
Concurrency & Parallelism

José Duarte

June 23, 2020

1

1.1 A

x = x + 1;

y = y + 1;

Listing 1: Thread 1

x = y + 1;

y = 2;

Listing 2: Thread 2

z = x + y;

Listing 3: Thread 3

x: 1, 2

y: 1, 2, 3

z: 0, 1, 2, 3, 4, 5

1.2 B

x = x + 1;

Listing 4: Thread 1

y = y + 1;

Listing 5: Thread 2

x = 5;

y = x + 1;

Listing 6: Thread 3

x: 1, 5, 6

y: 1, 2, 6, 7

(x, y): (1, 1), (1, 2),

(5, 1), (5, 6),

(6, 1), (6, 7)

2

False The volatile keyword does not stop multiple threads from modifying
the variable. The expression x++ can be broken down into a read-modify-write
sequence, which can be interleaved between threads.

1



3

1. Safety

2. Liveness

3. Liveness

4. Safety

5. Safety

4

1. G

2. A

3. D

4. B

5. C

6. F

7. H

8. E

5

Because the barrier will ensure that all threads wait for each other.

6

6.1 a

The number of combinations is 3! = 6 and the possible combinations are:

1 3 5

1 5 3

3 1 5

3 5 1

5 1 3

5 3 1

2



6.2 b

1 3 5 2 4 6

6.3 c

3 6 2 5 4 1

7

public class BarrierN {

private int a, b;

public BarrierN (int howmany) {

b = howmany;

a = 0;

}

public synchronized void arrive () {

a++;

if (a < b) {

this.wait ();

return;

}

this.notifyAll ();

}

}

8

8.1 a

In the line 11, the program read the values [20, 25, 30], before M2 runs the
credit statement, M1 transferTo is able to execute completely and then M2

credit statement runs, adding an old interest value.

8.2 b

The way it is written the program cannot deadlock, unless the client can have
accounts that are references to other accounts.

3


