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CHAPTER

Collectives 5
In Chapter 4, we introduced the map pattern, which describes embarrassing parallelism: paral-
lel computations on a set of completely independent operations. However, obviously we need other
patterns to deal with problems that are not completely independent.

The collective operations are a set of patterns that deal with a collection of data as a whole rather
than as separate elements. The reduce pattern allows data to be summarized; it combines all the ele-
ments in a collection into a single element using some associative combiner operator. The scan pattern
is similar but reduces every subsequence of a collection up to every position in the input. The useful-
ness of reduce is easy to understand. One simple example is summation, which shows up frequently
in mathematical computations. The usefulness of scan is not so obvious, but partial summarizations
do show up frequently in serial algorithms, and the parallelization of such serial algorithms frequently
requires a scan. Scan can be thought of as a discrete version of integration, although in general it might
not be linear.

As we introduce the reduce and scan patterns, we will also discuss their implementations and
various optimizations particularly arising from their combination with the map pattern.

Not included in this chapter are operations that just reorganize data or that provide different ways
to view or isolate it, such as partitioning, scatter, and gather. When data is shared between tasks these
can also be used for communication and are will be discussed in Chapter 6.

5.1 REDUCE
In the reduce pattern, a combiner function f (a,b) = a ⌦ b is used to combine all the elements of a
collection pairwise and create a summary value. It is assumed that pairs of elements can be com-
bined in any order, so multiple implementations are possible. Possible implementations of reduce are
diagrammed in Figure 5.1. The left side of this figure is equivalent to the usual naive serial implemen-
tation for reducing the elements of a collection. The code given in Listing 5.1 implements the serial
algorithm for a collection a with n elements.

The identity of the combiner function is required by this implementation. This is so that the reduc-
tion of an empty collection is meaningful, which is often useful for boundary conditions in algorithms.
In this implementation the identity value could also be interpreted as the initial value of the reduction,
although in general we should distinguish between initial values and identities. If we do not need to
worry about empty collections, we can define the reduce pattern using Listing 5.2.
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FIGURE 5.1

Serial and tree implementations of the reduce pattern for 8 inputs.

1 template<typename T>

2 T reduce(
3 T (*f)(T,T), // combiner function
4 size_t n, // number of elements in input array
5 T a[], // input array
6 T identity // identity of combiner function
7 ) {
8 T accum = identity;
9 for (size_t i = 0; i < n; ++i) {

10 accum = f(accum, a[i]);
11 }
12 return accum;
13 }

LISTING 5.1

Serial reduction in C++ for 0 or more elements.

5.1.1 Reordering Computations
To parallelize reduction, we have to reorder the operations used in the serial algorithm. There are many
ways to do this but they depend on the combiner function having certain algebraic properties.

To review some basic algebra, a binary operator ⌦ is considered to be associative or commutative
if it satisfies the following equations:

Associative: (a ⌦ b) ⌦ c = a ⌦ (b ⌦ c).
Commutative: a ⌦ b = b ⌦ a.
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1 template<typename T>

2 T reduce(
3 T (*f)(T,T), // combiner function
4 size_t n, // number of elements in input array
5 T a[] // input array
6 ) {
7 assert(n > 0);
8 T accum = a[0];
9 for (size_t i = 1; i < n; i++) {

10 accum = f(accum, a[i]);
11 }
12 return accum;
13 }

LISTING 5.2

Serial reduction in C++ for 1 or more elements.

Associativity and commutativity are not equivalent. While there are common mathematical operations
that are both associative and commutative, including addition; multiplication; Boolean AND, OR, and
XOR; maximum; and minimum (among others), there are many useful operations that are associative
but not commutative. Examples of operations that are associative but not commutative include matrix
multiplication and quaternion multiplication (used to compose sequences of 3D rotations). There are
also operations that are commutative but not associative, an example being saturating addition on
signed numbers (used in image and signal processing). More seriously, although addition and multipli-
cation of real numbers are both associative and commutative, floating point addition and multiplication
are only approximately associative. Parallelization may require an unavoidable reordering of floating
point computations that will change the result.

To see that only associativity is required for parallelization, consider the following:

s = a0 ⌦ a1 ⌦ a2 ⌦ a3 ⌦ a4 ⌦ a5 ⌦ a6 ⌦ a7

= (((((((a0 ⌦ a1) ⌦ a2) ⌦ a3) ⌦ a4) ⌦ a5) ⌦ a6) ⌦ a7)

= (((a0 ⌦ a1) ⌦ (a2 ⌦ a3)) ⌦ ((a4 ⌦ a5) ⌦ (a6 ⌦ a7))).

The first grouping shown is equivalent to the left half of Figure 5.1, the second grouping to the right
right half of Figure 5.1. Another way to look at this is that associativity allows us to use any order
of pairwise combinations as long as “adjacent” elements are intermediate sequences. However, the
second “tree” grouping allows for parallel scaling, but the first does not.

A good example of a non-associative operation is integer arithmetic with saturation. In saturating
arithmetic, if the result of an operation is outside the representable range, the result is “clamped” to
the closest representable value rather than overflowing. While convenient in some applications, such
as image and signal processing, saturating addition is not associative for signed integers.

The following example shows that saturating addition is not associative for signed bytes. Let �
be the saturating addition operation. A signed byte can represent an integer between �128 and 127
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inclusive. Thus, a saturating addition operation 120 � 78 yields 127, not 198. Consider reduction with
� of the sequence [120,78,�90,�50]. Serial left-to-right order yields:

s1 = (((120 � 77) � �90) � �50)

= ((127 � �90) � �50)

= (37 � �50)

= �13.

Tree order yields a different result:

s2 = ((120 � 77) � (�90 � �50))

= (127 � �128)

= �1.

In contrast, modular integer addition, where overflow wraps around, is fully associative. A result
greater than 127 or �128 is brought in range by adding or subtracting 256, which is equivalent to
looking at only the low-order 8 bits of the binary representation of the algebraic result. Here is the
serial reduction with modular arithmetic on signed bytes:

s1 = (((120 + 77) + �90) + �50)

= ((�59 + �90) + �50)

= (107 + �50)

= 57.

Tree ordering gives the same result:

s2 = ((120 + 77) + (�90 + �50))

= (�59 + 116)

= 57.

5.1.2 Vectorization
There are useful reorderings that also require commutativity. For example, suppose we want to
vectorize a reduction on a processor with two-way SIMD instructions. Then we might want to combine
all the even elements and all the odd elements separately, as in Figure 5.2, then combine the results.
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FIGURE 5.2

A reordering of serial reduction that requires commutativity. Commutativity of the combiner operator is not
required for parallelization but enables additional reorderings that may be useful for vectorization. This
example reduces eight inputs using two serial reductions over the even and odd elements of the inputs then
combines the results. This reordering is useful for vectorization on SIMD vector units with two lanes.

However, this reordering requires commutativity:

s = a0 ⌦ a1 ⌦ a2 ⌦ a3

= a0 ⌦ a2 ⌦ a1 ⌦ a3

= (a0 ⌦ a2) ⌦ (a1 ⌦ a3).

Note that a1 and a2 had to be swapped before we could group the operations according to this pattern.

5.1.3 Tiling
In practice, we want to tile1 computations and use the serial algorithm for reduction when possible. In a
tiled algorithm, we break the work into chunks called tiles (or blocks), operate on each tile separately,
and then combine the results. In the case of reduce, we might want to use the simple serial reduce
algorithm within each tile rather than the tree ordering. This is because, while the tree and serial reduce
algorithms use the same number of applications of the combiner function, the simplest implementation
of the tree ordering requires O(n) storage for intermediate results while the serial ordering requires
only O(1) storage.

1This is also called “block,” but since that term can be confused with synchronization we avoid it here.
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FIGURE 5.3

A reordering of reduction using serial reductions on tiles and then reductions of the results of those
reductions. This can be generalized to a two-phase approach to implementing reduce in general.

This is shown in Figure 5.3 for 16 inputs with four tiles of four inputs each, followed by a “global
reduction” with four inputs. In practice, since synchronization is expensive, it is common for reductions
to have only two phases: a local phase over tiles and a global phase combining the results from each tile.
We may also use a vectorized implementation within the tiles as discussed in Section 5.1.2, although
this usually requires further reordering.

WARNING
The issues of associativity and commutativity matter mostly when the combiner function may be user defined.

Unfortunately, it is hard for an automated system to prove that an arbitrary function is associative or

commutative, although it is possible to do so in specific cases—for example, when forming expressions using

known associative operators [FG94]. Generally, though, these properties have to be asserted and validated by the

user. Therefore, you need to make sure that when using user-defined reductions the functions you are providing

satisfy the required properties for the implementation. If you violate the assumptions of the implementation it

may generate incorrect and/or non-deterministic results. It is also necessary for the implementor of a reduction

taking arbitrary combiner functions to document whether or not commutativity is assumed. The issue does not

arise when only built-in operations with known properties are provided by the reduction implementor.

5.1.4 Precision
Another issue can arise with large reductions: precision. Large summations in particular have a
tendency to run out of bits to represent intermediate results. Suppose you had an array with a million
single-precision floating point numbers and you wanted to add them up. Assume that they are all



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 151 — #151

5.1 Reduce 151

approximately the same magnitude. Single-precision floating point numbers only have about six or
seven digits of precision. What can happen in this scenario if the naı̈ve serial algorithm is used is that
the partial sum can grow very large relative to the new values to be added to it. If the partial sum
grows large enough, new values to it will be less than the smallest representable increment and their
summation will have no effect on the accumulator. The increments will be rounded to zero. This means
that part of the input will effectively be ignored and the result will of course be incorrect.

The tree algorithm fares better in this case. If all the inputs are about the same size, then all the
intermediate results will also be about the same size. This is a good example of how reassociating
floating point operations can change the result. Using a tiled tree will retain most of the advantages of
the tree algorithm if the tiles and the final pass are of reasonable sizes.

The tree algorithm is not perfect either, however. We can invent inputs that will break any specific
ordering of operations. A better solution is to use a larger precision accumulator than the input. Gen-
erally speaking, we should use double-precision accumulators to sum single-precision floating point
inputs. For integer data, we need to consider the largest possible intermediate value.

Converting input data to a higher-precision format and then doing a reduce can be considered a
combination of a map for the conversion and a reduce to achieve the higher-precision values. Fusion
of map and reduce for higher performance is discussed in Section 5.2.

5.1.5 Implementation
Most of the the programming models used in this book, except OpenCL, include various built-in
implementations of reduce. TBB and Cilk Plus in addition support reduce with user-defined combiner
functions. However, it your responsibility to ensure that the combiner function provided is associative.
If the combiner function is not fully associative (for example if it uses floating point operations), you
should be aware that many implementations reassociate operations non-deterministically. When used
with combiner functions that are not fully associative, this can change the result from run to run of the
program. At present, only TBB provides a guaranteed deterministic reduce operation that works with
user-defined combiner functions that are not fully associative.

OpenCL
Reduce is not a built-in operation, but it is possible to implement it using a sequence of two kernels.
The first reduces over blocks, and the second combines the results from each block. Such a reduction
would be deterministic, but optimizations for SIMD execution may also require commutativity.

TBB
Both deterministic and non-deterministic forms of reduce are supported as built-in operations.
The basic form of reduce is parallel_reduce. This is a fast implementation but may non-
deterministically reassociate operations. In particular, since floating point operations are not truly
associative, using this construct with floating point addition and multiplication may lead to non-
determinism. If determinism is required, then the parallel_deterministic_reduce construct
may be used. This may result in lower performance than the non-deterministic version. Neither of
these implementations commutes operations and so they can both safely be used with non-commutative
combiner functions.
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Cilk Plus
Two forms of reduce are provided: __sec_reduce for array slices, and reducer hyperobjects. Both of
these support user-defined combiner functions and assume associativity. Neither form assumes com-
mutativity of a user-defined combiner. Either of these reductions may non-deterministically reassociate
operations and so may produce non-deterministic results for operations that are not truly associa-
tive, such as floating point operations. It is possible to implement a deterministic tree reduction in
a straightforward fashion in Cilk Plus using fork–join, although this may be slower than the built-in
implementations.

ArBB
Only reductions using specific associative and commutative built-in operations are provided. Float-
ing point addition and multiplication are included in this set. The implementation currently does not
guarantee that the results of floating point reductions will be deterministic. If a deterministic reduce
operation is required, it is possible to implement it using a sequence of map operations, exactly as with
OpenCL.

OpenMP
Only reductions with specific associative and commutative built-in operations are provided. More
specifically, when a variable is marked as a reduction variable, at the start of a parallel region a private
copy is created and initialized in each parallel context. At the end of the parallel region the values are
combined with the specified operator.

5.2 FUSING MAP AND REDUCE
A map followed by a reduce can be optimized by fusing the map computations with the initial stages
of a tree-oriented reduce computation. If the map is tiled, this requires that the reduction be tiled in the
same way. In other words, the initial reductions should be done over the results of each each map tile
and then the reduce completed with one or more additional stages. This is illustrated in Figure 5.4.

This optimization avoids the need for a synchronization after the map and before the reduce, and
it also avoids the need to write the output of the map to memory if it is not used elsewhere. If this
is the case, the amount of write bandwidth will be reduced by a factor equal to the tile size. The
synchronization can also be avoided in sophisticated systems that break the map and reduce into tiles
and only schedule dependencies between tiles. However, even such systems will have overhead, and
fusing the computations avoids this overhead.

5.2.1 Explicit Fusion in TBB
The map and reduce patterns can be fused together in TBB by combining their implementations and
basically combining the first step of the reduce implementation with some preprocessing (the map)
on the first pass. In practice, this can be accomplished through appropriate use of the tiled reduction
constructs in TBB, as we show in Section 5.3.4.
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FIGURE 5.4

Optimization of map and reduce by fusion. When a map feeds directly into a reduction, the combination can
be implemented more efficiently by combining the map with the initial stage of the reduce.

5.2.2 Explicit Fusion in Cilk Plus
In Cilk Plus map and reduce can be fused by combining their implementations. The map and initial
stages of the reduce can be done serially within a tile, and then the final stages of the reduce can be
done with hyperobjects. We show an example of this in Section 5.3.5.

5.2.3 Automatic Fusion in ArBB
A map followed by a reduce is fused automatically in ArBB. You do not have to do anything special,
except ensure that the operations are in the same call. Technically, ArBB does a code transformation
on the sequence of operations that within serial code generation is often called loop fusion. In ArBB,
however, it is applied to parallel operations rather than loop iterations.

The map and reduce operations do not have to be adjacent in the program text either, as opportuni-
ties for fusion are found by analyzing the computation’s data dependency graph. The system will also
find multiple fusion opportunities—for example, a map followed by multiple different reductions on
the same data. If the output of the map is the same shape as that used by the reduce operations, the
fusion will almost always happen. However, intermediate random-memory access operations such as
gather and scatter will inhibit fusion, so they should be used with this understanding.
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ArBB does not currently provide a facility to allow programmers to define their own arbitrary com-
biner functions for reductions. Instead, complex reductions are built up by fusing elementary reductions
based on basic arithmetic operations that are known to be associative and commutative.

5.3 DOT PRODUCT
As a simple example of the use of the different programming models, we will now present an imple-
mentation of the inner or “dot” product in TBB, Cilk Plus, SSE intrinsics, OpenMP, and ArBB. Note
that this is actually an example of a map combined with a reduction, not just a simple reduction. The
map is the initial pairwise multiplication, and the reduction is the summation of the results of that
multiplication.

5.3.1 Description of the Problem
Given two vectors (1D arrays) a and b each with n elements, the dot product a · b is a scalar given by:

a · b =
n�1X

i=0

aibi.

where ai and bi denote the ith elements of a and b, respectively. Subscripts run from 0 to n � 1 as usual
in C and C++.

It is unlikely that a scalable speedup will be obtained when parallelizing such a simple computa-
tion. As with SAXPY in Section 4.2, a simple operation such as dot product is likely to be dominated
by memory access time. The dot product is also the kind of computation where calling a library rou-
tine would probably be the best solution in practice, and tuned implementations of the dot product
do indeed appear in BLAS libraries. However, dot product is simple and easy to understand and also
shows how a map can be combined with reduce in practice.

As map and reduce are a common combination, you can use these examples as templates for more
complex applications. We will also use this example to demonstrate some important optimizations of
this combination without getting caught up in the complexities of the computation itself.

5.3.2 Serial Implementation
For reference, a serial implementation of dot product is provided in Listing 5.3. There is nothing special
here. However, note that the usual serial expression of reduce results in loop-carried dependencies
and would not be parallelizable if implemented in exactly the order specified in this version of the
algorithm. You have to recognize, abstract, and extract the reduce operation to parallelize it. In this
case, the serial reduce pattern is easy to recognize, but when porting code you should be alert to
alternative expressions of the same pattern.

This example assumes that n is small, so the reduction accumulator can have type float. For
large reductions this is unwise since single-precision floating point values may not be able to represent
partial sums with sufficient precision as explained in Section 5.1.4. However, the same type for the



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 155 — #155

5.3 Dot Product 155

1 float sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5 ) {
6 float res = 0.0f;
7 for (size_t i = 0; i < n; i++) {
8 res += a[i] * b[i];
9 }

10 return res;
11 }

LISTING 5.3

Serial implementation of dot product in C++. The reduction in this example is based on a loop-carried
dependency and is not parallelizable without reordering the computation.

accumulator, the input, and the output has been used in order to simplify the example. In some of the
implementations we will show how to use a different type for performing the accumulations.

5.3.3 SSE Intrinsics
Listing 5.4 gives an explicitly vectorized version of the dot product computation. This example uses
SSE intrinsics. SSE stands for Streaming SIMD Extensions and is an instruction set extension sup-
ported by Intel and AMD processors for explicitly performing multiple operations in one instruction. It
is associated with a set of registers that can hold multiple values. For SSE, these registers are 128 bits
wide and can store two double-precision floating point values or four single-precision floating point
values.

When using SSE intrinsics, special types are used to express pairs or quadruples of values that may
be stored in SSE registers, and then functions are used to express operations performed on those values.
These functions are recognized by the compiler and translated directly into machine language.

Use of intrinsics is not quite as difficult as writing in assembly language since the compiler does
take care of some details like register allocation. However, intrinsics are definitely more complex than
the other programming models we will present and are not as portable to the future. In particular, SIMD
instruction sets are subject to change, and intrinsics are tied to specific instruction sets and machine
parameters such as the width of vector registers.

For (relative) simplicity we left out some complications so this example is not really a full solution.
In particular, this code does not handle input vectors that are not a multiple of four in length.

Some reordering has been done to improve parallelization. In particular, this code really does four
serial reductions at the same time using four SSE register “lanes”, and then combines them in the end.
This uses the implementation pattern for reduce discussed in Section 5.1.2, but with four lanes. Like
the other examples that parallelize reduce, some reordering of operations is required, since the exact
order given in the original serial implementation is not parallelizable. This particular ordering assumes
commutativity as well as associativity.
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1 float sse_sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5 ) {
6 assert(0 == n % 4); // only works for N, a multiple of 4
7 __m128 res, prd, ma, mb;
8 res = _mm_setzero_ps();
9 for (size_t i = 0; i < n; i += 4) {

10 ma = _mm_loadu_ps(&a[i]); // load 4 elements from a
11 mb = _mm_loadu_ps(&b[i]); // load 4 elements from b
12 prd = _mm_mul_ps(ma,mb); // multiple 4 values elementwise
13 res = _mm_add_ps(prd,res); // accumulate partial sums over 4�tuples
14 }
15 prd = _mm_setzero_ps();
16 res = _mm_hadd_ps(res, prd); // horizontal addition
17 res = _mm_hadd_ps(res, prd); // horizontal addition
18 float tmp;
19 _mm_store_ss(&tmp, res);
20 return tmp;
21 }

LISTING 5.4

Vectorized dot product implemented using SSE intrinsics. This code works only if the number of elements in
the input is a multiple of 4 and only on machines that support the SSE extensions. This code is not parallelized
over cores.

Other problems with the SSE code include the fact that it is machine dependent, verbose, hard
to maintain, and it only takes advantage of vector units, not multiple cores. It would be possible to
combine with code with a Cilk Plus or TBB implementation in order to target multiple cores, but that
would not address the other problems. In general, machine dependence is the biggest problem with this
code. In particular, new instruction set extensions such as AVX are being introduced that have wider
vector widths, so it is better to code in a way that avoids dependence on a particular vector width or
instruction set extension.

5.3.4 TBB
Listing 5.5 uses TBB’s algorithm template parallel_reduce. This template recursively decomposes
a reduction into smaller subreductions and reduces each base case using a functor provided by the user.
Here that functor uses std::inner_product to do serial reduction, which the compiler may be able
to automatically vectorize. The base case code can also be used for map–reduce fusion, as done here:
the std::inner_product call in the base case does both the multiplications and a reduction over the
tile it is given. The user must also provide a functor to combine the results of the base cases, which
here is the functor std::plus<float>.
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1 float tbb_sprod(
2 size_t n,
3 const float *a,
4 const float *b
5 ) {
6 return tbb::parallel_reduce(
7 tbb::blocked_range<size_t>(0,n),
8 float(0),
9 [=]( // lambda expression

10 tbb::blocked_range<size_t>& r,
11 float in
12 ) {
13 return std::inner_product(
14 a+r.begin(), a+r.end(),
15 b+r.begin(), in );
16 },
17 std::plus<float>()
18 );
19 }

LISTING 5.5

Dot product implemented in TBB.

The template parallel_reduce also requires the identity of the combiner function. In this case,
the identity of floating point addition is float(0). Alternatively, it could be written as 0.f. The
f suffix imbues the constant with type float. It is important to get the type right, because the
template infers the type of the internal accumulators from the type of the identity. Writing just 0
would cause the accumulators to have the type of a literal 0, which is int, not the desired type
float.

The template parallel_reduce implements a flexible reduce pattern which can be instantiated
in a variety of ways. For example, Listing 5.6 shows an instantiation that does accumulation using
a precision higher than the type of the input, which is often important to avoid overflow in large
reductions. The type used for the multiplication is also changed, since this is a good example of a fused
map operation. These modifications change float in Listing 5.5 to double in several places:

1. The return type is double.
2. The identity element is double(0), so that the template uses double as the type to use for internal

accumulators.
3. The parameter in is declared as double, not only because it might hold a partial accumulation, but

because std::inner_product uses this type for its internal accumulator.
4. To force use of double-precision + and ⇤ by std::inner_product, there are two more arguments,

std::plus<double>() and std::multiplies<double>(). An alternative is to write the
base case reduction with an explicit loop instead of std::inner_product.

5. The combining functor is std::plus<double>.
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1 double tbb_sprod2(
2 size_t n,
3 const float *a,
4 const float *b
5 ) {
6 return tbb::parallel_reduce(
7 tbb::blocked_range<size_t>(0,n),
8 double(0),
9 [=]( // lambda expression

10 tbb::blocked_range<size_t>& r,
11 double in
12 ) {
13 return std::inner_product(
14 a+r.begin(), a+r.end(),
15 b+r.begin(), in,
16 std::plus<double>(),
17 std::multiplies<double>() );
18 },
19 std::plus<double>()
20 );
21 }

LISTING 5.6

Modification of Listing 5.5 with double-precision operations for multiplication and accumulation.

5.3.5 Cilk Plus
Listing 5.7 expresses the pairwise multiplication and reduction using Cilk Plus array notation. A good
compiler can generate code from it that is essentially equivalent to the hand-coded SSE in Listing 5.4,
except that the Cilk Plus version will correctly handle vector widths that are not a multiple of the
hardware vector width. In fact, it is not necessary to know the hardware vector width to write the Cilk
Plus code. The Cilk Plus code is not only shorter and easier to understand and maintain, it’s portable.

An explicitly thread parallel and vector parallel dot product can be expressed as shown in
Listing 5.8. The variable res has a special type called a reducer. Here the reducer res accumulates
the correct reduction value even though there may be multiple iterations of the cilk_for running in
parallel. Even though the code looks similar to serial code, the Cilk Plus runtime executes it using a
tree-like reduction pattern. The cilk_for does tree-like execution (Section 8.3) and parts of the tree
executing in parallel get different views of the reducer. These views are combined so at the end of the
cilk_for there is a single view with the whole reduction value. Section 8.10 explains the mechanics
of reducers in detail.

Our code declares res as a reducer_opadd<float> reducer. This indicates that the variable
will be used to perform + reduction over type float. The constructor argument (0) indicates the
variable’s initial value. Here it makes sense to initialize it with 0, though in general a reducer can be
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1 float cilkplus_sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5 ) {
6 return __sec_reduce_add(a[0:n] * b[0:n]);
7 }

LISTING 5.7

Dot product implemented in Cilk Plus using array notation.

1 float cilkplus_sprod_tiled(
2 size_t n,
3 const float a[],
4 const float b[]
5 ) {
6 size_t tilesize = 4096;
7 cilk::reducer_opadd<float> res(0);
8 cilk_for (size_t i = 0; i < n; i+=tilesize) {
9 size_t m = std::min(tilesize,n�i);

10 res += __sec_reduce_add(a[i:m] * b[i:m]);
11 }
12 return res.get_value();
13 }

LISTING 5.8

Dot product implementation in Cilk Plus using explicit tiling.

initialized with any value, because this value is not assumed to be the identity. A reducer_opadd<
T> assumes that the identity of + is T(), which by C++ rules constructs a zero for built-in types. The
min expression in the code deals with a possible partial “boundary” tile, so the input does not have to
be a multiple of the tile size.

Listing 5.8 shows how to modify the reduction to do double-precision accumulation. The casts
to double-precision are also placed to result in the use of double-precision multiplication. These
casts, like the multiplication itself, are really examples of the map pattern that are being fused into
the reduction. Of course, if you wanted to do single-precision multiplication, you could move the
cast to after the __sec_reduce_add. Doing the multiplication in double precision may or may
not result in lower performance, however, since a dot product will likely be performance limited
by memory bandwidth, not computation. Likewise, doing the accumulation in double precision will
likely not be a limiting factor on performance. It might increase communication slightly, but for rea-
sonably large tile sizes most of the memory bandwidth used will result from reading the original
input.
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5.3.6 OpenMP
An OpenMP implementation of dot product is shown in Listing 5.10. In OpenMP, parallelization of this
example is accomplished by adding a single line annotation to the serial implementation. However, the
annotation must specify that res is a reduction variable. It is also necessary to specify the combiner
operator, which in this case is (floating point) addition.

What actually happens is that the scope of the loop specifies a parallel region. Within this region
local copies of the reduction variable are made and initialized with the identity associated with the
reduction operator. At the end of the parallel region, which in this case is the end of the loop’s scope, the
various local copies are combined with the specified combiner operator. This code implicitly does map–
reduce fusion since the base case code, included within the loop body, includes the extra computations
from the map.

1 double cilkplus_sprod_tiled2(
2 size_t n,
3 const float a[],
4 const float b[]
5 ) {
6 size_t tilesize = 4096;
7 cilk::reducer_opadd<double> res(0);
8 cilk_for (size_t i = 0; i < n; i+=tilesize) {
9 size_t m = std::min(tilesize,n�i);

10 res += __sec_reduce_add(double(a[i:m]) * double(b[i:m]));
11 }
12 return res.get_value();
13 }

LISTING 5.9

Modification of Listing 5.8 with double-precision operations for multiplication and accumulation.

1 float openmp_sprod(
2 size_t n,
3 const float *a,
4 const float *b
5 ) {
6 float res = 0.0f;
7 #pragma omp parallel for reduction(+:res)
8 for (size_t i = 0; i < n; i++) {
9 res += a[i] * b[i];

10 }
11 return res;
12 }

LISTING 5.10

Dot product implemented in OpenMP.
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OpenMP implementations are not required to inform you if the loops you annotate have reductions
in them. In general, you have to identify them for yourself and correctly specify the reduction vari-
ables. OpenMP 3.1 provides reductions only for a small set of built-in associative and commutative
operators and intrinsic functions. User-defined reductions have to be implemented as combinations
of these operators or by using explicit parallel implementations. However, support for user-defined
reductions is expected in a future version of OpenMP, and in particular is being given a high priority
for OpenMP 4.0, since it is a frequently requested feature.

5.3.7 ArBB
Listing 5.11 gives the kernel of a dot product in ArBB. This function operates on ArBB data, so
the additional code in Listing 5.12 is required to move data into ArBB space, invoke the function in

1 void arbb_sprod_kernel(
2 dense<f32> a,
3 dense<f32> b,
4 f32 &res
5 ) {
6 res = sum(a * b);
7 }

LISTING 5.11

Dot product implemented in ArBB. Only the kernel is shown, not the binding and calling code, which is
given in Listing 5.12.

1 float arbb_sprod(
2 size_t n, // number of elements
3 const float x[], // varying input
4 const float y[] // varying input
5 ) {
6 dense<f32> xx(n), yy(n); // ArBB storage for arrays
7 memcpy(&xx.write_only_range()[0], // copy in data
8 x, sizeof(float)*n);
9 memcpy(&yy.write_only_range()[0], // copy in data

10 y, sizeof(float)*n);
11 f32 res;
12 call(arbb_sprod_kernel)(xx,yy,res);
13 return value(res); // convert result back to C++ value
14 }

LISTING 5.12

Dot product implementation in ArBB, using wrapper code to move data in and out of ArBB data space and
invoke the computation.
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1 void arbb_sprod_kernel2(
2 dense<f32> a,
3 dense<f32> b,
4 f64 &res
5 ) {
6 dense<f64> aa = dense<f64>(a);
7 dense<f64> bb = dense<f64>(b);
8 res = sum(aa * bb);
9 }

LISTING 5.13

High-precision dot product implemented in ArBB. Only the kernel is shown.

Listing 5.11 with call, and retrieve the result with value. Internally, ArBB will generate tiled and
vectorized code roughly equivalent to the implementation given in Listing 5.8.

To avoid overflow in a very large dot product, intermediate results should be computed using double
precision. The alternative kernel in Listing 5.13 does this. The two extra data conversions are, in effect,
additional map pattern instances. Note that in ArBB multiple maps are fused together automatically as
are maps with reductions. This specification of the computation produces an efficient implementation
that does not write the intermediate converted high-precision input values to memory.

5.4 SCAN
The scan collective operation produces all partial reductions of an input sequence, resulting in a new
output sequence. There are two variants: inclusive scan and exclusive scan. For inclusive scan, the nth
output value is a reduction over the first n input values; a serial and one possible parallel implementa-
tion are shown in Figure 5.5. For exclusive scan, the nth output value is a reduction over the first n � 1
input values. In other words, exclusive scan excludes the nth output value. The C++ standard library
template std::partial_sum is an example of an inclusive scan. Listings 5.14 and 5.15 show serial
routines for inclusive scan and exclusive scan, respectively.

Each of the routines takes an initial value to be used as part of the reductions. There are two reasons
for this feature. First, it avoids the need to have an identity element when computing the first output
value of an exclusive scan. Second, it makes serial scan a useful building block for writing tiled parallel
scans.

At first glance, the two implementations look more different than they really are. They could be
almost identical, because another way to write an exclusive scan is to copy Listing 5.14 and swap lines
10 and 11. However, that version would invoke combine one more time than necessary.

Despite the loop-carried dependence, scan can be parallelized. Similar to the parallelization of
reduce, we can take advantage of the associativity of the combiner function to reorder operations.
However, unlike the case with reduce, parallelizing scan comes at the cost of redundant computations.
In exchange for reducing the span from O(N) to O(lgN), the work must be increased, and in many
algorithms nearly doubled. One very efficient approach to parallelizing scan is based on the fork–join
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FIGURE 5.5

Serial and parallel implementations of the (inclusive) scan pattern.

1 template<typename T, typename C>

2 void inclusive_scan(
3 size_t n, // number of elements
4 const T a[], // input collection
5 T A[], // output collection
6 C combine, // combiner functor
7 T initial // initial value
8 ) {
9 for (size_t i=0; i<n; ++i) {

10 initial = combine(initial,a[i]);
11 A[i] = initial;
12 }
13 }

LISTING 5.14

Serial implementation of inclusive scan in C++, using a combiner functor and an initial value.

pattern. The fork–join pattern is covered in Chapter 8, and this approach is explained in Section 8.11
along with an implementation in Cilk Plus. Section 5.4 presents another implementation of scan using
a three-phase approach and an implementation using OpenMP.
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1 template<typename T, typename C>

2 void exclusive_scan(
3 size_t n, // number of elements
4 const T a[], // input collection
5 T A[], // output collection
6 C combine, // combiner functor
7 T initial // initial value
8 ) {
9 if( n>0 ) {

10 for (size_t i=0; i<n�1; ++i) {
11 A[i] = initial;
12 initial = combine(initial,a[i]);
13 }
14 A[n�1] = initial;
15 }
16 }

LISTING 5.15

Serial implementation of exclusive scan in C++. The arguments are similar to those in Listing 5.14.

Scan is a built-in pattern in both TBB and ArBB. Here is a summary of the characteristics of these
implementations at the point when this book was written. We also summarize the interface and charac-
teristics of the scan implementation we will present for Cilk Plus and give a three-phase implementation
of scan in OpenMP.

5.4.1 Cilk Plus
Cilk Plus has no built-in implementation of scan. Section 8.11 shows how to implement it using
the fork–join pattern. The interface to that implementation and its characteristics are explained here,
however, so we can use it in the example in Section 5.6.

Our Cilk Plus implementation performs a tiled scan. It abstracts scan as an operation over an index
space and thus makes no assumptions about data layout. The template interface is:

template<typename T, typename R, typename C, typename S>

void cilk_scan(size_t n, T initial, size_t tilesize,
R reduce, C combine, S scan);

The parameters are as follows:

• n is the size of the index space. The index space for the scan is the half-open interval [0,n).
• initial is the initial value for the scan.
• tilesize is the desired size of each tile in the iteration space.
• reduce is a functor such that reduce(i,size) returns a value for a reduction over indices in [i, i +

size).
• combine is a functor such that combine(x,y) returns x � y.
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• scan is a functor such that scan(i,size,initial) does a scan over indices in [i, i + size) starting with
the given initial value. It should do an exclusive or inclusive scan, whichever the call to cilk_scan
is intended to do.

The actual access to the data occurs in the reduce and scan functors. The implementation is
deterministic as long as all three functors are deterministic.

In principle, doing the reduction for the last tile is unnecessary, since the value is unused. However,
not invoking reduce on that tile would prevent executing a fused map with it, so we still invoke it.
Note that the results of such an “extra” map tile may be needed later, in particular in the final scan,
even if it is not needed for the initial reductions. Technically, the outputs of the map (which need to be
stored to memory for later use) is a side-effect, but the data dependencies are all accounted for in the
pattern. The Cilk Plus implementation of the integration example in Section 5.6.3 this.

5.4.2 TBB
TBB has a parallel_scan construct for doing either inclusive or exclusive scan. This construct may
non-deterministically reassociate operations, so for non-associative operations, such as floating point
addition, the result may be non-deterministic.

The TBB construct parallel_scan abstracts scan even more than cilk_scan. It takes two
arguments: a recursively splittable range and a body object.

template<typename Range, typename Body>

void parallel_scan( const Range& range, Body& body );

The range describes the index space. The body describes how to do the reduce, combine, and scan
operations in a way that is analogous to those described for the Cilk Plus interface.

5.4.3 ArBB
Built-in implementations of both inclusive and exclusive scans are supported, but over a fixed set of
associative operations. For the fully associative operations, the results are deterministic. However, for
floating point multiplication and addition, which are non-associative, the current implementation does
not guarantee the results are deterministic.

5.4.4 OpenMP
OpenMP has no built-in parallel scan; however, OpenMP 3.x tasking can be used to write a tree-
based scan similar to the fork–join Cilk Plus code in Section 8.11. In practice, users often write a
three-phase scan, which is what we present in this section. The three-phase scan has an asymptotic
running time of TP = 2(N/P + P). When P ⌧ N, the N/P term dominates the P term and speedup
becomes practically linear. For fixed N, the value of N/P + P is minimized when P =

p
N.2 Thus,

2Proof: The arithmetic mean of two positive values is always greater than or equal to their geometic mean, and the means
are equal only when the two values are equal. The geometric mean of N/P and P is

p
N, and their arithmetic mean is N/P+P

2 .
Thus, the latter is minimized when N/P = P; that is, P =

p
N.
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the maximum asymptotic speedup is:

T1

TP
= 2

✓
N

N/P + P

◆
= 2

✓
N

N/
p

N +
p

N

◆
= 2(

p
N).

Although this is not as asymptotically good as the tree-based scan that takes O(lgN) time, constant
factors may make the three-phase scan attractive. However, like other parallel scans, the three-phase
scan requires around twice as many invocations of the combiner function as the serial scan.

The phases are:

1. Break the input into tiles of equal size, except perhaps the last. Reduce each tile in parallel.
Although the reduction value for the last tile is unnecessary for step 2, the function containing
the tile reduction is often invoked anyway. This is because a map may be fused with with the
reduction function, and if so the outputs of this map are needed in step 3.

2. Perform an exclusive scan of the reduction values. This scan is always exclusive, even if the overall
parallel scan is inclusive.

3. Perform a scan on each of the tiles. For each tile, the initial value is the result of the exclusive scan
from phase 2. Each of these scans should be inclusive if the parallel scan is inclusive, and exclusive
if the parallel scan should be exclusive. Note that if the scan is fused with a map, it is the output of
the map that is scanned here.

Figure 5.6 diagrams the phases, and Listing 5.16 shows an OpenMP implementation.
Like many OpenMP programs, this code exploits knowing how many threads are available. The

code attempts to use one tile per thread. Outside the parallel region the code computes how many
threads to request. The clause num_threads(t) specifies this request. There is no guarantee that the
full request will be granted, so inside the parallel region the code recomputes the tile size and number of
tiles based on how many threads were granted. Our code would still be correct if it did not recompute
these quantities, but it might have a load imbalance and therefore be slower, because some threads
would execute more tiles than other threads.

Each phase waits for the previous phase to finish, but threads do not join between the phases. The
first and last phases run with one thread per tile, which contributes 2(N/P) to the asymptotic running
time. The middle phase, marked with omp single, runs on a single thread. This phase contributes
2(P) to the running time. During this phase, the other m threads just wait while this phase is running.
Making threads wait like this is both good and bad. The advantage is that the threads are ready to go
for the third phase, and the mapping from threads to tiles is preserved by the default scheduling of omp
for loops. This minimizes memory traffic. The disadvantage is that the worker threads are committed
when entering the parallel region. No additional workers can be added if they become available, and
no committed workers can be removed until the parallel region completes.

5.5 FUSING MAP AND SCAN
As with reduce, scan can be optimized by fusing it with adjacent operations.

Consider in particular the three-phase implementation of scan. Suppose such a scan is preceded
by a map and followed by another map. Then, as long as the tiles are the same size, the tiles in the
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FIGURE 5.6

Three-phase tiled implementation of inclusive scan, including initial value.

first map can be combined with the serial reductions in the first phase of the scan, and the tiled scan
in the third phase can be combined with the following tiled map. This is shown in Figure 5.7. This
creates more arithmetically intense code blocks and can cut down significantly on memory traffic and
synchronization overhead.

It would also be possible to optimize a scan by fusing it with following reductions or three-phase
scans since the first part of a three-phase scan is a tile reduction. However, if a reduction follows a
scan, you can get rid of the reduction completely since it is available as an output of the scan, or it can
be made available with very little extra computation.
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1 template<typename T, typename R, typename C, typename S>

2 void openmp_scan(
3 size_t n,
4 T initial,
5 size_t tilesize,
6 R reduce,
7 C combine,
8 S scan
9 ) {

10 if (n > 0) {
11 // Set t to the number of tiles that might be used, at most one tile
12 // per thread with no tile smaller than the requested tilesize
13 size_t t = std::min( size_t(omp_get_max_threads()), (n�1)/tilesize+1 );
14 // Allocate space to hold the reduction value of each tile
15 temp_space<T> r(t);
16 // Request one thread per tile
17 #pragma omp parallel num_threads(t)
18 {
19 // Find out how threads were actually delivered, which may be
20 // fewer than the requested number
21 size_t p = omp_get_num_threads();
22 // Recompute tilesize so there is one tile per actual thread
23 tilesize = (n+p�1)/p;
24 // Set m to index of last tile
25 size_t m = p�1;
26 #pragma omp for
27 // Set r[ i ] to reduction of the ith tile
28 for ( size_t i = 0; i <= m; ++i )
29 r[i] = reduce(i*tilesize, i==m ? n�m*tilesize : tilesize);
30 #pragma omp single
31 // Use single thread to do in-place exclusive scan on r
32 for ( size_t i = 0; i <= m; ++i ) {
33 T tmp = r[i];
34 r[i] = initial;
35 initial = combine(initial,tmp);
36 }
37 #pragma omp for
38 // Do scan over each tile, using r[ i ] as initial value
39 for ( size_t i = 0; i <= m; ++i )
40 scan(i*tilesize, i==m ? n�m*tilesize : tilesize, r[i]);
41 }
42 }
43 }

LISTING 5.16

Three-phase tiled implementation of a scan in OpenMP. The interface is similar to the Cilk Plus implementation
explained in Section 5.4, except that tilesize may be internally adjusted upward so that the number of tiles
matches the number of threads. Listing 8.7 on page 227 has the code for template class temp_space.
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FIGURE 5.7

Optimization of map and three-phase scan by fusion. The initial and final phases of the scan can be combined
with maps appearing in sequence before and after the scan. There is also an opportunity to fuse an initial map
with the scan and final map of the last tile, but it is only a boundary case and may not always be worth doing.

5.6 INTEGRATION
Scan shows up in a variety of unexpected circumstances, and is often the key to parallelizing an “unpar-
allelizable” algorithm. However, here we show a simple application: integrating a function. The scan
of a tabulated function, sometimes known as the cumulation of that function, has several applications.
Once we have computed it, we can approximate integrals over any interval in constant time. This can
be used for fast, adjustable box filtering. A two-dimensional version of this can be used for antialiasing
textures in computer graphics rendering, an approach known as summed area tables [Cro84].

One disadvantage of summed-area tables in practice, which we do not really consider here, is that
extra precision is needed to make the original signal completely recoverable by differencing adjacent
values. If this extra precision is not used, the filtering can be inaccurate. In particular, in the limit as
the filter width becomes small we would like to recover the original signal.

As another important application, which we, however, do not discuss further in this book, you
can compute random numbers with the distribution of a given probability density by computing the
cumulation of the probability density distribution and inverting it. Mapping a uniform random number
through this inverted function results in a random number with the desired probability distribution.
Since the cumulation is always monotonic for positive functions, and probability distributions are
always positive, this inversion can be done with a binary search. Sampling according to arbitrary



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 170 — #170

170 CHAPTER 5 Collectives

probability density distributions can be important in Monte Carlo (random sampling) integration
methods [KTB11].

5.6.1 Description of the Problem
Given a function f and interval [a,b], we would like to precompute a table that will allow rapid com-
putation of the definite integral of f over any subinterval of [a,b]. Let 1x = (b � a)/(n � 1). The table
is a running sum of samples of f , scaled by 1x:

tablei = 1x
iX

0

f (a + i1x).

The integral of f over [c,d] can be estimated by:

dZ

c

f (x)dx ⇡ interp(d) � interp(c),

where interp(x) denotes linear interpolation on the table.

5.6.2 Serial Implementation
Listing 5.17 shows a serial implementation of the sampling and summation computation. It has a
loop-carried dependence, as each iteration of the loop depends on the previous one.

Sometimes you will want to use a generic function defined in a function template as in Listing 5.18.
To pass such a function as an argument, it is helpful to first instantiate it with particular types as in
Listing 5.19.

Listing 5.20 shows how to compute the definite integral from two samples. It defines a helper
function serial_sample that does linearly interpolated lookup on the array. Out of bounds subscripts
are handled as if the original function is zero outside the bounds, which implies that the integral is zero
to the left of the table values and equal to table[n�1] to the right of the table.

5.6.3 Cilk Plus
Listing 5.21 shows the Cilk Plus code for preparing the integration table. The initial mapping of the
function is fused into the functor for doing tile reductions. The final scaling of the scan is fused in the
functor for doing tile scans.

Scan is not a built-in operation in Cilk Plus, but we discuss its interface in Section 5.4 and its
implementation in Section 8.11.

5.6.4 OpenMP
Listing 5.21 can be translated to OpenMP by making two changes:

• Replace cilk_scan with openmp_scan (Listing 5.16).
• Replace the array notation with a loop.
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1 template<typename X, typename Y, typename F>

2 void serial_prepare_integral_table(
3 X a, // start position of sampling
4 X b, // end position of sampling
5 size_t n, // number of samples to take
6 Y table[], // destination for table samples
7 F f // function parameter
8 ) {
9 // Handle empty request

10 if (n==0) return;
11 // Compute sample spacing
12 const X dx = (b�a)/X(n�1);
13 // Store scaled running sum of sample points in table [0:n]
14 Y sum = Y(0);
15 for ( size_t i = 0; i < n; ++i ) {
16 sum += f(a+dx*i); // f: X \maps to Y
17 table[i] = sum * dx;
18 }
19 }

LISTING 5.17

Serial integrated table preparation in C++. The code has a single loop that samples function f provided as an
argument, performs an inclusive scan, and scales the results of the scan by dx.

1 template <typename Y, typename X>

2 Y generic_f(X x) {
3 return Y(abs(sqrt(x) * sin(X(0.12) * x + x*x)));
4 }

LISTING 5.18

Generic test function for integration.

1 float f(float x) {
2 return generic_f<float,float>(x);
3 }

LISTING 5.19

Concrete instantiation of test function for integration.

The second change is optional, since OpenMP plus Cilk Plus array notation can be an effective way to
exploit both thread and vector parallelism. Of course, this requires a compiler that supports both.

Scan is not a built-in operation in OpenMP, but we discuss its implementation using a three-phase
approach in Section 5.4.
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1 template <typename Y, typename X>

2 Y serial_sample(
3 size_t n,
4 Y table[],
5 X x
6 ) {
7 // Compute integer part of sample position
8 X i = floor(x);
9 // Look up samples at i and i+1

10 // for out of bound indices, use 0 on left and table [n�1] on right
11 Y y0 = i < X(0) ? Y(0)
12 : table[i < X(n) ? size_t(i) : n�1];
13 Y y1 = i+1 < X(0) ? Y(0)
14 : table[i+1 < X(n) ? size_t(i+1) : n�1];
15 // Linearly interpolate between samples
16 return y0+(y1�y0)*(x�i);
17 }
18

19 template <typename X, typename Y>

20 Y serial_integrate(
21 size_t n, // number of samples in table
22 Y table[], // cumulative samples
23 X a, // lower bound of function domain
24 X b, // upper bound of function domain
25 X x0, // lower bound of integral
26 X x1 // upper bound of integral
27 ) {
28 // Compute scale for convering x0 and x1 to table indices
29 X scale = X(n�1)/(b�a);
30 // Look up interpolated values of indefinite integral
31 Y y0 = serial_sample(n, table, scale*(x0�a));
32 Y y1 = serial_sample(n, table, scale*(x1�a));
33 // Compute integral
34 return y1�y0;
35 }

LISTING 5.20

Serial implementation of integrated table lookup in C++. Two linearly interpolated samples of the table are
taken and interpolated. Out-of-bounds indices are handled as if the original function (not the integral) is zero
outside the bounds.

5.6.5 TBB
The TBB parallel_scan algorithm template has an internal optimization that lets it avoid call-
ing the combiner function twice for each element when no actual parallelism occurs. Unfortunately,
this optimization prevents fusing a map with the reduce portion of a scan. Consequently, the TBB
implementation of the integration example must compute each sample point on both passes through a
tile. The second pass has no easy way to know if the first pass occurred and, so there is no point in the
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1 template<typename X, typename Y, typename F>

2 void cilk_prepare_integral_table(
3 X a, // start position of sampling
4 X b, // end position of sampling
5 size_t n, // number of samples to take
6 Y table[], // destination for table samples
7 F f // function that maps X ! Y
8 ) {
9 // Handle empty request

10 if (n == 0) return;
11 // Compute sample spacing
12 const X dx = (b�a)/(n�1);
13 // Do parallel scan
14 cilk_scan(
15 n, Y(0),
16 1024, // tile size
17 [=,&table]( size_t i, size_t m ) �> Y {
18 Y sum = Y(0);
19 for ( ; m>0; ��m, ++i )
20 sum += (table[i] = f(a + dx*i));
21 return sum;
22 },
23 std::plus<Y>(),
24 [=,&table]( size_t i, size_t m, Y initial ) {
25 // Store running sum of sample points in table [ i :m]
26 for ( ; m>0; ��m, ++i ) {
27 initial += table[i];
28 table[i] = initial*dx;
29 }
30 }
31 );
32 }

LISTING 5.21

Integrated table preparation in Cilk Plus. The code implements the interface discussed in Section 5.4.

first pass storing the samples. If the samples are expensive to compute, to avoid the extra computation
we can precompute the samples and store them in a table before calling the scan. Here we assume the
samples are relatively inexpensive to compute.

Listing 5.22 shows the code. In the TBB implementation a single templated operator() serves
as both a both tiled reduce and a tiled scan. The idea behind this is that the code may have full or
partial information about preceding iterations. The value of the expression tag.is_final_scan()
distinguishes these two cases:

true: The state of the Body is the same as if all iterations of the loop preceding subrange r. In this
case, operator() does a serial scan over the subrange. It leaves the Body in a state suitable for
continuing beyond the current subrange.
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1 template<typename X, typename Y, typename F>

2 struct Body {
3 const X a, dx;
4 Y* const table;
5 F f;
6 // Running sum
7 Y sum;
8 // Reduction or scan of a tile
9 template<typename Tag>

10 void operator()( tbb::blocked_range<size_t> r, Tag tag ) {
11 for ( size_t i = r.begin(); i != r.end(); ++i ) {
12 sum += f(a + dx*i);
13 if ( tag.is_final_scan() )
14 table[i] = sum*dx;
15 }
16 }
17 // Initial body
18 Body( X a_, X dx_, Y* table_, F f_ )
19 : a(a_), dx(dx_), table(table_), f(f_), sum(0) {}
20 // Body created for look-ahead reduction
21 Body( Body& body, tbb::split )
22 : a(body.a), dx(body.dx), table(body.table), f(body.f), sum(0) {}
23 // Merge bodies for two consecutive ranges .
24 void reverse_join( Body& body ) {sum = body.sum + sum;}
25 // Assign *this = final body state from final tile
26 void assign( Body& body ) {sum = body.sum;}
27 };
28

29 template<typename X, typename Y, typename F>

30 void tbb_prepare_integral_table(
31 X a, // start position of sampling
32 X b, // end position of sampling
33 size_t n, // number of samples to take
34 Y table[], // destination for table samples
35 F f // function that maps X ! Y
36 ) {
37 // Handle empty request
38 if (n==0) return;
39 // Compute sample spacing
40 const X dx = (b�a)/(n�1);
41 // Initialize body for scan
42 Body<X,Y,F> body(a,dx,table,f);
43 // Do the scan
44 tbb::parallel_scan( tbb::blocked_range<size_t>(0,n), body );
45 }

LISTING 5.22

Integrated table preparation in TBB. Class Body defines all the significant actions required to do a scan.
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false: The state of the Body represents the effect of zero or more consecutive iterations preceding
subrange r, but not all preceding iterations. In this case, operator() updates the state to include
reduction of the current subrange.

The second case occurs only if a thread actually steals work for the parallel_scan.
Method reverse_join merges two states of adjacent subranges. The “reverse” in its name comes

from the fact that ⇤this is the state of the right subrange, and its argument is the left subrange. The
left subrange can be either a partial state or a full state remaining after a serial scan.

Method assign is used at the very end to update the original Body argument to tbb::
parallel_scan with the Body state after the last iteration.

5.6.6 ArBB
Listing 5.23 shows the ArBB code for generating the table and Listing 5.24 shows the ArBB code for
computing the integral by sampling this table.

1 // wrapper for test function
2 // instantiate template and modify interface :
3 // ArBB map functions need to return void
4 void arbb_f(
5 f32& y, // output
6 f32 x // input
7 ) {
8 y = generic_f<f32,f32>(x); // instantiate template
9 }

10

11 template <typename Y, typename X>

12 void arbb_precompute_table(
13 X a, // start position to sample
14 X b, // end position to sample
15 usize n, // number of samples
16 dense<Y>& table // accumulated samples
17 ) {
18 // compute scale factor to convert domains
19 X dx = (b�a)/X(n�1);
20 // generate sample positions
21 dense<X> positions =
22 a + dx * dense<X>(indices(usize(0),n,usize(1)));
23 // sample function ( arbb˙f is a non-local)
24 dense<Y> samples;
25 map(arbb_f)(samples, positions);
26 // compute cumulative table
27 table = add_iscan(dx*samples);
28 }

LISTING 5.23

Integrated table preparation in ArBB. This simply invokes the built-in collective for inclusive scan using the
addition operator. Templating the code provides generality.
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1 template <typename Y, typename X>

2 void arbb_sample(
3 Y& y,
4 dense<Y> table,
5 X x
6 ) {
7 // get number of samples

8 isize n = isize(table.length());
9 // compute integer part of sample position

10 X i = floor(x);
11 // look up samples at i and i+1

12 // for out of bound indices, use 0 on left and table [n�1] on right.

13 Y y0 = select(i < X(0), Y(0),
14 table[select(i < X(n), isize(i), n�1)]);
15 Y y1 = select(i+X(1) < X(0), Y(0),
16 table[select(i+X(1) < X(n), isize(i)+1, n�1)]);
17 // Linearly interpolate between samples

18 y = y0+(y1�y0)*Y(x�X(i));
19 }
20

21 template <typename Y, typename X>

22 void arbb_integrate(
23 Y& integral,
24 dense<Y> table, // cumulative samples

25 X a, // lower bound of function domain

26 X b, // upper bound of function domain

27 X x0, // lower bound of integral

28 X x1 // upper bound of integral

29 ) {
30 // Compute scale for convering x0 and x1 to table indices.

31 usize n = table.length();
32 X scale = X(n�1)/(b�a);
33 // Look up interpolated values of indefinite integral

34 Y y0, y1;
35 arbb_sample(y0, table, scale*(x0�a));
36 arbb_sample(y1, table, scale*(x1�a));
37 // compute integral

38 integral = y1�y0;
39 }

LISTING 5.24

Integrated table lookup in ArBB. Two linearly interpolated samples of the table are taken and interpolated.
Various other operations are required to avoid reading out of bounds on the arrays. This code is similar to the
serial code, except for changes in types. The ? operator used in the serial code also has to be replaced with
select. Unfortunately, the ? operator is not overloadable in ISO C++.
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Listing 5.23 uses a special function to generate a set of integers. Vector arithmetic converts these
integers into sample positions and then uses a map to generate all the samples. Finally, a scan func-
tion computes the cumulative table. The ArBB implementation will actually fuse all these operations
together. In particular, the computation of sample positions, the sampling of the function, and the first
phase of the scan will be combined into a single parallel operation.

Given the table, the integral can be computed using the function given in Listing 5.24. This function
can be used to compute a single integral or an entire set if it is called from a map. This code is practically
identical to the serial code in Listing 5.20. The templates take care of most of the type substitutions so
the only difference is the use of an ArBB collection for the table.

5.7 SUMMARY
This chapter discussed the collective reduce and scan patterns and various options for their imple-
mentation and gave some simple examples of their use. More detailed examples are provided in later
chapters.

Generally speaking, if you use TBB or Cilk Plus, you will not have to concern yourself with many
of the implementation details for reduce discussed in this chapter. These details have been introduced
merely to make it clear why associative operations are needed in order to parallelize reduce and why
commutativity is also often useful.

Scan is built into TBB and ArBB but not Cilk Plus or OpenMP. However, we provide an efficient
implementation of scan in Cilk Plus in Section 8.11. This chapter also presented a simple three-phase
implementation of scan in OpenMP, although this implementation is not as scalable as the one we will
present later based on fork–join.

Reduce and scan are often found together with map, and they can be optimized by fusing their
implementations or parts of their implementation with an adjacent map, or by reversing the order of
map and reduce or scan. We discussed how to do this in TBB and Cilk Plus and provided several
examples, whereas ArBB does it automatically.
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