Construction and

Verification of Software
2021 - 2022

MIEI - Integrated Master in Computer Science and Informatics
Consolidation block

Lecture 5 - Abstract Data Types
Bernardo Toninho (btoninho@fct.unl.pt)
based on previous editions by Joao Seco and Luis Caires

N VA

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:btoninho@fct.unl.pt
mailto:btoninho@fct.unl.pt

Part |
Abstract Data Types
(INtro)

Abstract Data Types (Liskov, 78)

e ADTs are the building blocks for software construction
— Consist of:
— A description of the data elements of the type
— A set of operations over the data elements of the ADT
— A software system is a composition of ADTs
— ADTs behave like regular types in a programming language

— Promotes modularity, encapsulation, information hiding, and
hence reuse, modifiability, and correctness.

Construction and Verification of Software, FCTUNL, © (uso reservado)

ADTs (Liskov & Zilles, 78)

PROGRAMMING WITH ABSTRACT DATA TYPES

Barbara Liskov
Massachusetts Institute of Technology
Project MAC
Cambridge, Massachusetts

Stephen Zilles
Cambridge Systems Group
IBM Systems Development Division
Cambridge, Massachusetts

Abstract

The motivation behind the work in very-high-level languages is to ease the programming task by pro-
viding the programmer with a language containing primitives or abstractions suitable to his problem area.
The programmer is then able to spend his effort in the right place; he concentrates on solving his problem,
and the resulting program will be more reliable as a result. Clearly, this is a worthwhile goal.

Unfortunately, it is very difficult for a designer to select in advance all the abstractions which the
users of his language might need. If a language is to be used at all, it is likely to be used to solve
problems which its designer did not envision, and for which the abstractions embedded in the language are
not sufficient.

This paper presents an approach which allows the set of built-in abstractions to be augmented when the
need for a new data abstraction is discovered. This approach to the handling of abstraction is an outgrowth
of work on designing a language for structured programming. Relevant aspects of this language are described,
and examples of the use and definitions of abstractions are given.

CJUIISI.IUULIUII dla veriiceduorl ol oullwdlie, r'U 1 UNL, \v (USO [E5€1vdUL)

Barbara Liskov (MIT)

BARBARA LISKOV
United States — 2008

For contributions to practical and theoretical foundations of
programming language and system design, especially related to data
abstraction, fault tolerance, and distributed computing.

Construction and Verification of Software, FCTUNL, © (uso reservado)

Abstract Data lype

Abstract types are intended to be very much
like the built-in types provided by a programming
language. The user of a built-in type, such as
integer or integer array, is only concerned with
creating objects of that type and then performing
operations on them. He is not (usually) concerned
with how the data objects are represented, and he
views the operations on the objects as indivisible
and atomic when in fact several machine instructions
may be required to perform them. In addition, he is
not (in general) permitted to decompose the objects.
Consider, for example, the built-~in type integer.

A programmer wants to declare objects of type
integer and to perform the usual arithmetic opera-
tions on them. He is usually not interested in an
integer object as a bit string, and cannot make use
of the format of the bits within a computer word.
Also, he would like the language to protect him
from foolishmisuses of types (e.g., adding an in-
teger to a character) either by treating such a
thing as an error (strong typing), or by some sort
of automatic type conversion.

Construction and Verification of Software, FCTUNL, © (uso reservado)

Abstract Data Type (External View)

o External View
— A public opague data type (that clients will use)
Note: opague means = behaves as a primitive type
— A set of operations on this data type

— Operations must neither reveal, nor allow a client to invalidate the
internal representation of the ADT

— pre and post conditions on these operations must be expressed
in terms of the abstract type (the only type known to the client)

— This is why ADTs promote reuse, modifiability, and correctness:
the developer can change the implementation anytime, without
breaking contracts

Construction and Verification of Software, FCTUNL, © (uso reservado)

Abstract Data Type (Internal View)

e |nternal View
— A representation data type (hidden from clients)

— A set of operations on the representation data type

» Key remarks:

— A programmer must define the operations in such a way that the
representation state (invisible to clients) is kept consistent with the
iIntended abstract state

— Pre-conditions on the public operations, expressed on the
abstract state, must map into pre-conditions expressed in terms of
the representation state

— The same for post-conditions

— At all times the concrete state must represent a well defined
abstract state (otherwise something is wrong!)

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example (Positive Set ADT)

class PSet A
// an abstract set of positive numbers

method new(sz:int) A{..}
// initializes the set (e.g., Java constructor)

method add(v:int) {..}
// adds v to the set if space available

function size() : int {..}
// returns number of elems 1n the set

function contains(v:int) : bool {..}
// returns number of elems equal to v in the set

function maxsize() : int {..}
// returns max number of elems allowed in the set

Construction and Verification of Software, FCTUNL, © (uso reservado)

Technical ingredients in ADT design

e [he abstract state

— defines how client code sees the object

* [he representation type

— chosen by the programmer to implement the ADT internals. The
programmer is free to choose the implementation strategy (data-
structures, algorithms). This is done at construction time.

e [he concrete state

— In general, not all representation states are legal concrete states

— a concrete state Is a representation state that really represents
some well-defined abstract state

Construction and Verification of Software, FCTUNL, © (uso reservado) 10

Technical ingredients in ADT design

* [he representation invariant

— The representation invariant is a condition that restricts the
representation type to the set of (safe) concrete states

— It the ADT representation falls outside the rep invariant,
something is wrong (inconsistent representation state).

e [he abstraction function

— maps every concrete state into some abstract state

* [he operation pre- and post- conditions
— expressed for the representation type

— also expressed for the abstract type (for client code)

Construction and Verification of Software, FCTUNL, © (uso reservado)

11

Part ||
Abstract Data Types (with
objects)

Bank Account ADT
e Abstract State

— the account balance (bal)

— bal is of type 1nt subject to the constraint (bal >= 0)

Construction and Verification of Software, FCTUNL, © (uso reservado)

13

Bank Account ADT

® Representation type
— an integer bal

— In this simple case the representation type is the same as the
abstract type

— the true "meaning” of the representation and abstract types are
different

— not all operations on integers are valid on account balances
(e.g., to multiply bank accounts)

Construction and Verification of Software, FCTUNL, © (uso reservado)

14

Bank Account ADT

® Representation type

— an integer bal

— In this simple case the representation type is the same as the
abstract type

— the true "meaning” of the representation and abstract types are
different

— not all operations on integers are valid on account balances
(e.g., to multiply bank accounts)

e Representation invariant
— (bal >= 0)

— this time, pretty simple

Construction and Verification of Software, FCTUNL, © (uso reservado)

15

Example (Account)

class Account {
var bal: 1int;

predicate RepInv()

// specifies the representation invariant
reads this
{

}

bal >= 0

Construction and Verification of Software, FCTUNL, © (uso reservado)

16

Example (Account)

class Account {
var bal: int:

predicate RepInv()

// specifies the representation invariant
reads this
{

¥

bal >= 0

constructor()
ensures RepInv()
{ bal := 0; }

Construction and Verification of Software, FCTUNL, © (uso reservado)

17

Example (Account)

class Account {
var bal: int;

// All operations must require the representation invariant
// ALl operations must ensure the representation invariant
method deposit(v:int)

modifies this;

requires RepInv() & v >= 0

ensures RepInv()
{ bal := bal + v; }

method withdraw(v:int)
modifies this
requires RepInv() & v >= 0
ensures RepInv()

{ if (bal>=v) { bal := bal - v; } }

Construction and Verification of Software, FCTUNL, © (uso reservado)

18

Example (Account)

class Account {
var bal: 1int;

function method getBal():int
reads this
{ bal }

method withdraw(v:int)
modifies this;
requires Valid() && @ <= v <= getBal()
ensures Valid()

{ bal := bal - v; }

Construction and Verification of Software, FCTUNL, © (uso reservado)

19

Set ADT

class ASet {
// an abstract Set of numbers

constructor(sz:int) {}
// initializes aset (e.g., Java constructor)

method add(v:int) {}
// adds v to aset if space available)

function size() : int
// returns number of elems 1n aset

function contains(v:int) : bool
// check if v belongs to set

function maxsize() : int
// returns max number of elems allowed 1n aset

Construction and Verification of Software, FCTUNL, © (uso reservado)

20

Set ADT
e Abstract State

— a set of positive integers aset

Construction and Verification of Software, FCTUNL, © (uso reservado)

21

Set ADT

® Representation type
— an array of integers store with sufficient large size

— an integer nelems counting the elements in store

Construction and Verification of Software, FCTUNL, © (uso reservado)

22

Set ADT

® Representation type

— an array of distinct integers store

— an integer nelems counting the elements in store

e Representation invariant
(store !'= null) &&
(@ <= nelems <= store.Length) &&

forall k :: (@<=k<nelements) ==> forall j::(k<j<nelements)

Construction and Verification of Software, FCTUNL, © (uso reservado)

==> b[k] != b[]]

23

Set ADT

® Representation type

— an array of distinct integers store

— an integer nelems counting the elements in store

e Representation invariant
(store !'= null) &&
(@ <= nelems <= store.length) &&

forall k :: (@<=k<nelements) ==> forall j::(k<j<nelements)

Construction and Verification of Software, FCTUNL, © (uso reservado)

==> b[k] != b[]]

24

Set ADT

® Representation type

— an array of distinct integers store

— an integer nelems counting the elements in store

e Representation invariant
(store !'= null) &&
(@ <= nelems <= store.length) &&

forall k :: (@<=k<nelements) ==> forall j::(k<j<nelements) ==> b[k] '= b[7]
e Abstraction mapping
— <nelems=n, STOre=[VO,V1,---Vstore.Length-1]> — {Vo,...,Vn-1}

— more later

Construction and Verification of Software, FCTUNL, © (uso reservado)

25

Set ADT

class ASet {

var a:array<int>;
var size:int;

constructor(SIZE:int)
requires SIZE > 0
ensures Valid()

{
a := new int[SIZE];
size := 0;

}

Construction and Verification of Software, FCTUNL, © (uso reservado)

20

Set ADT

class ASet {

var a:array<int>;
var size:int;

constructor(SIZE:int)
requires SIZE > 0,
ensures Valid()

{
a := new int[SIZE];
size := 0;

}

predicate RepInv()
reads this,a

{
-

Construction and Verification of Software, FCTUNL, © (uso reservado)

Set ADT

class ASet {

var a:array<int>;
var size:int;

predicate RepInv()
reads this,a
{
al=null &&
O < a.Length &&
0 <= size <= a.lLength &&
unique(a, 0, size)

Construction and Verification of Software, FCTUNL, © (uso reservado)

28

Set ADT

class ASet {

var a:array<int>;
var size:int;

predicate unique(b:array<int>, l:int, h:int)
reads b

requires b !'= null && 0<=1 <= h <= b.Length
{

}

forall k::(l<=k<h) ==> forall j::(k<j<h)

Construction and Verification of Software, FCTUNL, © (uso reservado)

==> b [k]

= b[j]

29

Set ADT

class ASet {

var a:array<int>;
var size:int;

function method count():int
reads this,a;

requires RepInv()

{ size }

function method maxsize():int
reads this,a;

requires RepInv()

{ a.Length }

method add(x:int)

modifies this, a;

requires RepInv() && count() < maxsize()
ensures RepInv()

{
var f:int := find(x);
if (f <0) {
alsize] := x;
size := size + 1;
¥

}

Construction and Verification of Software, FCTUNL, © (uso reservado)

30

Set ADT

class ASet {

var a:array<int>;
var size:int:

method find(x:int) returns (r:int)
requires RepInv()
ensures -1 <= r < sjize

ensures r < @ ==> forall j::(0<=j<size) ==> x != aljl
ensures r >=0 ==> al[r] == x
{

var 1 := 0:

while (i<size)
decreases size-1
lnvarliant O<=i<=size;

invariant forall j::(0<=j<i) ==> x !'= aljl;
{
if (alil==x) { return i; }
1 =1+ 1;
¥
return -1;

Construction and Verification of Software, FCTUNL, © (uso reservado)

31

Set ADT

class ASet {

var a:array<int>;
var size:int;

method contains(v:int) returns (f:bool)
requires RepInv()
ensures f <==> exists j::(0<=j<size) && v == aljl;
ensures RepInv()
{
var p:int := find(v);
f = (p >= 0);
I3
I3

Construction and Verification of Software, FCTUNL, © (uso reservado)

Part
Soundness and
Abstraction Map

Soundness and Abstraction Map

* \We have learned how to express the representation
invariant and make sure that no unsound states are ever

reached

e \We have informally argued that the representation state
IN every case represents the right abstract state, but how
to make sure?

* \\e next see how the correspondence between the
representation state and the abstract state can be
explicitly expressed in Datny using ghost state,
specification operations, and abstraction map soundness
check.

Construction and Verification of Software, FCTUNL, © (uso reservado)

34

Tiago
Realce

Tiago
Realce
a invariante de representação assegura-se que os estados vão ser sempre válidos

Tiago
Realce

Tiago
Realce
como é que temos a certeza disso?

Technical ingredients in ADT design

e [he abstract state

— defines how client code sees the object

* [he representation type

— chosen by the programmer to implement the ADT internals. The
programmer is free to chose the implementation strategy (data-
structures, algorithms). This is done at construction time.

* [he concrete state
— In general, not all representation states are legal concrete states

— a concrete state Is a representation state that really represents
some well-defined abstract state

Construction and Verification of Software, FCTUNL, © (uso reservado) 35

Technical ingredients in ADT design

* [he representation invariant

— the representation invariant is a condition that restricts the
representation type to the set of (safe) concrete states

— if the ADT representation falls outside the rep invariant,
something is wrong (inconsistent representation state).

e [he abstraction function

— maps every concrete state into some abstract state

* [he operation pre- post- conditions
— expressed for the representation type

— also expressed for the abstract type (for client code)

Construction and Verification of Software, FCTUNL, © (uso reservado) 36

Soundness and Abstraction Map

e A so-called ghost variable is only used in the spec and does
not actually use memory

e Usages of ghost variables only occur in spec operations
(are never executed at runtime)

class ASet {
// Abstract state
ghost var siset<int>;

// Representation state
var a:array<int>;
var size:int;

e \We therefore represent abstract state with ghost state.

Construction and Verification of Software, FCTUNL, © (uso reservado)

37

Tiago
Realce

Tiago
Realce
utilizamos variáveis "fantasma", apenas utilizadas na especificação (parte privada), e que não usam memória. São auxiliares e apenas instruem o dafny

Tiago
Realce

Tiago
Realce

Tiago
Realce

Sound

e A sSO-Cé
Nnot act

e Usage:
(are ne

class ASe

// AL
ghost

// RE
var &
var s

e \\We the

Dafny - Sets

other tutorials close d doeS

e NS

Sets of various types form one of the core tools of verification for Dafny. Sets
represent an orderless collection of elements, without repetition. Like
sequences, sets are immutable value types. This allows them to be used easily
in annotations, without involving the heap, as a set cannot be modified once
it has been created. A set has the type:

set<int>

for a set of integers, for example. In general, sets can be of almost any type,
including objects. Concrete sets can be specified by using display notation:

var sl := {}; // the empty set

var s2 := {1, 2, 3}; // set contains exactly 1, 2, and 3 t Variable

assert s2 == {1,1,2,3,3,3,3}; // same as before
var s3, s4 := {1,2}, {1,4};

The st formed by the disolay s | I ning e o

Construction and Verification of Software, FCTUNL, © (uso reservado) 38

Soundness and Abstraction Map

e \We next define a predicate Sound() that specifies the
precise relationship the abstract and concrete state:

// The mapping between abstract and representation state
predicate Sound()

reads this,a

requires RepInv()

{
}

forall x::(x in s) <==> exists p::(0<=p<size) && (alp] == x)

o \\e then express in all operations how the abstract state
changes, and how it is kept well related with a proper
representation state

e As a benefit, we may then also express pre and post
conditions in terms of the abstract state !

Construction and Verification of Software, FCTUNL, © (uso reservado)

39

Tiago
Realce
este predicado "Sound()" liga o estado concreto ao estado abstrato.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Set ADT (with abstract state)

class ASet {
// Abstract state
ghost var s:set<int>;
// Representation state
var a:array<int>;
var size:int;

// The mapping between abstract and representation state
predicate Sound()

reads this,a

requires RepInv()
{ forall x::(x in s) <==> exists p::(0<=p<size) && (alp] == x) }

predicate RepInv()
reads this,a
{ @ < a.Length && @ <= size <= a.lLength && unique(a,0,size) }

predicate Valid()
reads this,a
{ RepInv() && Sound() }

// Spec
predicate unique(b:array<int>, 1l:int, h:int)
reads b;
requires @ <= 1 <= h <= b.Length ;
{ forall k::(l<=k<h) ==> forall j::(k<j<h) ==> b[k] '= bl[j] }

Construction and Verification of Software, FCTUNL, © (uso reservado)

40

Tiago
Realce
valid passa a ser a conjunção entre a invariante de representação e o novo predicado Sound()

Tiago
Realce
sound vai precisar de seguir a invariante de representação

Tiago
Realce
qualquer que seja o valor x armazenado no set ghost (privado), esse valor também existirá no set público

Set ADT (with abstract state)

class ASet {
// Abstract state
ghost var s:set<int>;

// Representation state
var a:array<int>;
var size:int;

// Implementation: Constructor and Methods
constructor(SIZE:int)

requires SIZE > 0;
ensures Valid() && s == {}

{
// Init of Representation state
a := new int[SIZE];
size := 0;
// Init of Abstract state
s := 1{};
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

41

Tiago
Realce
ele aqui está também a assegurar o Sound()

Tiago
Realce
começamos sempre o array abstrato a zero

Tiago
Realce
iniciamos o estado concreto

Tiago
Realce
iniciamos o estado abstrato

Set ADT (with abstract state)

class ASet {
// Abstract state
ghost var s:set<int>;

// Representation state
var a:array<int>;
var size:int;

method find(x:int) returns (r:int)
requires Valid()
ensures Valid()
ensures -1 <= r < size;

ensures r < @ ==> forall j::(0<=j<size) ==> x !'= aljl;
ensures r >=0 ==> alr] == x;
{
var 1i:int := 0;
while (i<size)
decreases size-1
ilnvariant 0 <= i1 <= size;
invariant forall j::(0<=j<i) ==> x !'= aljl;
{
if (alil==x) { return i; }
1:=1+ 1;
¥
return -1;
¥

Construction and Verification of Software, FCTUNL, © (uso reservado)

42

Tiago
Realce
o find não altera o estado abstrato, por isso o s fica igual

Set ADT (with abstract state)

class ASet {
// Abstract state
ghost var s:set<int>;

// Representation state
var a:array<int>;
var size:int;

method add(x:int)
modifies a, this
requires Valid()
requires count() < maxsize()
ensures Valid() & s == old(s) + {x}

var i := find(x);
if (i < 0) {
alsize] := x;
s :=s +9{ x };
size := size + 1;
assert alsize-1]1 == x;
assert forall i :: (@<=i<size-1) ==> (al[i] == old(alil));
assert forall x::(x in s) <==> exists p::(0<=p<size) && (alpl == x);

Construction and Verification of Software, FCTUNL, © (uso reservado)

Tiago
Realce
atualizamos sempre o estado abstrato as well

Tiago
Realce
o s no estado anterior (ou seja, antes de atualizarmos os valores)

Next lecture

— Framing in Hoare Logic
— Changing state and Dynamic Frames

— Typestates

Construction and Verification of Software, FCTUNL, © (uso reservado)

44

Changing State

* [racking state changes and invalidating knowledge
along the proof is crucial in the veritication of imperative

programs.

e This is captured by the derived (constancy or frame) rule

1A} P {B}
{ANC} P{BAC}

where M(P)NV(C) =10

* Provided that the variables moditied by P (M(P)) are not

referred by C (V(C)).

{r>0}y:=x{y>C

ANx =1y}

) | &

{x >0 N2<0}ly:=x{y>C

Construction and Verification of Software, FCTUNL, © (uso reservado)

ANx =yNz <0}

45

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce
a regra de frame

Tiago
Realce

Tiago
Realce

Tiago
Realce
todas as variáveis não alteradas/referenciadas pelo programa mantêm-se iguais.

Changing State

* [racking state changes and invalidating knowledge
along the proof is crucial in the verification of imperative

programs.

e This is captured by the derived (constancy or frame) rule

1A} P {B}
{ANC} P{BAC}

where M(P)NV(C) =10

* Provided that the variables moditied by P (M(P)) are not
referred by C (V(C)).

* Updates to variables do not allow framing the modified
variables. method deposit(v:int)

modifies this'bal «——|ike one assignment

Construction and Verification of Software, FCTUNL, © (uso reservado) 46

Tiago
Realce

Changing State

* [Jracking changes with dynamic memory Is not covered
by the original Hoare Logic. Each tool adopts some kind
of strategy to make the frame rule sound.

function AbsInv():bool
reads this a, this size, this's, this.a

{ RepInv() && Sound() } ‘\
memory referred by

method add(x:1nt)
requires AbsInv()
ensures AbsInv()
modifies this a, this.a, this size, this's

/7 T~

field of contents of memory modified by

Dafny refers to allocated memory areas. Objects and
arrays. Modification of tfields are modifications to the
container object.

Construction and Verification of Software, FCTUNL, © (uso reservado) 47

Tiago
Realce

Tiago
Realce

Changing State

e [racking state changes and invalidating knowledge

along the proof is crucial in the verification of imperative
programs.

1A} P B}
{ANC}P{BAC}

e |nformation In the interface is important to know modified
and referred memory.

method Main() {
var a:Account := new Account();
a.deposit(10);
a.withdraw(20); <<<<< 7777
1f a.getBalance() > 10
{ a.withdraw(10); a.deposit(10); }
ks

Construction and Verification of Software, FCTUNL, © (uso reservado)

48

Tiago
Realce

Tiago
Realce

Changing State

e [racking state changes and invalidating knowledge

along the proof is crucial in the verification of imperative
programs.

1A} P B}
{ANC} P{BAC}

e |nformation In the interface is important to know modified
and referred memory.

method Main() {

var a:Account := new Account(); { a.bal >= 0 }

{ a.bal >= 0 } a.deposit(10); { a.bal >= 0 }

{ a.bal >= 0 } a.withdraw(20); <<<<< 7777

1f a.getBalance() > 10

{ { a.bal > 10 } a.withdraw(10); a.deposit(10); }
ks

Construction and Verification of Software, FCTUNL, © (uso reservado) 49

