extent, be considered an extension of the idea of structured
programming.

It should be emphasized that patterns are universal. They apply to and can be used in any par-
allel programming system. They are not tied to any particular hardware architecture, programming
language, or system. Patterns are, however, frequently embodied as mechanisms or features of partic-
ular systems. Systems, both hardware and software, can be characterized by the parallel patterns they
support. Even if a particular programming system does not directly support a particular pattern it can
usually, but not always, be implemented using other features.

In this book, we focus on patterns that lead to well-structured, maintainable, and efficient programs.
Many of these patterns are in fact also deterministic, which means they give the same result every
time they are executed. Determinism is a useful property since it leads to programs that are easier to
understand, debug, test, and maintain.

We do not claim that we have covered all possible parallel patterns in this book. However, the
patterns approach provides a framework into which you can fit additional patterns. We intend to docu-
ment additional patterns online as a complement to this book, and you might also discover some new
patterns on your own. In our experience many “new’” patterns are in fact variations, combinations, or
extensions of the ones we introduce here. We have focused in this book on the most useful and basic
patterns in order to establish a solid foundation for further development.

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00003-7 79
(© 2012 Elsevier Inc. All rights reserved.

80 CHAPTER 3 Patterns

We also focus on “algorithm strategy” patterns, sometimes called algorithmic skeletons [Col89,
ADO7]. These patterns are specifically relevant to the design of algorithm kernels and often appear as
programming constructs in languages and other systems for expressing parallelism. Patterns have also
been referred to as meotifs and idioms. In more comprehensive pattern languages [MSMO04, ABC+06],
additional patterns and categories of patterns at both higher and lower levels of abstraction are
introduced. The OUR pattern language in particular is quite extensive [Parl1].

We have focused on the class of algorithm strategy patterns because these are useful in the design
of machine-independent parallel algorithms. Algorithm strategy patterns actually have two parts, a
semantics, which is what they accomplish, and an implementation, which is how they accomplish
it. When designing an algorithm, you will often want to think only about the semantics of the pat-
tern. However, when implementing the algorithm, you have to be aware of how to implement the
pattern efficiently. The semantics are machine-independent but on different kinds of hardware there
may be different implementation approaches needed for some of the patterns. We will discuss some
of these low-level implementation issues in later chapters; in this chapter, we focus mostly on the
semantics.

This chapter may seem a little abstract. In order to keep this chapter compact we do not give many
examples of the use of each pattern here, since later chapters will provide many specific examples. If
you would like to see more concrete examples first, we recommend that you skip or skim this chapter
on first reading and come back to read it later.

NESTING PATTERN

The nesting pattern is the fundamental compositional pattern and appears in both serial and parallel
programs. Nesting refers to the ability to hierarchically compose patterns.

The nesting pattern simply means that all “task blocks” in our pattern diagrams are actually loca-
tions within which general code can be inserted. This code can in turn be composed of other patterns.
This concept is demonstrated in Figure 3.1.

Nesting allows other parallel patterns to be composed hierarchically, and possibly recursively. Ide-
ally, patterns can be nested to any depth and the containing pattern should not limit what other patterns
can be used inside it. Not all patterns support nesting. In this book, we focus on patterns that do
support nesting since it is important for creating structured, modular code. In particular, it is hard
to break code into libraries and then compose those libraries into larger programs unless nesting is
supported. Programming models that do not support nesting likewise will have difficulties supporting
modularity.

Figure 3.1 also demonstrates the graphical conventions we use to explain patterns generally. As
previously described in Figure 2.1, tasks, which describe computations, are shown as sharp-cornered
boxes, while data are indicated by round-cornered boxes. Grouped data is indicated by round-cornered
enclosures, and grouped tasks are indicated by sharp-cornered polygonal enclosures. For some patterns
we will introduce additional symbols in the form of various polygonal shapes.

Ordering dependencies are given by arrows. Time goes from top to bottom, and except when repre-
senting iteration we avoid having arrows go upward and therefore “backward” in time. In the absence of

3.1 Nesting Pattern 81

7 7
[
—>Q. = I
LR ==

FIGURE 3.1

Nesting pattern. This is a compositional pattern that allows other patterns to be composed in a hierarchy.

The definition of nesting is that any task block in a pattern can be replaced with a pattern with the same input
and output configuration and dependencies.

such upward arrows, the height of a pattern diagram is a rough indication of the span (see Section 2.5.7)
of a pattern. These graphical conventions are intentionally similar to those commonly associated with
flow-charts.

The nesting pattern basically states that the interior of any “task box” in this notation can be replaced
by any other pattern. Nesting can be static (related to the code structure) or dynamic (recursion, related
to the dynamic function call stack). To support dynamic data parallelism, the latter is preferred, since
we want the amount of parallelism to grow with problem size in order to achieve scalability. If static
nesting is used, then nesting is equivalent to functional decomposition. In that case, nesting is an
organizational structure for modularity but scaling will be achieved by the nested patterns, not by
nesting itself.

Structured serial programming is based on nesting the sequence, selection, iteration, and recur-
sion patterns. Likewise, we define structured parallel programming to be based on the composition
of nestable parallel patterns. In structured serial programming, goto is avoided, since it violates the
orderly arrangement of dependencies given by the nesting pattern. In particular, we want simple entry
and exit points for each subtask and want to avoid jumping out of or into the middle of a task. Likewise,
for “structured parallel programming” you should use only patterns that fit within the nesting pattern
and avoid additional dependencies, both data and control, that break this model.

Nesting, especially when combined with recursion, can lead to large amounts of potential paral-
lelism, also known as parallel slack. This can either be a good thing or a bad thing. For scalability, we
normally want a large amount of parallel slack, as discussed in Section 2.5.

However, hardware resources are finite. It is not a good idea to blindly create threads for all of
the potential parallelism in an application, since this will tend to oversubscribe the system. The imple-
mentation of a programming system that efficiently supports arbitrary nesting must intelligently map
potential parallelism to actual physical parallelism. Since this is difficult, several programming models

82 CHAPTER 3 Patterns

at present support only a fixed number of nesting levels and may even map these levels directly onto
hardware components.

This is unfortunate since composability enables the use of libraries of routines that can be reused in
different contexts. With a fixed hierarchy, you have to be aware at what level of the hierarchy any code
you write will be used. Mapping the hierarchy of the program directly onto the hardware hierarchy
also makes code less future-proofed. When new hardware comes out, it may be necessary to refactor
the hierarchy of patterns to fit the new hardware.

Still, many systems are designed this way, including OpenCL, CUDA, C++ AMP, and to some
extent OpenMP. Some of these programming systems even encode the physical hierarchy directly into
keywords in the language, making future extension to more flexible hierarchies difficult.

In contrast, both Cilk Plus and TBB, discussed in this book, can support arbitrary nesting. At
the same time, these systems can do a good job of mapping potential parallelism to actual physical
parallelism.

STRUCTURED SERIAL CONTROL FLOW PATTERNS

Structured serial programming is based on four control flow patterns: sequence, selection, iteration,
and recursion. Several parallel patterns are generalizations of these. In addition, these can be nested
hierarchically so the compositional “nesting” pattern is also used.

We discuss these in some detail, even though they are familiar, to point out the assumptions that
they make. It is important to understand these assumptions because when we attempt to parallelize
serial programs based on these patterns, we may have to violate these assumptions.

Sequence

A sequence is a ordered list of tasks that are executed in a specific order. Each task is completed before
the one after it starts. Suppose you are given the serial code shown in Listing 3.1. This code corresponds
to Figure 3.2. Function f in line 1 will execute before function g in line 2, which will execute before
function h in line 3. A basic assumption of the sequence pattern is that the program text ordering will
be followed, even if there are no data dependencies between the tasks, so that side effects of the tasks
such as output will also be ordered. For example, if task f outputs “He”, task g outputs “110 ” and
task h outputs “Wor1d”, then the above sequence will output “Hell1o World” even if there were no
explicit dependencies between the tasks.

1 T = f(A);
2 S = g(T);
3 B = h(S);
LISTING 3.1

Serial sequence in pseudocode.

3.2 Structured Serial Control Flow Patterns 83

In Listing 3.2, data dependencies happen to restrict the order to be the same as the texture order.
However, if the code happened to be as shown in Listing 3.2, the sequence pattern would still require
executing g after f, as shown in Figure 3.3, even though there is no apparent reason to do so. This is
so side effects, such as output, will still be properly ordered.

F
F
F

FIGURE 3.2
Sequence pattern. A serial sequence orders operations in the sequence in which they appear in the
program text.

1 T = f(A);
2 S = g(A);
3 B = h(S,T);
LISTING 3.2

Serial sequence, second example, in pseudocode.

FIGURE 3.3

Sequence pattern, second example. A serial sequence orders operations in the sequence in which they
appear in the program text, even if there are no apparent dependencies between tasks. Here, since g comes
after f in the program text, the sequence pattern requires that they be executed in that order, even though
there is no explicit dependency.

84 CHAPTER 3 Patterns

FIGURE 3.4
Selection pattern. One and only one of two alternatives a or b is executed based on a Boolean condition c.

1 if (c) {
2 a;
3} else {
4 b;
50}
LISTING 3.3

Serial selection in pseudocode.

There is a parallel generalization of sequence, the superscalar sequence discussed in Section 3.6.1,
which removes the “code text order” constraint of the sequence pattern and orders tasks only by data
dependencies. In fact, as discussed in Section 2.4, modern out-of-order processors do often reorder
operations and do not strictly follow the sequence pattern.

Selection

In the selection pattern, a condition c is first evaluated. If the condition is true, then some task a is
executed. If the condition is false, then task b is executed. There is a control-flow dependency between
the condition and the tasks so neither task a nor b is executed before the condition has been evaluated.
Also, exactly one of a or b will be executed, never both; this is another fundamental assumption of the
serial selection pattern. See Figure 3.4. In code, selection will often be expressed as shown in Listing 3.3.

There is a parallel generalization of selection, the speculative selection pattern, which is discussed
in Section 3.6.3. In speculative selection all of a, b, and c may be executed in parallel, but the results
of one of a or b are discarded based on the result of computing c.

Iteration

In the iteration pattern, a condition c is evaluated. If it is true, a task a is evaluated, then the condition
¢ is evaluated again, and the process repeats until the condition becomes false. This is diagrammed in
Figure 3.5.

Unlike our other pattern diagrams, for iteration we use arrows that go “backward” in time. Since
the number of iterations is data dependent, you cannot necessarily predict how many iterations will

3.2 Structured Serial Control Flow Patterns 85

FIGURE 3.5

Serial iteration pattern. The task f is executed repeatedly as long as the condition c is true. When the condition
becomes false, the tasks following this pattern are executed.

1 while (c) {
2 a;

30}

LISTING 3.4

[teration using a while loop in pseudocode.

1 for (i =0; 1 < n; ++i) {
2 a;

3}

LISTING 3.5

Iteration using a for loop in pseudocode.

take place, or if the loop will even terminate. You cannot evaluate the span complexity of an algorithm
just by looking at the height of the diagram. Instead, you have to (conceptually) execute the program
and look at the height of the trace of the execution.

This particular form of loop (with the test at the top) is often known as a while loop. The while
loop can of course be expressed in code as shown in Listing 3.4.

There are various other forms of iteration but this is the most general. Other forms of looping can
be implemented in terms of the whi Te loop and possibly other patterns such as sequence.

The loop body a and the condition ¢ normally have data dependencies between them; otherwise,
the loop would never terminate. In particular, the loop body should modify some state that ¢ uses for
termination testing.

One complication with parallelizing the iteration pattern is that the body task f may also depend on
previous invocations of itself. These are called loop-carried dependencies. Depending on the form of
the dependency, loops may be parallelized in various ways.

One common form of loop is the counted loop, sometimes referred to simply as a for loop, which
also generates a loop index, as shown in Listing 3.5.

86 CHAPTER 3 Patterns

1 1 =20;

2 while (i < n) {
3 a;

4 ++i;

5}

LISTING 3.6

Demonstration of while/for equivalence in pseudocode.

This is equivalent to the while loop shown in Listing 3.6. Note that the loop body now has a
loop-carried dependency on i. Even so, there are various ways to parallelize this specific form of loop,
based on the fact that we know all the loop indices for every iteration in advance and can compute
them in parallel. This particular loop form also has a termination condition based on a count n known
in advance, so we can actually compute its complexity as a function of n.

Many systems for parallelizing loops, including Cilk Plus and OpenMP, prohibit modifications to
i or n in the body of loops in the form of Listing 3.5; otherwise, the total number of iterations would
not be known in advance. Serial loops do not have this prohibition and allow more general forms of
termination condition and index iteration.

Several parallel patterns can be considered parallelizations of specific forms of loops include map,
reduction, scan, recurrence, scatter, gather, and pack. These correspond to different forms of loop
dependencies. You should be aware that there are some forms of loop dependencies that cannot be paral-
lelized. One of the biggest challenges of parallelizing algorithms is that a single serial construct, iteration,
actually maps onto many different kinds of parallelization strategies. Also, since data dependencies are
not as important in serial programming as in parallel programming, they can be hidden.

In particular, the combination of iteration with random memory access and pointers can create
complex hidden data dependencies. Consider the innocent-looking code in Listing 3.7. Can this code
be parallelized or not?

The answer is ... maybe. In fact, the data dependencies are encoded in the arrays a, b, ¢, and d, so
the parallelization strategy will depend on what values are stored in these arrays.' This code is, in fact,
an interpreter for a simple “programming language” and can do relatively arbitrary computation. You
have to decode the data dependency graph of the “program” stored in arrays a, b, ¢, and d before you
know if the code can be parallelized! Such “accidental interpreters” are surprisingly common.

Other complications can arise due to pointers. For example, suppose we used the slightly differ-
ent version of the code in Listing 3.8. The difference is that we output to a new argument y, in
an attempt to avoid the data dependencies of the previous example. Can this version of the code be
parallelized?

The answer is ... maybe. The array inputs x and y are really pointers in C. The code can be par-
allelized if x does not point to the same location as y (or overlapping locations). If they do, we say

! This is not a made-up example. One of the authors was once asked to parallelize code very similar to this . .. without being
provided with the input.

1 void engine(
2 int n,

3 double x[],
4 int al],

5 int bl],

6 int cl],

7 int d[],

8) {

9

3.2 Structured Serial Control Flow Patterns 87

for (int 1 = 0; i < n; ++i)

10 x[ali]] =
mn}

LISTING 3.7

x[bLi1] % xCcli]] + x[d[i]1];

A difficult example in C. Can this code be parallelized?

1 void engine2(
2 int n,

3 double x[1],
4 double y[1],
5 int al],

6 int bl],

7 int cl],

8 int d[],

9) {

10 for (int 1 = 0; i < n; ++i)

11 ylalill =

12}

LISTING 3.8

x[b[i1] = x[clil]l + x[d[i1]1;

Another difficult example in C. Can this code be parallelized?

the inputs are aliased, and this example has effectively the same data dependencies as Listing 3.7. So,
now the parallelization of this function depends on how we call it. However, even if x and y point to
distinct regions of memory, we still may not be able to parallelize safely if there are duplicate values in
a, since race conditions can result from parallel writes to the same memory location. We will discuss

the problem of parallel random writes in Section 3.5.5.

Recursion

Recursion is a dynamic form of nesting which allows functions to call themselves, directly or indi-
rectly. It is usually associated with stack-based memory allocation or, if higher-order functions are
supported, closures (see Section 3.4.4) which are objects allocated on the heap. Tail recursion is a
special form of recursion that can be converted into iteration, a fact that is important in functional
languages which often do not support iteration directly. In tail recursion, the calling function returns

88 CHAPTER 3 Patterns

immediately after the recursive call and returns the value, if any, returned by the recursive call without
modification.

PARALLEL CONTROL PATTERNS

Parallel control patterns extend the serial control patterns presented in Section 3.2. Each parallel control
pattern is related to one or more of the serial patterns but relaxes the assumptions of the serial control
patterns in various ways, or is intended for parallelizing a particular configuration of some serial control
pattern.

Fork—Join

The fork—join pattern lets control flow fork into multiple parallel flows that rejoin later. Various parallel
frameworks abstract fork—join in different ways. Some treat fork—join as a parallel form of a compound
statement; instead of executing substatements one after the other, they are executed in parallel. Some
like OpenMP’s parallel region fork control into multiple threads that all execute the same statement
and use other constructs to determine which thread does what.

Another approach, used in Cilk Plus, generalizes serial call trees to parallel call trees, by letting
code spawn a function instead of calling it. A spawned call is like a normal call, except the caller
can keep going without waiting for the callee to return, hence forking control flow between caller and
callee. The caller later executes a join operation (called “sync” in Cilk Plus) to wait for the callee to
return, thus merging the control flow. This approach can be implemented with an efficient mechanism
that extends the stack-oriented call/return mechanism used for serial function calls.

Fork—join should not be confused with barriers. A barrier is a synchronization construct across
multiple threads. In a barrier, each thread must wait for all other threads to reach the barrier before
any of them leave. The difference is that after a barrier all threads continue, but after a join only one
does. Sometimes barriers are used to imitate joins, by making all threads execute identical code after
the barrier, until the next conceptual fork.

The fork—join pattern in Cilk Plus is structured in that the task graph generated is cleanly nested and
planar, so the program can be reasoned about in a hierarchical fashion. When we refer to the fork—join
pattern in this book we will be specifically referring to this structured form.

Map

As shown in Figure 3.6, the map pattern replicates a function over every element of an index set. The
index set may be abstract or associated with the elements of a collection. The function being replicated
is called an elemental function since it applies to the elements of an actual collection of input data.
The map pattern replaces one specific usage of iteration in serial programs: a loop in which every
iteration is independent, in which the number of iterations is known is advance, and in which every
computation depends only on the iteration count and data read using the iteration count as an index
into a collection. This form of loop is often used, like map, for processing every element of a collection
with an independent operation. The elemental function must be pure (that is, without side-effects) in

3.3 Parallel Control Patterns 89

FIGURE 3.6

Map pattern. In a map pattern, a function is applied to all elements of a collection, usually producing a new
collection with the same shape as the input.

order for the map to be implementable in parallel while achieving deterministic results. In particular,
elemental functions must not modify global data that other instances of that function depend on.

Examples of use of the map pattern include gamma correction and thresholding in images, color
space conversions, Monte Carlo sampling, and ray tracing.

Stencil

The stencil pattern is a generalization of the map pattern in which an elemental function can access
not only a single element in an input collection but also a set of “neighbors.” As shown in Figure 3.7,
neighborhoods are given by set of relative offsets.

Optimized implementation of the stencil uses tiling to allow data reuse, as is discussed in detail in
Section 7.3.

The stencil pattern is often combined with iteration. In this case, a stencil is repeated over and over
to evolve a system through time or to implement an iterative solver. The combined pattern is equivalent
to a space—time recurrence and can be analyzed and optimized using the techniques for the recurrence
pattern, as discussed in Sections 3.3.6 and 7.5.

For the stencil pattern, boundary conditions on array accesses need to be considered. The edges of
the input need require special handling either by modifying the indexing for out-of-bounds accesses
or by executing special-case versions of the elemental function. However, the implementation should
avoid using this special-case code in the interior of the index domain where no out-of-bounds accesses
are possible.

The stencil pattern is used for image filtering, including convolution, median filtering, motion esti-
mation in video encoding, and isotropic diffusion noise reduction. The stencil pattern is also used
in simulation, including fluid flow, electromagnetic and financial partial differential equation (PDE)
solvers, lattice quantum chromodynamics (QCD), and cellular automata (including lattice Boltzmann
flow flow solvers). Many linear algebra operations can also be seen as stencils.

90 CHAPTER 3 Patterns

00000
0000
000
00000
00000
0000000
0000000
0000000

FIGURE 3.7

Stencil pattern. A collection of outputs is generated, each of which is a function of a set of neighbors in an
input collection. The locations of the neighbors are located in a set of fixed offsets from each output. Here, only
one neighborhood is shown, but in actuality the computation is done for all outputs in parallel, and different
stencils can use different neighborhoods. Elements along the boundaries require special handling.

Reduction

A reduction combines every element in a collection into a single element using an associative
combiner function. Given the associativity of the combiner function, many different orderings are
possible, but with different spans. If the combiner function is also commutative, additional orderings
are possible. A serial implementation of reduction, using addition as the combiner function and a
sequential ordering, is given in Listing 3.9. The ordering of operations used in this code corresponds to
Figure 3.8. Such a reduction can be used to find the sum of the elements of a collection, a very common
operation in numerical applications.

Although Listing 3.9 uses a loop with a data dependency, Figure 3.9 shows how a reduction can
be parallelized using a tree structure. The tree structure depends on a reordering of the combiner oper-
ations by associativity. Interestingly, tree parallelization of the reduction can be implemented using
exactly the same number of operations as the serial version. A naive tree reduction may require more
intermediate storage than the serial version but at worst this storage is proportional to the available
parallelism. In practice, it can be more efficient to perform local serial reductions over tiles and then
combine the results using additional tile reductions. In other words, an efficient implementation might

3.3 Parallel Control Patterns 91

double my_add_reduce(

1

2 const double all, /inputarray

3 size_t n // number of elements

4) |

5 double r = 0.0; /initialize with the identity for addition
6 for (int i = 0; 1 < n; ++i)

7 r += alil; / each iteration depends on the previous one
8 return r;

9 1}

LISTING 3.9

Serial implementation of reduction.

cooo0eO0®

FIGURE 3.8

Serial reduction pattern. A reduction combines all the elements in a collection into a single element using
an associative combiner function. Because the combiner function is associative, many orderings are possible.
The serial ordering shown here corresponds to Listing 3.9. It has span n, so no parallel speedup is possible.

92 CHAPTER 3 Patterns

0000000

Cl]
FIGURE 3.9

Tree reduction pattern. This diagram shows a tree ordering that has a span of Ign, so a speedup of n/lgn is
possible. Assuming the combiner function is associative, this ordering computes the same result as Figure 3.8
and Listing 3.9.

use relatively shallow trees with high fanouts and only use a tree to combine results from multiple
workers.

There are some variants of this pattern that arise from combination with partition and search such
as the category reduction pattern discussed in Section 3.6.8.

Applications of reduction are diverse, and include averaging of Monte Carlo (random) samples for
integration; convergence testing in iterative solution of systems of linear equations, such as conjugate
gradient; image comparison metrics as in video encoding; and dot products and row—column products
in matrix multiplication. Reductions can also use operations other than addition, such as maximum,
minimum, multiplication, and Boolean AND, OR, and XOR, and these also have numerous applica-
tions. However, you should be cautious of operations that are not truly associative, such as floating
point addition. In these cases, different orderings can give different results; this is discussed further in
Chapter 5.

Scan

Scan computes all partial reductions of a collection. In other words, for every output position, a reduc-
tion of the input up to that point is computed. Serial code implementing scan is shown in Listing 3.10.
The ordering used in this code corresponds to Figure 3.10. Scan, and in particular the code shown
in Listing 3.10, is not obviously parallelizable since each iteration of the loop depends on the output
of the previous iteration. In general, scan is a special case of a serial pattern called a fold. In a fold,
a successor function f is used to advance from the previous state to the current state, given some
additional input. If the successor function is not associative we cannot, in fact, generally parallelize a
fold. However, if the successor function is associative, we can reorder operations (and possibly add

3.3 Parallel Control Patterns 93

1 void my_add_iscan(

2 const float all, /inpurarray

3 float b[], // output array

4 size_t n // number of elements

50) |

6 if (n>0) b[O0] = al0]; /equivalent to assuming b[i—1] is zero

7 for (int i =1; 1 < n; ++1)

8 bli] = bli-11 + alil; /each iteration depends on the previous one
9

}

LISTING 3.10
Serial implementation of scan.

0000000

00000000

FIGURE 3.10

Serial scan pattern. This is one way of many possible to implement scan, but has a span of order ®(n) and so
is not parallelizable. This implementation of scan corresponds to the code in Listing 3.10.

94 CHAPTER 3 Patterns

some extra work) to reduce the span and allow for a parallel implementation. Associativity of the
successor function is what distinguishes the special case of a scan from the general case of a fold. A
parallelizable scan can be used in this example because the successor function is addition, which is
associative.

One possible parallel implementation of scan when the successor function f is associative is shown
in Figure 3.11. As you can see, parallelization of scan is less obvious than parallelization of reduc-
tion. We will consider various implementation alternatives in Section 5.4, but if the programming
model supports scan as a built-in operation it may not be necessary to consider the details of the
implementation.

However, it is worth noting that a parallel implementation of scan may require more work (evalu-
ations of f) than is necessary in the serial case, up to twice as many, and also at best only has ® (Ign)
span. Scan is a good example of an algorithm that is parallelizable but for which linear speedup is
not possible and for which the parallel algorithm is not as efficient in terms of the total number of

FIGURE 3.11

Parallel scan pattern. If the successor function is associative, many reorderings are possible with lower span.
This is one of many possible ways to implement scan using a span of order ®(Ign). It consists basically of a
reduction tree followed by some additional operations to compute additional intermediate partial reductions not
computed by the tree. Notice, however, that the total amount of work is more than the algorithm used in
Figure 3.10.

3.4 Serial Data Management Patterns 95

operations required as the serial implementation. Because of this, use of scan can limit scaling and
alternative algorithms should be considered whenever possible.

Examples of the use of the scan pattern include integration, sequential decision simulations in
option pricing, and random number generation. However, use of scan in random number generation
is only necessary if one is forced to parallelize traditional sequential pseudorandom number genera-
tors, which are often based on successor functions. There are alternative approaches to pseudorandom
number generation based on hashing that require only the map pattern [SMDSI11]. For greater
scalability, these should be used when possible.

Scan can also be used to implement pack in combination with scatter, but a pack operation is
intrinsically deterministic, unlike scatter. Therefore, we have included pack as a separate pattern.

Recurrence

The map pattern results when we parallelize a loop where the loop bodies are all independent. A
recurrence is also a generalization of iteration, but of the more complex case where loop iterations
can depend on one another. We consider only simple recurrences where the offsets between elements
are constant. In this case, recurrences look somewhat like stencils, but where the neighbor accesses can
be to both inputs and outputs. A recurrence is like a map but where elements can use the outputs of
adjacent elements as inputs.

There is a constraint that allows recurrences to be computable: They must be causal. That is, there
must be a serial ordering of the recurrence elements so that elements can be computed using previously
computed outputs. For recurrences that arise from loop nests, where output dependencies are really ref-
erences to values computed in previous loop iterations, a causal order is given. In fact, it turns out that
there are two cases where recurrences are parallelizable: (1) a 1D recurrence where the computation
in the element is associative, (2) and a multidimensional recurrence arising from a nested loop body.
The 1D case we have already seen: It is just the scan pattern in Section 3.3.5. In the nD case arising
from nested loops, surprisingly, recurrences are always parallelizable over n — 1 dimensions by sweep-
ing a hyperplane over the grid of dependencies [Lam74], an approach discussed in Section 7.5. This
can be implemented using a sequence of stencils. Conversely, iterated stencils can be reinterpreted as
recurrences over space—time.

Recurrences arise in many applications including matrix factorization, image processing, PDE
solvers, and sequence alignment. Partial differentiation equation (PDE) solvers using iterated sten-
cils, such as the one discussed in Chapter 10, are often converted into space—time recurrences to
apply space—time tiling. Space—time tiling is an optimization technique for recurrences discussed in
Section 7.5. Using this optimization can be more efficient than treating the stencil and the iteration
separately, but it does require computing several iterations at once.

SERIAL DATA MANAGEMENT PATTERNS

Data can be managed in various ways in serial programs. Data management includes how storage of
data is allocated and shared as well as how it is read, written, and copied.

96 CHAPTER 3 Patterns

Random Read and Write

The simplest mechanism for managing data just relies directly on the underlying machine model, which
supplies a set of memory locations indexed by integers (“addresses”). Addresses can be represented in
higher-level programming languages using pointers.

Unfortunately, pointers can introduce all kinds of problems when a program is parallelized. For
example, it is often unclear whether two pointers refer to the same object or not, a problem known as
aliasing. In Listing 3.8, we show how this can happen when variables are passed as function arguments.
Aliasing can make vectorization and parallelization difficult, since straightforward approaches will
often fail if inputs are aliased. On the other hand, vectorization approaches that are safe in the presence
of aliasing may require extra data copies and may be considered unacceptably expensive. A common
approach is to forbid aliasing or to state that vectorized functions will have undefined results if inputs
are aliased. This puts the burden on the programmer to ensure that aliases do not occur.

Array indices are a slightly safer abstraction that still supports data structures based on indirection.
Array indices are related to pointers; specifically, they represent offsets from some base address. How-
ever, since array indices are restricted to the context of a particular collection of data they are slightly
safer. It is still possible to have aliases but at least the range of memory is restricted when you use array
indices rather than pointers. The other advantage of using array indices instead of pointers is that such
data structures can be easily moved to another address space, such as on a co-processor. Data structures
using raw pointers are tied to a particular address space.

Stack Allocation

Frequently, storage space for data needs to be allocated dynamically. If data is allocated in a nested last
in, first out (LIFO) fashion, such as local variables in function calls, then it can be allocated on a stack.
Not only is stack allocation efficient, since an arbitrary amount of data can be allocated in constant
time, but it is also locality preserving.

To parallelize this pattern, typically each thread of control will get its own stack so locality is
preserved. The function-calling conventions of Cilk Plus generalize stack allocation in the context of
function calls so the locality preserving properties of stack allocation are retained.

Heap Allocation

In many situations, it is not possible to allocate data in a LIFO fashion with a stack. In this case, data
is dynamically allocated from a pool of memory commonly called the heap. Heap allocation is con-
siderably slower and more complex than stack allocation and may also result in allocations scattered
all over memory. Such scattered allocations can lead to a loss in coherence and a reduction in mem-
ory access efficiency. Widely separated accesses are more expensive than contiguous allocations due
to memory subsystem components that make locality assumptions, including caches, memory banks,
and page tables. Depending on the algorithm used, heap allocation of large blocks of different sizes
can also lead to fragmented memory [WJNB95]. When memory is fragmented, contiguous regions of
address space may not be available even though enough unallocated memory is available in total. Frag-
mentation is less of a problem on machines with virtual memory because only the memory addresses
actually in use will occupy physical memory, at least at the granularity of a page.

3.4 Serial Data Management Patterns 97

When parallelizing programs that use heap allocation, you should be aware that implicitly sharing
the data structure used to manage the heap can lead to scalability problems. A parallelized heap allo-
cator should be used when writing parallel programs that use dynamic memory allocation. Such an
allocator maintains separate memory pools on each worker, avoiding constant access to global locks.
Such a parallelized allocator is provided by TBB and can be used even if the other constructs of TBB
are not.

For efficiency, many programs use simple custom allocators rather than the more general heap. For
example, to manage the allocation of items that are all the same size, free items can be stored on a
linked list and allocated in constant time. This also has the advantage of reducing fragmentation since
elements of the same size are allocated from the same pool. However, if you implement your own
allocation data structures, when the code is parallelized even a simple construct like a linked list can
become a bottleneck if protected with a lock. Conversely, if it is not protected, it can be a race condition
hazard.

Closures

Closures are function objects that can be constructed and managed like data. Lambda functions (see
Appendix D.2) are simply unnamed closures that allow functions to be syntactically defined where
and when needed. As we will see, the new C++ standard includes lambda functions that are used
extensively by TBB. ArBB also allows closure objects to be constructed and compiled dynamically
but does not require that lambda functions be supported by the compiler.

When closures are built, they can often be used to “capture” the state of non-local variables that
they reference. This implicitly requires the use of dynamic memory allocation. Closures can also be
generated dynamically or statically. If they are statically implemented, then the implementation may
need to allow for a level of indirection so the code can access the data associated with the closure at the
point it is created. If the code for the closure is dynamically constructed, as in ArBB, then it is possible
to use the state of captured variables at the point of construction to optimize the generated code.

Objects

Objects are a language construct that associate data with the code to act on and manage that data.
Multiple functions may be associated with an object and these functions are called the methods or
member functions of that object. Objects are considered to be members of a class of objects, and
classes can be arranged in a hierarchy in which subclasses inherit and extend the features of super-
classes. All instances of a class have the same methods but have different state. The state of an object
may or may not be directly accessible; in many cases, access to an object’s state may only be permitted
through its methods.

In some languages, including C++, subclasses can override member functions in superclasses.
Overriding usually requires class and function pointers in the implementation, but function pointers in
particular may not be supported on all hardware targets (specifically older GPUs). Some programming
models, such as ArBB, partially avoid this problem by providing an additional stage of compilation
at which the function pointers can be resolved so they do not have to be resolved dynamically during
execution.

98 CHAPTER 3 Patterns

In parallel programming models objects have been generalized in various ways. For example, in
Java, marking a method as synchronized adds a lock that protects an object’s state from being
modified by multiple methods at once. However, as discussed in Section 2.6.2, overuse of locks can be
detrimental to performance.

Closures and objects are closely related. Objects can be fully emulated using just closures, for exam-
ple, and the implementation of objects in Smalltalk [Kay96] was inspired in part by the implementation
of nested functions in Algol and Simula [Per81, Nau81, Coh96].

PARALLEL DATA MANAGEMENT PATTERNS

Several patterns are used to organize parallel access to data. In order to avoid problems such as race
conditions, it is necessary in parallel programs to understand when data is potentially shared by multi-
ple workers and when it is not. It is especially important to know when and how multiple workers can
modify the same data. For the most part the parallel data access patterns we will discuss in this book
avoid modification of shared data or only allow its modification in a structured fashion. The exception is
the scatter pattern, several variants of which can still be used to resolve or avoid race conditions. Some
of these patterns are also important for data locality optimizations, such as partition, although these
also have the affect of creating independent regions of memory that can safely be modified in parallel.

Pack

The pack pattern can be used to eliminate unused space in a collection. Elements of a collection are
each marked with a Boolean value. Pack discards elements in the data collection that are marked with
false. The remaining elements marked with true are placed together in a contiguous sequence, in
the same order they appeared in the input data collection. This can be done either for each element of
the output of a map or in a collective fashion, using a collection of Booleans that is the same shape as
the data collection and is provided as an additional input. See Figure 3.12 for an illustration of the pack
pattern with a specific set of input data.

000
[@@]

FIGURE 3.12
Pack pattern. Unused elements are discarded and the remainder packed together in a contiguous sequence.

3.5 Parallel Data Management Patterns 99

Pack is especially useful when fused with map and other patterns to avoid unnecessary output from
those patterns. When properly implemented, a programming system can use pack to reduce memory
bandwidth. Pack can even be used as a way to emulate control flow on SIMD machines with good
asymptotic performance [LLMO08, HLJH09], unlike the masking approach.

An inverse of the pack operation, unpack, is also useful. The unpack operation can place elements
back into a data collection at the same locations from which they were drawn with a pack. Both pack
and unpack are deterministic operations. Pack can also be implemented using a combination of scan
and scatter [Ble93].

Examples of the use of pack include narrow-phase collision detection pair testing when you only
want to report valid collisions and peak detection for template matching in computer vision.

Pipeline
A pipeline pattern connects tasks in a producer—consumer relationship. Conceptually, all stages of

the pipeline are active at once, and each stage can maintain state that can be updated as data flows
through them. See Figure 3.13 for an example of a pipeline. A linear pipeline is the basic pattern but

SIS

FIGURE 3.13

Pipeline pattern. Stages are connected in a producer—consumer relationship, and each stage can maintain
state so that later outputs can depend on earlier ones.

100 CHAPTER 3 Patterns

more generally, a set of stages could be assembled in a directed acyclic graph. It is also possible to
have parallel stages, as will be discussed in Chapter 9.

Pipelines are useful for serially dependent tasks like codecs for encoding and decoding video and
audio streams. Stages of the pipeline can often be generated by using functional decomposition of tasks
in an application. However, typically this approach results in a fixed number of stages, so pipelines are
generally not arbitrarily scalable. Still, pipelines are useful when composed with other patterns since
they can provide a multiplier on the available parallelism.

Examples of the use of the pipeline pattern include codecs with variable-rate compression, video
processing and compositioning systems, and spam filtering.

Geometric Decomposition

The geometric decomposition pattern breaks data into a set of subcollections. In general these
subcollections can overlap. See the middle example in Figure 3.14. If the outputs are partitioned into
non-overlapping domains, then parallel tasks can operate on each subdomain independently without
fear of interfering with others. See the rightmost example in Figure 3.14. We will call the special case
of non-overlapping subregions the partition pattern.

The partition pattern is very useful for divide-and-conquer algorithms, and it can also be used in
efficient parallel implementations of the stencil pattern. For the stencil pattern, typically the input is
divided into a set of partially overlapping strips (a general geometric decomposition) so that neighbors
can be accessed. However, the output is divided into non-overlapping strips (that is, a partition) so that
outputs can be safely written independently. Generally speaking, if overlapping regions are used they
should be for input, while output should be partitioned into non-overlapping regions.

An issue that arises with geometric decomposition is how boundary conditions are handled when
the input or output domains are not evenly divisible into tiles of a consistent size.

A geometric decomposition does not necessarily move data. It often just provides an alternative
“view” of the organization. In the special case of the partition pattern, a geometric decomposition
makes sure that different tasks are modifying disjoint regions of the output.

00000000 0000000 00000000
00000000 00000000 00000000
00000000 00000Bal 0000000
00000000 00000000 0000000
00000000 00000CAa0 00000000
0000000 00000000 00000000
0000000 00000000 00000000
00000000 00000000 00000000
FIGURE 3.14

Geometric decomposition and the partition pattern. In the geometric decomposition pattern, the data is divided
into potentially overlapping regions (middle, four 5 x 5 regions). The partition pattern is a special case of
geometric decomposition where the domain is divided into non-overlapping regions (right, four 4 x 4 regions).

3.5 Parallel Data Management Patterns 101

We have shown diagrams where the data is regularly arranged in an array and the decomposi-
tion uses regular subarrays. It would also be possible to have subcollections of different sizes, or for
subcollections to be interleaved (for example, all the odd elements in one subcollection and all the even
ones in the other). It is also possible to apply this pattern to less regular data structures, such as graphs.
For example, a graph coloring might be used to divide the vertices of a graph into a subset of vertices
that are not directly connected, or a graph might be divided into components in other ways.

The implementation of stencil operations, which are used in both image processing and simula-
tion, are a good example of the use of geometric decomposition with overlapping input regions. When
iterated stencils are implemented on distributed memory computers such as clusters, often one sub-
domain is assigned to each processor, and then communication is limited to only the overlap regions.
Examples of the use of partition (with non-overlapping regions) include JPEG and other macroblock
compression, as well as divide-and-conquer matrix multiplication.

Gather

The gather pattern reads a collection of data from another data collection, given a collection of indices.
Gather can be considered a combination of map and random serial read operations. See Figure 3.15
for an example. The element type of the output collection is the same as the input data collection but
the shape of the output collection is that of the index collection. Various optimizations are possible if
the array of indices is fixed at code generation time or follows specific known patterns. For example,
shifting data left or right in an array is a special case of gather that is highly coherent and can be
accelerated using vector operations. The stencil pattern also performs a coherent form of gather in
each element of a map, and there are specific optimizations associated with the implementation of such
structured, local gathers.

Examples of gather include sparse matrix operations, ray tracing, volume rendering, proximity
queries, and collision detection.

Scatter

The scatter pattern is the inverse of the gather pattern: A set of input data and a set of indices is given,
but each element of the input is written at the given location, not read. The scatter can be considered
equivalent to a combination of the map and random serial write patterns. Figure 3.16 illustrates a
problem with scatter, however: What do we do if two writes go to the same location?

Unfortunately, in the naive definition of scatter, race conditions are possible when there are dupli-
cate write addresses. In general, we cannot even assume that either value is written properly. We will

EEo0Pron @enaae)
/N <\
BEMAWEECE

FIGURE 3.15

Gather pattern. A collection of data is read from an input collection given a collection of indices.

102 CHAPTER 3 Patterns

(@eceas)]

FIGURE 3.16

Scatter pattern. A collection of data is written to locations given by a collection of addresses. However, what do
we do when two addresses are the same?

call such duplicates collisions. To obtain a full definition of scatter, we need to define what to do
when such collisions occur. To obtain a deterministic scatter, we need rules to deterministically resolve
collisions.

There are several possible solutions to the problem of collisions, including using associative oper-
ators to combine values, choosing one of the multiple values non-deterministically, and assigning
priorities to values. These will be discussed in detail in Section 6.2.

OTHER PARALLEL PATTERNS

In this section we will discuss several additional patterns that often show up in practice, but for which
we unfortunately do not have any specific code examples in this book. Please check online, as more
details and examples for these patterns may be available there. Some of these patterns are extensions
or elaborations of already discussed patterns.

Superscalar Sequences

In the superscalar sequence pattern, you write a sequence of tasks, just as you would for an ordinary
serial sequence. As an example, consider the code shown in Listing 3.11. However, unlike the case with
the sequence pattern, in a superscalar sequence tasks only need to be ordered by data dependencies
[ERB+10, TBRG10, KLDB10]. As long as there are no side effects, the system is free to execute tasks
in parallel or in a different order than given in the source code. As long as the data dependencies are
satisfied, the result will be the same as if the tasks executed in the canonical order given by the source
code. See Figure 3.17.

The catch here is the phrase “as long as the data dependencies are satisfied.” In order to use this
pattern, all dependencies need to be visible to the task scheduler.

This pattern is related to futures, discussed in Section 3.6.2. However, unlike with futures, for
superscalar sequences you do not explicitly manage or wait on parallel tasks. Superscalar sequences
are meant to be serially consistent.

Futures

The futures pattern is like fork—join, but the tasks do not have to be nested hierarchically. Instead,
when a task is spawned, an object is returned—a furure—which is used to manage the task. The most

3.6 Other Parallel Patterns 103

1 D = f(A);

2 B = g(D);

3 F = h(B,E);
4 G =r(BE);

5 P = p(D);

6 Q= q(D);

7 H = s(F,G);
8 C = t(H,P,Q);
LISTING 3.11

Superscalar sequence in pseudocode.

i

—®

O«I—-

FIGURE 3.17

Superscalar sequence pattern. A superscalar sequence orders operations by their data dependencies only. On
the left we see the timing given by a serial implementation of the code in Listing 3.11 using the sequence
pattern. However, if we interpret this graph as a superscalar sequence, we can potentially execute some of the
tasks simultaneously, as in the diagram on the right. Tasks in a superscalar sequence must not have any
hidden data dependencies or side-effects not known to the scheduler.

important operation that can be done on a future is to wait for it to complete. Futures can implement
the same hierarchical patterns as in fork—join but can also be used to implement more general, and
potentially confusing, task graphs. Conceptually, fork—join is like stack-based allocation of tasks, while
futures are like heap allocation of tasks.

Task cancellation can also be implemented on futures. Cancellation can be used to implement other
patterns, such as the non-deterministic branch-and-bound pattern or speculative selection.

104 CHAPTER 3 Patterns

Speculative Selection

Speculative selection generalizes selection so that the condition and both alternatives can run in par-
allel. Compare Figure 3.4 with Figure 3.18. When the condition completes, the unneeded branch of the
speculative selection is cancelled. Cancellation also needs to include the reversal of any side-effects.
In practice, the two branches will have to block at some point and wait for the condition to be evalu-
ated before they can commit any changes to state or cause any non-reversible side-effects. This pattern
is inherently wasteful, as it executes computations that will be discarded. This means that it always
increases the total amount of work.

It can be expensive to implement cancellation, especially if we have to worry about delaying
changes to memory or side-effects. To implement this pattern, the underlying programming model
needs to support task cancellation. Fortunately, TBB does support explicit task cancellation and so can
be used to implement this pattern.

Speculative selection is frequently used at the very finest scale of parallelism in compilers for hiding
instruction latency and for the simulation of multiple threads on SIMD machines.

In the first case, instructions have a certain number of cycles of latency before their results are
available. While the processor is executing the instructions for the condition in an if statement, we
might as well proceed with the first few instructions of one of the branches. In this case, the speculation
pattern might not actually be wasteful, since those instruction slots would have otherwise been idle;
however, we do not want to commit the results. Once we know the results of the condition, we may
have to discard the results of these speculatively executed instructions. You rarely have to worry about
the fine-scale use of this pattern, since it is typically implemented by the compiler or even the hardware.
In particular, out-of-order hardware makes extensive use of this pattern for higher performance, but at
some cost in power.

However, in the SIMT machine model, multiple threads of control flow are emulated on SIMD
machines using masking, which is related to speculative selection. In order to emulate i f statements in
this model, the condition and both the true and false branches are all evaluated. However, the memory
state is updated using masked memory writes so that the results of executing the true branch are only
effective for the lanes where the condition was true and conversely for the false branch. This can be
optimized if we find the condition is all true or all false early enough, but, like speculative selection,
SIMT emulation of control flow is potentially wasteful since results are computed that are not used.
Unlike the case with filling in unused instruction slots, using masking to emulate selection like this
increases the total execution time, which is the sum of both branches, in addition to increasing the total
amount of work.

e
FIGURE 3.18

Speculative selection pattern. The speculative selection pattern is like the serial selection pattern, but we can
start the condition evaluation and both sides of the selection at the same time. When the condition is finished
evaluating, the unneeded branch is “cancelled.”

3.6 Other Parallel Patterns 105

A similar approach can also be used to emulate iteration on SIMD machines, but in the case of
iteration the test for all-true or all-false is used to terminate the loop. In both cases, we may only use
the SIMD model over small blocks of a larger workload and use a threading model to manage the
blocks.

Workpile

The workpile pattern is a generalization of the map pattern where each instance of the elemental
function can generate more instances and add them to the “pile” of work to be done. This can be used,
for example, in a recursive tree search, where we might want to generate instances to process each of
the children of each node of the tree.

Unlike the case with the map pattern with the workpile pattern the total number of instances of the
elemental function is not known in advance, nor is the structure of the work regular. This makes the
workpile pattern harder to vectorize than the map pattern.

Search

Given a collection, the search pattern finds data that meets some criteria. The criteria can be simple,
as in an associative array, where typically the criteria is an exact match with some key. The criteria can
also be more complex, such as searching for a set of elements in a collection that satisfy a set of logical
and arithmetic constraints.

Searching is often associated with sorting, since to make searches more efficient we may want to
maintain the data in sorted order. However, this is not necessarily how efficient searches need to be
implemented.

Searching can be very powerful, and the relational database access language, SQL, can be consid-
ered a data-parallel programming model. The parallel embedded language LINQ from Microsoft uses
generalized searches as the basis of its programming model.

Segmentation

Operations on collections can be generalized to operate on segmented collections. Segmented col-
lections are 1D arrays that are subdivided into non-overlapping but non-uniformly sized partitions.
Operations such as scan and reduce can then be generalized to operate on each segment separately, and
map can also be generalized to operate on each segment as a whole (map-over-segments) or on every
element as usual. Although the lengths of segments can be non-uniform, segmented scans and reduc-
tions can be implemented in a regular fashion that is independent of the distribution of the lengths of
the segments [BHC+93]. Segmented collective operations are more expensive than regular reduction
and scan but are still easy to load balance and vectorize.

The segmentation pattern is interesting because it has been demonstrated that certain recursive algo-
rithms, such as quicksort [Ble90, Ble96], can be implemented using segmented collections to operate
in a breadth-first fashion. Such an implementation has advantages over the more obvious depth-first
parallel implementation because it is more regular and so can be vectorized. Segmented operations also
arise in time-series analysis when the input data is segmented for some reason. This frequently occurs
in financial, vision, and speech applications when the data is in fact segmented, such as into different
objects or phonemes.

106 CHAPTER 3 Patterns

3.6.7 Expand

The expand pattern can be thought of as the pack pattern merged with map in that each element of
a map can selectively output elements. However, in the expand pattern, each element of the map can
output any number of elements—including zero. The elements are packed into the output collection in
the order in which they are produced by each element of the map and in segments that are ordered by
the spatial position of the map element that produced them. An example is shown in Figure 3.19.

Examples of the use of expand include broad-phase collision detection pair testing when reporting
potentially colliding pairs, and compression and decompression algorithms that use variable-rate output
on individually compressed blocks.

000000
HERNERENERNEN
@ % (@)% ngx@

O 8
O

J

Goooo0o U0

FIGURE 3.19

Expand pattern. Each element of a map can output zero or more elements, which are packed in the order
produced and organized into segments corresponding to the location of the elements in the map that
produced them.

3.6.8 Category Reduction

Given a collection of data elements each with an associated label, the category reduction pattern
finds all elements with the same label and reduces them to a single element using an associative (and
possibly commutative) operator. The category reduction pattern can be considered a combination of
search and segmented reduction. An example is provided in Figure 3.20.

3.6 Other Parallel Patterns 107

SISIOI0)
SISIO]E)
SICIO]E)

99YQ
99QQ
99QQ
~_ 2828

<]

elale]a)
FIGURE 3.20

Category reduction pattern. Given an input collection with labels, all elements with the same label are collected
and then reduced to a single element.

Searching and matching are fundamental capabilities and may depend indirectly on sorting or hash-
ing, which are relatively hard to parallelize. This operation may seem esoteric, but we mention it
because it is the form of “reduction” use in the Hadoop [Kon11, DG04] Map-Reduce programming
model used by Google and others for highly scalable distributed parallel computation. In this model,
a map generates output data and a set of labels, and a category reduction combines and organizes the
output from the map. It should be emphasized that they do not call the reduction used in their model a
category reduction. However, we apply that label to this pattern to avoid confusion with the more basic
reduction pattern used in this book.

Examples of use of category reduction include computation of metrics on segmented regions
in vision, computation of web analytics, and thousands of other applications implemented with
Map-Reduce.

Term Graph Rewriting

In this book we have primarily focused on parallel patterns for imperative languages, especially
C++. However, there is one very interesting pattern that is worth mentioning due to its utility in the
implementation of functional languages: term graph rewriting.

Term graph rewriting matches patterns in a directed acyclic graph, specifically “terms” given by
a head node and a sequence of children. It then replaces these terms with new subgraphs. This is
applied over and over again, evolving the graph from some initial state to some final state, until no
more substitutions are possible. It is worth noting that in this book we have used graphs to describe the
relationships between tasks and data. However, in term graph rewriting, graphs are the data, and it is
the evolution of these graphs over time that produces the computation.

Term graph rewriting is equivalent in power to the lambda calculus, which is usually used to define
the semantics of functional languages. However, term graph rewriting is more explicit about data shar-
ing since this is expressed directly in the graph, and this is important for reasoning about the memory
usage of a functional program. Term graph rewriting can take place in parallel in different parts of the

108 CHAPTER 3 Patterns

graph, since under some well-defined conditions term graph rewriting is confluent: It does not matter in
which order the rewrites are done; the same result will be produced either way. A very interesting paral-
lel functional language called Concurrent Clean has been implemented using this idea [PVE93, PvE99].
Many other parallel languages, including hardware simulation and synthesis languages, have been
defined in terms of this pattern.

NON-DETERMINISTIC PATTERNS

Normally it is desirable to avoid non-determinism since it makes testing and debugging much more
difficult. However, there are some potentially useful non-deterministic patterns.

We will discuss two non-deterministic patterns in this section, branch and bound and transac-
tions. In some cases, such as search, the input—output behavior of the abstraction may be deterministic
but the implementation may be non-deterministic internally. It is useful to understand when non-
determinism can be contained inside some abstraction, and conversely when it affects the entire
program.

Branch and Bound

The branch and bound pattern is often used to implement search, where it is highly effective. It is,
however, a non-deterministic pattern and a good example of when non-determinism can be useful.

Suppose you have a set of items and you want to do an associative search over this set to find an
item that matches some criteria. To do a parallel search, the simplest approach is to partition the set and
search each subset in parallel. However, suppose we only need one result, and any data that satisfies
the search criteria is acceptable. In that case, once an item matching the search criteria is found, in any
one of the parallel subset searches, the searches in the other subsets can be cancelled.

The branch and bound strategy can actually lead to superlinear speedups, unlike many other parallel
algorithms. However, if there are multiple possible matches, this pattern is non-deterministic because
which match is returned depends on the timing of the searches over each subset. Since this form of non-
determinism is fundamental in the definition of the result (“return the first result found that matches the
criteria”), it is hard to remove this form of non-determinism. However, to get a superlinear speedup,
the cancellation of in-progress tasks needs to be implemented in an efficient manner.

This pattern is also used for mathematical optimization, but with a few additional features. In math-
ematical optimization, you are given an objective function, some constraint equations, and a domain.
The function depends on certain parameters. The domain and the constraint equations define legal
values for the parameters. Within the given domain, the goal of optimization is to find values of the
parameters that maximize (or minimize) the objective function.

Search and optimization are related in that in optimization we are searching for the location of the
optimum, so one way to approach the problem is exactly like with search: Break up the domain into
subdomains, search each region in parallel, and when a “good enough” value is found in one domain
cancel the other parallel searches. But what conditions, exactly, allow us to cancel other searches?

3.7 Non-Deterministic Patterns 109

We can cancel a search if we can prove that the optimum in a domain Y can be no better than y
but we have already found a solution x better than y. In this case we can cancel any search in Y.
Mathematically, we can compute bounds using techniques such as interval analysis [HW04] and often
apply the subdivide-and-bound approach recursively.

What is interesting about this is that the global optima are fixed by the mathematical problem;
therefore, they are unique. The code can be designed to return the same result every time it is run.
Even though the algorithm might be non-deterministic internally, the output can be deterministic if
implemented carefully.

The name “branch and bound” comes from the fact that we recursively divide the problem into
parts, then bound the solution in each part. Related techniques, such as alpha-beta pruning [GC94], are
also used in state-space search in artificial intelligence.

Transactions

Transactions are used when a central repository for data needs several different updates and we do
not care what order the updates are done in, as long as the repository is kept in a consistent state. An
example would be a database recording transactions on a bank account. We do not care too much in
what order the deposits and withdrawals are recorded, as long as the balance at the end of the day is
correct. In fact, in this special case, since deposits and withdrawals are using an associative operation
(addition), the result is in fact deterministic. However, in general, transaction operations will be non-
associative and in that case the outcome will not be deterministic if the order in which the individual
operations are performed is non-deterministic.

For a concrete example that illuminates where transactions might be useful, suppose you are using
a hash table. The kinds of operations you want to use on a hash table might involve inserting elements
and searching for elements. Suppose that the hash table is implemented using a set of buckets with
elements that map to the same bucket stored in a linked list. If multiple parallel tasks try to insert ele-
ments into the same bucket, we could use some implementation of the transaction pattern to make sure
the linked lists are updated consistently. The order in which the elements are inserted into the linked
lists may not be consistent from run to run. However, the overall program may still be deterministic
if the internal non-determinism is not exposed outside the implementation of the pattern itself—
that is, if hash table searches always return the same data no matter what the initial ordering of the
lists was.

Implementing a deterministic hash table using non-deterministic mechanisms may require some
additional effort, however. For example, suppose the same key is inserted twice with different data. In
this case, suppose only one of the two possible data elements should be retained. If we retain the last
element inserted, creating a dependency on timing, the hash table will be non-deterministic and this
has the potential to make the whole program non-deterministic. On the other hand, if we use a rule to
choose which of the two data elements to retain, such as picking the largest data element, then we can
make the output deterministic.

The implementation of transactions is important. Of course, they could be implemented with locks,
but a more scalable approach uses a commit and rollback protocol, as in a database transactions. When
the term “transactions” is used it generally refers to this form of implementation.

110 CHAPTER 3 Patterns

PROGRAMMING MODEL SUPPORT FOR PATTERNS

Many of the patterns discussed in this chapter are supported directly in one or more of the programming
models discussed in this book. By direct support, we mean that there is a language construct that
corresponds to the pattern. Even if a pattern is not directly supported by one of the programming
models we consider, it may be possible to implement it using other features.

In the following, we briefly describe the patterns supported by each of Cilk Plus, TBB, OpenMP,
ArBB, and OpenCL. Patterns can be supported directly by a feature of the programming model, or
they may be implementable using other features. A summary of serial pattern support is provided in
Table 3.1, and a summary of parallel pattern support is provided in Tables 3.2 and 3.3. These tables
use an F to indicate when a programming model includes an explicit feature supporting that pattern,
an I if the pattern is implementable with that model, or a blank if there is no straightforward way
to implement the pattern with that model. Some patterns are implementable with other patterns, and
when an example of this is given in the book it is indicated with a P. Table 3.2 also includes section
references to examples using or implementing that pattern. Table 3.3 indicates support for some addi-
tional patterns that are discussed in this book but for which, unfortunately, no suitable examples were
available.

We additionally provide section references when an example is given in this book of a particular
parallel pattern with a particular model. Unfortunately space does not permit us to give an example
of every parallel pattern with every programming model, even when a pattern is implementable with
that model. In other cases, common patterns (such as map) may show up in many different examples.
Please refer to the online site for the book. Some additional examples will be made available there that
can fill in some of these gaps.

Table 3.1 Summary of programming model support for the serial patterns discussed
in this book. Note that some of the parallel programming models we consider do not,
in fact, support all the common serial programming patterns. In particular, note that
recursion and memory allocation are limited on some model.

Serial Pattern TBB Cilk Plus OpenMP ArBB OpenCL
(Serial) Nesting F F F F F
Sequence F F F F F
Selection F F F F F
[teration F F F F F
Recursion F F F ?
Random Read F F F F F
Random Write F F F F

Stack Allocation F F F ?

Heap Allocation F F F

Closures F F
Objects F F Fw/C++)

M

3.8 Programming Model Support for Patterns

Table 3.2 Summary of programming model support for the patterns discussed in this
book. F: Supported directly, with a special feature. |: Can be implemented easily and
efficiently using other features. P: Implementations of one pattern in terms of others,
listed under the pattern being implemented. Blank means the particular pattern cannot
be implemented in that programming model (or that an efficient implementation cannot
be implemented easily). When examples exist in this book of a particular pattern with a
particular model, section references are given.

Parallel Pattern TBB Cilk Plus OpenMP ArBB OpenCL
Parallel nesting F F
Map F4.2.3; F F 4.2.6; F F4.2.9;
4.2.4;4.2.5; 4.2.7;4.2.8;
4.3.3 434,435 4.3.6 4.3.7 4.3.8
11 11
Stencil 110 110 | F10 |
Workpile F |
Reduction F5.3.4 F5.35 F5.3.6 F5.3.7 |
11 11
Scan F5.6.5 15.6.3 15.6.4 F5.6.6 |
14 P8.11 P5.4.4
14
Fork—join F8.9.2 F 8.7, |
13 8.9.1
13
Recurrence P8.12
Superscalar sequence F
Futures
Speculative selection
Pack |14 |14 | F |
Expand | | | | |
Pipeline F12 112 |
Geometric decomposition 115 115 | | |
Search | | | | |
Category reduction | | | | |
Gather | F | F |
Atomic scatter F | | |
Permutation scatter F F F F F
Merge scatter | | | F |

Priority scatter

111

112 CHAPTER 3 Patterns

Table 3.3 Additional patterns discussed. F: Supported directly, with a special feature.
I: Can be implemented easily and efficiently using other features. Blank means the
particular pattern cannot be implemented in that programming model (or that an
efficient implementation cannot be implemented easily).

Parallel Pattern TBB Cilk Plus OpenMP ArBB OpenCL

Superscalar sequence |
Futures |
Speculative selection |
Workpile F
Expand |
Search |
Category reduction |

Atomic scatter F

Permutation scatter F F F F F
Merge scatter |

Priority scatter

Cilk Plus

The feature set of Cilk Plus is simple, based primarily on an efficient implementation of the fork—
join pattern, but general enough that many other patterns can also be implemented in terms of its basic
features. Cilk Plus also supports many of the other patterns discussed in this chapter as built-in features,
with implementations usually built around fork—join. For some patterns, however, it may be necessary
to combine Cilk Plus with components of TBB, such as if atomic operations or scalable parallel
dynamic memory allocation are required. Here are the patterns supported directly by Cilk Plus.

Nesting, Recursion, Fork-Join

Nesting to arbitrary depth is supported by cilk_spawn. Specifically, this construct supports fork—
join parallelism, which generalizes recursion. Support for other patterns in Cilk Plus are based on
this fundamental mechanism and so can also be nested. As discussed later, fork—join in Cilk Plus is
implemented in such a way that large amounts of parallel slack (the amount of potential parallelism)
can be expressed easily but can be mapped efficiently (and mostly automatically) onto finite hardware
resources. Specifically, the ci1k_spawn keyword only marks opportunities for a parallel fork; it does
not mandate it. Such forks only result in parallel execution if some other core becomes idle and looks
for work to “steal.”

Reduction

The reduction pattern is supported in a very general way by hyperobjects in Cilk Plus. Hyperob-
jects can support reductions based on arbitrary commutative and associative operations. The semantics
of reduction hyperobjects are integrated with the fork—join model: new temporary accumulators are
created at spawn points, and the associative combiner operations are applied at joins.

3.8 Programming Model Support for Patterns 113

Map, Workpile

The map pattern can be expressed in Cilk Plus using ci1k_for. Although a loop syntax is used, not
all loops can be parallelized by converting them to ci1k_for, since loops must not have loop-carried
dependencies. Only loops with independent bodies can be parallelized, so this construct is in fact a
map. This is not an uncommon constraint in programming models supporting “parallel for” constructs;
it is also true of the “for” constructs in TBB and OpenMP. The implementation of this construct in Cilk
Plus is based on recursive subdivision and fork—join, and so distributes the overhead of managing the
map over multiple threads.

The map pattern can also be expressed in Cilk Plus using elemental functions, which when invoked
inside an explicitly vectorized loop also give a “map” pattern. This form explicitly targets vector
instructions. Because of this, it is more constrained than the ci1k_for mechanism. However, these
mechanisms can be composed.

The workpile pattern can be implemented in Cilk Plus directly on top of the basic fork—join model.

Scatter, Gather

The Cilk Plus array notations support scatter and gather patterns directly. The array notations also
allow sequences of primitive map operations (for example, the addition of two arrays) to be expressed.
Operations on entire arrays are supported with a special array slice syntax.

Threading Building Blocks

Threading Building Blocks (TBB) supports fork—join with a work-stealing load balancer as its basic
model. In contrast with Cilk Plus, TBB is a portable ISO C++ library, not a compiler extension.
Because TBB is not integrated into the compiler, its fork—join implementation is not quite as efficient
as Cilk Plus, and it cannot directly generate vectorized code. However, TBB also provides implemen-
tations of several patterns not available directly in Cilk Plus, such as pipelines. Because it is a portable
library, TBB is also available today for more platforms than Cilk Plus, although this may change over
time.

In addition to a basic work-stealing scheduler that supports the fork—join model of parallelism,
TBB also includes several other components useful in conjunction with other programming models,
including a scalable parallel dynamic memory allocator and an operating-system-independent interface
for atomic operations and locks. As previously discussed, locks should be used with caution and as a
last resort, since they are non-deterministic and can potentially cause deadlocks and race conditions.
Locks also make scheduling non-greedy, which results in sub-optimal scheduling.Here are the patterns
supported directly by TBB.

Nesting, Recursion, Fork-Join

TBB supports nesting of tasks to arbitrary depth via the fork—join model. Like Cilk Plus, TBB uses
work-stealing load balancing which is both scalable and locality-preserving. However, TBB can also
support more general task graph dependencies than the planar graphs generated by the Cilk Plus fork—
join implementation. These patterns are accessed by the parallel_invoke and task graph features
of TBB.

114 CHAPTER 3 Patterns

Map

The map patterns is implemented in TBB using the parallel_for and parallel_foreach func-
tions. Lambda functions can be used as arguments to these so that the required elemental function can
be described as part of the call rather than being separately declared. As is clear from the names, these
functions are useful for parallelizing for loops, but they do have some additional restrictions, so not
all for loops can be parallelized. In particular, each invocation of the elemental function body needs
to be independent, as we have described for the map pattern, and the number of iterations needs to be
fixed and known in advance.

Workpile
The workpile pattern can be accessed from TBB using the parallel_do construct. This is similar
to the parallel_for pattern, with the difference that the number of invocations does not need to
be known in advance. In fact, additional invocations can be generated from inside the “body” of this
construct.

Reduction

The reduction pattern can be accessed via the parallel_reduce construct. This construct allows the
specification of an arbitrary combiner function. However, in order for the result to be computed deter-
ministically the reduction function needs to be both associative and commutative (not just associative).
If a deterministic reduction is needed, a deterministic_parallel_reduce function is provided.

Scan

The scan pattern can be accessed via the parallel_scan construct. An arbitrary successor function
can be specified in order for the result to be deterministic. As with reduction, such a function must be
both fully associative and commutative in order for the scan to be deterministic. There is no built-in
deterministic scan in TBB but one can be implemented using other features of TBB.

Pipeline

The pipeline pattern can be specified directly with the parallel_pipeline construct, which can
support not only linear pipelines but also directed acyclic graphs of pipeline stages. TBB’s support for
pipelines is demonstrated at length in Chapter 9.

Speculative Selection, Branch and Bound
TBB supports task cancellation, which can be used to implement many other patterns, including non-
deterministic patterns such as branch and bound.

OpenMP

OpenMP is a standard interface for parallel programming based on annotating serial code so that certain
constructs, in particular loops, can be reinterpreted as parallel constructs. The basic patterns it supports
directly as features are map and reduce, although other patterns can also be implemented. In addition
to the data-parallel map pattern, which also supports vectorization, recent versions of OpenMP also
support a general task construct which allows other more irregular patterns to be implemented.
However, the implementation of OpenMP is usually based directly on threads, which raises various
practical issues. In particular, nested use of OpenMP can lead to overdecomposition and OpenMP does

3.8 Programming Model Support for Patterns 115

not include a load balancer. Therefore, nesting is not listed as a pattern supported by OpenMP. Also,
certain features in OpenMP that map units of work directly to threads preclude using an automatic
task-based load balancer. OpenMP does not include generalized reductions but does include locks.
Interestingly, a recent study [AF11] of OpenMP applications showed that the most common use of
locks was to implement generalized reductions and load balancing. Inclusion of these features into the
OpenMP standard would significantly reduce the need for locks.

One advantage of OpenMP over the other models discussed here is that it is also available for
Fortran, as well as C and C++. Cilk Plus is available for both C and C++, while TBB is only available
for C++.

Map, Workpile
OpenMP supports the map pattern by annotating a for loop (or DO loop in Fortran) to indicate to the
compiler that the annotated loop should be interpreted as a parallel construct. Each iteration of the loop
is executed in parallel in a different thread, and the end of the loop body implements a barrier.

The workpile pattern can also be implemented in OpenMP using its task model.

Reduction

When a loop body includes updates to variables declared outside the loop body with a predefined set
of associative (or semi-associative floating point) operators, the variable may be marked as a reduction
variable. In this case, OpenMP automatically implements a parallel reduction.

Fork-Join

OpenMP supports a general task model that can be used to implement the fork—join pattern. The task
model can also be used to implement various other patterns discussed in this book. OpenMP is not a
focus of this book, so we do not explore the OpenMP task model in depth, but the addition of tasks
adds significant power to the OpenMP programming model.

Stencil, Geometric Decomposition, Gather, Scatter

There is no built-in support for directly expressing stencil, geometric decomposition, gather, or scatter
in OpenMP, but many of the applications for which OpenMP is used also use these patterns. However,
except for reduction variables, OpenMP generally does not manage data, so data access patterns are
expressed through the base language functionality rather than through OpenMP itself.

Array Building Blocks

The basic building blocks of ArBB are based on many of the fundamental patterns discussed in this
book. ArBB also supports automatic fusion of these basic building blocks and can generate vectorized
code as well as code that runs on multiple cores. Unfortunately, ArBB at present does not support
nesting or recursion. The patterns directly supported by ArBB include the following.

Map

The map patterns is supported using elemental functions, which must be separately declared and then
invoked by a map operation over a collection or index set. Like the array notation of Cilk Plus, ArBB
also supports arithmetic operations over entire collections (in other words, the vector operation style of

116 CHAPTER 3 Patterns

map) but implements optimizations so that a sequence of such operations is as efficient as a map with
an explicit elemental function.

Reduction, Scan

Reductions are supported but only over a set of known operators. Reductions over truly associative
operations, such as modular integer addition and minimum and maximum, are both deterministic and
repeatable.

The scan pattern is supported with collective operations scan and iscan, again for a fixed set of
operators. The scan operation supports both exclusive scan, in which every output does not include
the corresponding element of the input, and inclusive scan, in which every output does include the
corresponding element of the input.

Although the reduction and scan operations in ArBB do not support custom combiner functions,
the ArBB implementation supports automatic fusion of multiple map and reduction operations into a
single operation. In practice, this can replace many of the uses of custom reduction and scan functions.

Unfortunately, in the current implementations of reduction and scan in ArBB, the results are not
guaranteed to be deterministic if the combiner is not truly associative, in particular for floating-point
operations. It is, however, possible to implement deterministic reductions and scans for these operations
(as well as for custom combiner functions) using other features of ArBB.

Scatter, Gather

Random reads and writes can be implemented in ArBB using either scalar reads and writes inside maps,
or with the collective operations gather and scatter. The scatter implementation only supports the
permutation scatter pattern (see Section 6.2), which means it is only guaranteed to work correctly
when there are no duplicate addresses. However, duplicates are only checked in a debugging mode.
Whenever possible, scatter should be avoided since it is not checked in deployment mode and if used
incorrectly could potentially lead to incorrect output.

Pack

The pack pattern is supported directly in ArBB with a collective operation, pack. The inverse of pack
is also supported with unpack. Note that pack is a safe, deterministic operation that can be used in
place of scatter in many situations.

OpenCL

The OpenCL programming model was designed to allow the use of attached co-processors with
separate memories and using a tiled SIMD architecture, such as GPUs, to be accessed as computational
devices. It also maps reasonably well onto CPUs with vector instructions.

OpenCL does not support full nesting but does provide two explicit levels of parallelism. One level
(work-groups) maps onto the multiple cores in the devices; the other (work-items) maps onto SIMD
lanes and hyperthreads in each core.

The programming model of OpenCL is quite similar to that of CUDA, but since OpenCL is
standardized and CUDA is not, we only give OpenCL examples in this book.

3.8 Programming Model Support for Patterns 117

Map

When a kernel function is written in OpenCL and then executed on a device, it implements the
map pattern. This is similar to the use of elemental functions in ArBB and Cilk Plus array notation.
Each execution of a kernel executes a set of instances. Each instance is called a work item. When
the map is executed, the work items are automatically tiled into sets of parallel work called work
groups. Within each work-group, the implementation typically emulates control flow over multiple
work items using masking over SIMD lanes. It is also possible to communicate using shared memory
within a work group, but not between work groups. Generally, communication requires the insertion
of a barrier, since a work group may be further decomposed into multiple chunks by the implemen-
tation that may run asynchronously. Barrier-free communication is possible within a single SIMD
“chunk” within a work group on specific hardware but this is not standardized, and hence it is not
advised.

Gather

Within an OpenCL kernel, random reads to memory can be performed. This can be done either to
on-chip local memory (very fast and shared within a work group) or to global memory. On some
processors supporting OpenCL, accesses to global memory are cached, but on others they are not.
In the latter case, the implementation may use software pipelining to hide memory access latency.
Hyperthreads may also be used on multicore processors that support it. The global memory is still
typically local to the co-processor, so OpenCL includes additional directives to do memory transfers
to and from the host.

Note that with OpenCL maximizing throughput rather than minimizing latency is the goal. Hyper-
threads and software pipelining overlap memory access latency with additional computation; they do
not eliminate the memory access latency. In fact, use of these techniques can increase latency overall.
This style of “throughput” computation may also be used with other throughput-oriented programming
models, such as ArBB and CUDA.

Scatter

Scatter is supported in OpenCL but some care is needed to deal with collisions (parallel writes to
the same address). Recent versions of OpenCL include standardized atomic operations, and many
processors targeted by OpenCL implementations support these efficiently in hardware.

Reduction, Scan, Pack, Expand

OpenCL does not support the reduction pattern directly as a feature but it is implementable. Typically,
the array to be reduced is divided into tiles, each tile reduced using SIMD parallelism in a single work
group, and then a final pass using a single work group is used to combine the results. However, there
are several possible implementations, and the most efficient implementation does tend to depend on the
device. The most efficient implementations use SIMD parallelism in a way that requires commutativity
[IncO9b, Cat10].

Scan is also not built in, but there are several possible ways to implement it efficiently [Inc09a].
Since scan and gather/scatter can be implemented, pack can also be implemented. For efficiency, like
scan and reduce, pack should be implemented directly in a tiled fashion. Likewise, with some overal-
location of memory, it should be possible to implement a limited form of expand. However, OpenCL
does not have dynamic memory allocation built-in. Dynamic memory allocation could be implemented

118 CHAPTER 3 Patterns

using atomics in the same way as workpile. In Table 3.2, have marked “expand” as being imple-
mentable although for efficiency it may have to be limited to finite expansion factors per element. It is
notable that vertex shaders, implemented in DirectX (an API for graphics) on the same GPUs targeted
by OpenCL, also implements the expand pattern, but limited to finite expansion factors.

Stencil
Stencil is not a built-in feature of OpenCL but can be implemented efficiently [Bor09]. Ideally, local
shared memory should be used explicitly to support data reuse on devices without cache.

Workpile

OpenCL does not support the workpile pattern directly but it is possible to implement a work queue
using atomics in CUDA, which has a similar programming model [GPM11]. Work queues are more
limited than fork—join, so we have not marked fork—join as being implementable with OpenCL,
although it might in theory be possible.

Superscalar Sequences

Multiple kernels can be queued up to execute asynchronously on OpenCL devices. Dependencies
between kernels can be given declaratively in the form of events. OpenCL itself does not track data
dependencies, but if appropriate events are created that correspond to data dependencies, then OpenCL
can implement the superscalar sequence pattern.

The event/task-queue model of OpenCL is similar to futures, although it does not support all fea-
tures that might be desirable in a futures implementation, such as cancellation. Therefore, we have
not listed futures under the patterns supported by OpenCL, although this could change as the standard
evolves.

Geometric Decomposition

Geometric decomposition is implementable on OpenCL, and in fact often necessary for performance.
However, usually geometric decompositions are limited to one level of decomposition in order to map
tiles onto shared local memory.

Closures
OpenCL is implemented using dynamic compilation so new kernels can in theory be implemented at
runtime. The interface to this feature, however, is not as convenient as ArBB, since strings are used to
define kernels.

Objects are not a built-in feature of OpenCL, since it is based on C. OpenCL also does not generally
support a stack and recursion. Although some implementations may allow this, it is non-standard.

SUMMARY

In this chapter, we introduced the concept of patterns and gave a survey of a set of patterns useful in
parallel programming. The types of patterns we focused on are also known as algorithmic skeletons, in
that they tend to arise in the implementation of algorithms. We also related these patterns to the patterns
of block control flow used in structured parallel programming. One very important pattern, nesting,
appears in combination with both serial and parallel pattern and allows for hierarchical composition.

3.9 Summary 119

For serial patterns, the nesting pattern allows for nested control flow constructs, while in parallel
programming it allows for nested parallelism.

Programming models can also be characterized by the patterns they support, either directly with
a built-in feature or with other features that allow a straightforward and efficient implementation of a
pattern. We have summarized the patterns supported, directly or indirectly, by the parallel programming
models used in this book.

The remainder of this book goes into further detail on the most important patterns and gives many
examples of the use of these patterns.

	Front Cover
	Structured Parallel Programming: Patterns for Efficient Computation
	Copyright
	Table of Contents
	Listings
	Preface
	Preliminaries
	1 Introduction
	1.1 Think Parallel
	1.2 Performance
	1.3 Motivation: Pervasive Parallelism
	1.3.1 Hardware Trends Encouraging Parallelism
	1.3.2 Observed Historical Trends in Parallelism
	1.3.3 Need for Explicit Parallel Programming

	1.4 Structured Pattern-Based Programming
	1.5 Parallel Programming Models
	1.5.1 Desired Properties
	1.5.2 Abstractions Instead of Mechanisms
	1.5.3 Expression of Regular Data Parallelism
	1.5.4 Composability
	1.5.5 Portability of Functionality
	1.5.6 Performance Portability
	1.5.7 Safety, Determinism, and Maintainability
	1.5.8 Overview of Programming Models Used
	Cilk Plus
	Threading Building Blocks (TBB)
	OpenMP
	Array Building Blocks (ArBB)
	OpenCL

	1.5.9 When to Use Which Model?

	1.6 Organization of this Book
	1.7 Summary

	2 Background
	2.1 Vocabulary and Notation
	2.2 Strategies
	2.3 Mechanisms
	2.4 Machine Models
	2.4.1 Machine Model
	Instruction Parallelism
	Memory Hierarchy
	Virtual Memory
	Multiprocessor Systems
	Attached Devices

	2.4.2 Key Features for Performance
	Data Locality
	Parallel Slack

	2.4.3 Flynn's Characterization
	2.4.4 Evolution

	2.5 Performance Theory
	2.5.1 Latency and Throughput
	2.5.2 Speedup, Efficiency, and Scalability
	2.5.3 Power
	2.5.4 Amdahl's Law
	2.5.5 Gustafson-Barsis' Law
	2.5.6 Work-Span Model
	2.5.7 Asymptotic Complexity
	2.5.8 Asymptotic Speedup and Efficiency
	2.5.9 Little's Formula

	2.6 Pitfalls
	2.6.1 Race Conditions
	2.6.2 Mutual Exclusion and Locks
	2.6.3 Deadlock
	2.6.4 Strangled Scaling
	2.6.5 Lack of Locality
	2.6.6 Load Imbalance
	2.6.7 Overhead

	2.7 Summary

	I Patterns
	3 Patterns
	3.1 Nesting Pattern
	3.2 Structured Serial Control Flow Patterns
	3.2.1 Sequence
	3.2.2 Selection
	3.2.3 Iteration
	3.2.4 Recursion

	3.3 Parallel Control Patterns
	3.3.1 Fork–Join
	3.3.2 Map
	3.3.3 Stencil
	3.3.4 Reduction
	3.3.5 Scan
	3.3.6 Recurrence

	3.4 Serial Data Management Patterns
	3.4.1 Random Read and Write
	3.4.2 Stack Allocation
	3.4.3 Heap Allocation
	3.4.4 Closures
	3.4.5 Objects

	3.5 Parallel Data Management Patterns
	3.5.1 Pack
	3.5.2 Pipeline
	3.5.3 Geometric Decomposition
	3.5.4 Gather
	3.5.5 Scatter

	3.6 Other Parallel Patterns
	3.6.1 Superscalar Sequences
	3.6.2 Futures
	3.6.3 Speculative Selection
	3.6.4 Workpile
	3.6.5 Search
	3.6.6 Segmentation
	3.6.7 Expand
	3.6.8 Category Reduction
	3.6.9 Term Graph Rewriting

	3.7 Non-Deterministic Patterns
	3.7.1 Branch and Bound
	3.7.2 Transactions

	3.8 Programming Model Support for Patterns
	3.8.1 Cilk Plus
	Nesting, Recursion, Fork–Join
	Reduction
	Map, Workpile
	Scatter, Gather

	3.8.2 Threading Building Blocks
	Nesting, Recursion, Fork–Join
	Map
	Workpile
	Reduction
	Scan
	Pipeline
	Speculative Selection, Branch and Bound

	3.8.3 OpenMP
	Map, Workpile
	Reduction
	Fork–Join
	Stencil, Geometric Decomposition, Gather, Scatter

	3.8.4 Array Building Blocks
	Map
	Reduction, Scan
	Scatter, Gather
	Pack

	3.8.5 OpenCL
	Map
	Gather
	Scatter
	Reduction, Scan, Pack, Expand
	Stencil
	Workpile
	Superscalar Sequences
	Geometric Decomposition
	Closures

	3.9 Summary

	4 Map
	4.1 Map
	4.2 Scaled Vector Addition (SAXPY)
	4.2.1 Description of the Problem
	4.2.2 Serial Implementation
	4.2.3 TBB
	4.2.4 Cilk Plus
	4.2.5 Cilk Plus with Array Notation
	4.2.6 OpenMP
	4.2.7 ArBB Using Vector Operations
	4.2.8 ArBB Using Elemental Functions
	4.2.9 OpenCL

	4.3 Mandelbrot
	4.3.1 Description of the Problem
	4.3.2 Serial Implementation
	4.3.3 TBB
	4.3.4 Cilk Plus
	4.3.5 Cilk Plus with Array Notations
	4.3.6 OpenMP
	4.3.7 ArBB
	4.3.8 OpenCL

	4.4 Sequence of Maps versus Map of Sequence
	4.5 Comparison of Parallel Models
	4.6 Related Patterns
	4.6.1 Stencil
	4.6.2 Workpile
	4.6.3 Divide-and-conquer

	4.7 Summary

	5 Collectives
	5.1 Reduce
	5.1.1 Reordering Computations
	5.1.2 Vectorization
	5.1.3 Tiling
	5.1.4 Precision
	5.1.5 Implementation
	OpenCL
	TBB
	Cilk Plus
	ArBB
	OpenMP

	5.2 Fusing Map and Reduce
	5.2.1 Explicit Fusion in TBB
	5.2.2 Explicit Fusion in Cilk Plus
	5.2.3 Automatic Fusion in ArBB

	5.3 Dot Product
	5.3.1 Description of the Problem
	5.3.2 Serial Implementation
	5.3.3 SSE Intrinsics
	5.3.4 TBB
	5.3.5 Cilk Plus
	5.3.6 OpenMP
	5.3.7 ArBB

	5.4 Scan
	5.4.1 Cilk Plus
	5.4.2 TBB
	5.4.3 ArBB
	5.4.4 OpenMP

	5.5 Fusing Map and Scan
	5.6 Integration
	5.6.1 Description of the Problem
	5.6.2 Serial Implementation
	5.6.3 Cilk Plus
	5.6.4 OpenMP
	5.6.5 TBB
	5.6.6 ArBB

	5.7 Summary

	6 Data Reorganization
	6.1 Gather
	6.1.1 General Gather
	6.1.2 Shift
	6.1.3 Zip

	6.2 Scatter
	6.2.1 Atomic Scatter
	6.2.2 Permutation Scatter
	6.2.3 Merge Scatter
	6.2.4 Priority Scatter

	6.3 Converting Scatter to Gather
	6.4 Pack
	6.5 Fusing Map and Pack
	6.6 Geometric Decomposition and Partition
	6.7 Array of Structures vs. Structures of Arrays
	6.8 Summary

	7 Stencil and Recurrence
	7.1 Stencil
	7.2 Implementing Stencil with Shift
	7.3 Tiling Stencils for Cache
	7.4 Optimizing Stencils for Communication
	7.5 Recurrence
	7.6 Summary

	8 Fork–Join
	8.1 Definition
	8.2 Programming Model Support for Fork–Join
	8.2.1 Cilk Plus Support for Fork–Join
	8.2.2 TBB Support for Fork–Join
	8.2.3 OpenMP Support for Fork–Join

	8.3 Recursive Implementation of Map
	8.4 Choosing Base Cases
	8.5 Load Balancing
	8.6 Complexity of Parallel Divide-and-Conquer
	8.7 Karatsuba Multiplication of Polynomials
	8.7.1 Note on Allocating Scratch Space

	8.8 Cache Locality and Cache-Oblivious Algorithms
	8.9 Quicksort
	8.9.1 Cilk Quicksort
	8.9.2 TBB Quicksort
	8.9.3 Work and Span for Quicksort

	8.10 Reductions and Hyperobjects
	8.11 Implementing Scan with Fork–Join
	8.12 Applying Fork–Join to Recurrences
	8.12.1 Analysis
	8.12.2 Flat Fork–Join

	8.13 Summary

	9 Pipeline
	9.1 Basic Pipeline
	9.2 Pipeline with Parallel Stages
	9.3 Implementation of a Pipeline
	9.4 Programming Model Support for Pipelines
	9.4.1 Pipeline in TBB
	9.4.2 Pipeline in Cilk Plus

	9.5 More General Topologies
	9.6 Mandatory versus Optional Parallelism
	9.7 Summary

	II Examples
	10 Forward Seismic Simulation
	10.1 Background
	10.2 Stencil Computation
	10.3 Impact of Caches on Arithmetic Intensity
	10.4 Raising Arithmetic Intensity with Space–Time Tiling
	10.5 Cilk Plus Code
	10.6 ArBB Implementation
	10.7 Summary

	11 K-Means Clustering
	11.1 Algorithm
	11.2 K-Means with Cilk Plus
	11.2.1 Hyperobjects

	11.3 K-Means with TBB
	11.4 Summary

	12 Bzip2 Data Compression
	12.1 The Bzip2 Algorithm
	12.2 Three-Stage Pipeline Using TBB
	12.3 Four-Stage Pipeline Using TBB
	12.4 Three-Stage Pipeline Using Cilk Plus
	12.5 Summary

	13 Merge Sort
	13.1 Parallel Merge
	13.1.1 TBB Parallel Merge
	13.1.2 Work and Span of Parallel Merge

	13.2 Parallel Merge Sort
	13.2.1 Work and Span of Merge Sort

	13.3 Summary

	14 Sample Sort
	14.1 Overall Structure
	14.2 Choosing the Number of Bins
	14.3 Binning
	14.3.1 TBB Implementation

	14.4 Repacking and Subsorting
	14.5 Performance Analysis of Sample Sort
	14.6 For C++ Experts
	14.7 Summary

	15 Cholesky Factorization
	15.1 Fortran Rules!
	15.2 Recursive Cholesky Decomposition
	15.3 Triangular Solve
	15.4 Symmetric Rank Update
	15.5 Where Is the Time Spent?
	15.6 Summary

	Appendices
	Appendix A: Further Reading
	A.1 Parallel Algorithms and Patterns
	A.2 Computer Architecture Including Parallel Systems
	A.3 Parallel Programming Models

	Appendix B: Cilk Plus
	B.1 Shared Design Principles with TBB
	B.2 Unique Characteristics
	B.3 Borrowing Components from TBB
	B.4 Keyword Spelling
	B.5 cilk_for
	B.6 cilk_spawn and cilk_sync
	B.7 Reducers (Hyperobjects)
	B.7.1 C++ Syntax
	B.7.2 C Syntax

	B.8 Array Notation
	B.8.1 Specifying Array Sections
	B.8.2 Operations on Array Sections
	B.8.3 Reductions on Array Sections
	B.8.4 Implicit Index
	B.8.5 Avoid Partial Overlap of Array Sections

	B.9 #pragma simd
	B.10 Elemental Functions
	B.10.1 Attribute Syntax

	B.11 Note on C++11
	B.12 Notes on Setup
	B.13 History
	B.14 Summary

	Appendix C: TBB
	C.1 Unique Characteristics
	C.2 Using TBB
	C.3 parallel_for
	C.3.1 blocked_range
	C.3.2 Partitioners

	C.4 parallel_reduce
	C.5 parallel_deterministic_reduce
	C.6 parallel_pipeline
	C.7 parallel_invoke
	C.8 task_group
	C.9 task
	C.9.1 empty_task

	C.10 atomic
	C.11 enumerable_thread_specific
	C.12 Notes on C++11
	C.13 History
	C.14 Summary

	Appendix D: C++11
	D.1 Declaring with auto
	D.2 Lambda Expressions
	D.3 std::move

	Appendix E: Glossary

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

