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Outline
• Concurrent ADTs 
• Concurrency Control (Monitors) 
• Verifying Monitors 
• Applying and Verifying Monitor Conditions 
• Concurrent ADTs construction 
• An example of construction
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Part I 
Concurrent ADTs
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Concurrency
• To execute several units of computation out of the prescribed order 

(non strictly sequential).  

• An undetermined number of interleaving executions between units 

• Allows parallel computation (Hardware permitting) - no state sharing 

• Allows asynchronous programming (blocking IO) 

• improves efficiency 

• improves responsiveness (UI) 

• Examples of models with concurrency: 

• Message passing 

• Shared Memory  

• Optimistic (Transactions)
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Concurrency
• To execute several units of computation out of the prescribed order 

(non strictly sequential).  

• An undetermined number of interleaving executions between units 

• Allows parallel computation (Hardware permitting) - no state sharing 

• Allows asynchronous programming (blocking IO) 

• improves efficiency 

• improves responsiveness (UI) 

• Examples of models with concurrency: 

• Message passing 

• Shared Memory <<< most common in the imperative setting
• Optimistic (Transactions)
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Concurrency with shared memory
• Several threads of execution share the same state footprint 

• Interference is expected: 
– the local view of a thread may change without notice  

(another thread may act “under the hood” and cause state changes). 

• Interference is the essence of concurrency 

• Key issue: 
– how to keep state consistency in the presence of state sharing and 

control interference 

– how to reason about the effects of concurrent code  

• Reasoning about concurrency is very challenging! 

• Modularity brought by ADT based design is crucial!
6
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Verification of ADTs
• The verification of sequential uses of ADTs characterizes the 

observable states of objects implementing them. 

• All ADT operations (public methods) preserve the consistency 
of the ADT. 

• Consistency is expressed by the representation and abstract 
invariants (and the abstraction mapping). 

• The following Hoare/Sep Logic triple is valid for all method 
bodies (mbody) of ADT operations 

 { RepInv && pre-cond } mbody { RepInv && post-cond } 

• This line of reasoning works well under the assumption of 
sequentiality. What if method executions overlap in time?

7

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Construction and Verification of Software, FCTUNL, © (uso reservado)

Verification of Concurrent ADTs
• Challenge: how to program and reason about ADTs with 

interfering  methods

8
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Interference between ADT operations
• Consider a Stack ADT 

– push(v), pop(), isEmpty()

– push() interferes with pop() ? 

– pop() interferes with isEmpty() ? 

– pop() interferes with pop() ? 

• Consider a Dictionary ADT 
– assoc(key,data), find(key)

– assoc() interferes with find() ? 

– assoc() interferes with assoc() ? 

– find() interferes with find() ? 
9
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Verification of Concurrent ADTs
• Challenge: how to program and reason about ADTs with 

interfering  methods 

• The verification of concurrent uses of ADTs should also observe 
stable states of objects implementing them. 

• All ADT operations (public methods) must also preserve the 
consistency of the ADT. 

• The following Hoare/Sep Logic triple should also be valid for all 
method bodies (mbody) of ADT operations 

 { RepInv && pre-cond } mbody { RepInv && post-cond} 

• A sound approach is to consider the ADT operations as the unit 
of concurrency and structuring of reasoning (later to be refined).
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Operation Level Behaviour
• Reason at the level of ADT operations and not at the level 

of unstructured low level instructions and state changes 

• Each ADT operation is performed in three steps 
– The operation is called (by the client thread) 
– The operation is executed (inside the ADT) 

– The operation returns 
• Example: 

– push_call(2) 
• ... execute (internally to the ADT) 

– push_return 
– pop_call() 

• .... execute (internally to the ADT) 
– pop_return(2)
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Operation Level Behaviour
• We may consider several levels of concurrency 

• Several threads are invoking ADT operations but only one may 
actually be executing the operation 
• strict serialisation, easier to implement and reason about 

• less chances of “unsound” interference 

• Several threads are invoking ADT operations but more 
than one may be executing an operation 

• more parallelism, more concurrency, harder to implement and reason about 

• more chances of “unsound”/ bad interference 

• How does the concurrent object behaviour relate to the 
intended sequential object specification ?
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Two Basic Models
• Serializability 

• The global trace is always consistent with some sequential 
serialisation of previous operations (no overlaps of calls and 
returns), compatible with the sequential specification. 

• Linearizability 
• The global trace is always consistent with a view in which 

previous operations appear to occur instantaneously between 
calls and returns, and the obtained serialisation is compatible with 
the sequential specification. 

• Linearizability is more flexible than serializability, as it 
allows for more parallel behaviour.
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Desired properties ADT operations (ACID)
• Atomicity 

• No intermediate states are visible  
(not compatible with the representation invariant) 

• Consistency 
• Operations lead from a sound state to a sound state  

(invariants and soundness are preserved) 

• Isolation 
• This is another word for “no unsafe interference” 

• Durability (this goes without saying) 
• Effects are undoable (N.B: this is more useful to highlight in the 

context of database transactions)
14
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Correctness of Concurrent ADTs 
• With naive concurrency, it is hard (or impossible) for client 

code to be sure if a specific post-condition holds. 

• E.g: two clients modify the concrete state at the same 
time, bringing the state inconsistent, breaking the 
representation invariant, or even crashing the code.
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  void push(int v) 
  //@ requires StackInv(this,?n,?m) &*& n < m;
  //@ ensures StackInv(this,n+1,m);
  {
    int i = nelems;
    store[i] = v;
    nelems++;
  }

  // Thread 1

int i = nelems;

    store[i] = v;
    nelems = i + 1;

  // Thread 2

int i = nelems;
    store[i] = v;
    

 
    nelems = i + 1;
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Correctness of Concurrent ADTs 
• With naive concurrency, it is hard (or impossible) for client 

code to be sure if a specific post-condition holds. 

• E.g: two clients modify the concrete state at the same 
time, bringing the state inconsistent, breaking the 
representation invariant, or even crashing the code. 

• Solution using serialisation: 
– serialise usages of concrete states, so that just a single thread may be 

accessing the state at each given moment  
(mutual exclusion of concrete state) 

– We may then safely reason about such mutually exclusive code 
fragments as we have done for sequential code.
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Correctness of Concurrent ADTs 
• With naive concurrency, it is hard (or impossible) for client 

code to be sure if a specific post-condition holds. 

• E.g: two clients modify the concrete state at the same 
time, bringing the state inconsistent, breaking the 
representation invariant, or even crashing the code.
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  int pop() 
  //@ requires StackInv(this,?n,?m) &*& n > 0;
  //@ ensures StackInv(this,n-1,m);  
  {
    int v = store[nelems-1];
    nelems--;
    return v;
  }

  // Thread 1
pop() {

    int v = store[nelems-1];
    nelems--;
    

    return v;
}

  // Thread 2

pop() {

    int v = store[nelems-1];
    nelems--;

    return v;
}
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Correctness of Concurrent ADTs 
• With naive concurrency, it is hard (or impossible) for client 

code to be sure if a specific post-condition holds. 

• E.g: two clients modify the concrete state at the same 
time, bringing the state inconsistent, breaking the 
representation invariant, or even crashing the code.
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  int pop() 
  //@ requires StackInv(this,?n,?m) &*& n > 0;
  //@ ensures StackInv(this,n-1,m);  
  {
    int v = store[nelems-1];
    nelems--;
    return v;
  }

  // Thread 1
pop() {

    int v = store[nelems-1];
    nelems--;
    

    return v;
}

  // Thread 2

pop() {

    int v = store[nelems-1];
    nelems--;

    return v;
}

Is this safe in all situations? 
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Correctness of Concurrent ADTs 
• With naive concurrency, it is hard (or impossible) for 

client code to be sure if a specific pre-condition holds. 

• E.g: client checks that a buffer is not empty, but other 
thread empties it under the hood. 

• Solution: 
– Concurrency control replaces pre-condition checking (on the client 

side) by explicit waiting for the precondition to hold (inside the ADT). 
– The pre-condition for some ADT op can only be enabled by 

executing some other ADT op 
– So waiting for a pre-condition must be managed by special 

programming language or system support, in a coordinated way with 
other ADT operations

19
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Concurrent Programming
• Reasoning about concurrency is hard 

• Making sure the code is right is much more difficult than in 
sequential code 

• Trying to simulate the program running in your head and 
debugging it does not really work anymore :-) 

– It does not really work in the sequential case either, actually..., although 
you may still believe. 

• We will now study how to design and construct correct 
concurrent code, based on monitors 

• Monitor = invariant preserving concurrent ADT 

• Nicely supported by java.concurrent.util

20
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Part II 
Concurrency Control via 

Monitors
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Monitors

22
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Monitors
• An ADT where operations may be called concurrently 
• 2 key mechanisms provided for ensuring consistency: 

Synchronization (a.k.a. mutual exclusion) 
– only a single thread may “own” the shared state at any time object, and has 

permission to change it 

– All that client code may expect from shared state is the invariant, and 
nothing more than the invariant 

– any context switches must preserve the invariant (observable states) 

Concurrency control
– pre-condition checking must be usually replaced by explicit waiting for the 

pre-condition to hold. 

– conditions refine the invariant into finer partitions.
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Implementation of monitors
• To implement monitors in Java, we will use locks 

– You have already heard about locks (FSO, CP) 

– A lot harder to reason about programs if we just think of using 
locks in an unstructured way 

• We may later refine the borders of serialisability to get 
more concurrency (approach linearisability) 
– Use locks as delimiters of abstract operations on the shared state 

– Use the java.util.concurrent API (Doug Lea) 

– Will learn how to design concurrent ADTs without thinking 
“operationally”, but rather in terms of (partitioned) ownership, 
invariants, and conditions.
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Example (Bounded Counter)
• Consider a counter with a maximum value (Bounded) 

class BCounter {
  int N;
  int MAX;
  BCounter(int max) { N = 0 ; MAX = max; }
  void inc() { N++; } 
  void dec() { N--; }
  int get() { return N; }
}

25
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Example (Bounded Counter)
/*@ 
    predicate BCounterInv(BCounter c; int v,int m) = c.N |-> v &*& c.MAX |-> m &*& v>=0 &*& v<=m;
@*/
class BCounter {
  int N; int MAX;

  BCounter(int max)
  // @ requires 0 <= max;
  // @ ensures BCounterInv(this,0,max);
  { N = 0; MAX = max; }

  void inc()
  // @ requires BCounterInv(this,?n,?m) &*& n < m;
  // @ ensures BCounterInv(this,n+1,m);
  { N++; }

  void dec()
  // @ requires BCounterInv(this,?n,?m) &*& n > 0;
  // @ ensures BCounterInv(this,n-1,m);
  { N--; }

  int get()
  // @ requires BCounterInv(this,?n,?m);
  // @ ensures BCounterInv(this,n,m) &*& 0<=result &*& result<=m;
  { return N;}
}

26
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Example (Bounded Counter)
• The use of the bounded counter is safe in a sequential 

setting. 

  public static void main(String[] args)
  //@ requires true;
  //@ ensures true;
  {
    int MAX = 100;
    BCounter c = new BCounter(MAX);
    //@ assert BCounterInv(c,0,MAX);
    if (c.get() < MAX) {
      c.inc(); // this is ok, precondition satisfied
    }
  }

27
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Example (Bounded Counter)
• But… in a concurrent setting where the reference to the 

counter is used elsewhere?? 
  public static void main(String[] args)
  //@ requires true;
  //@ ensures true;
  {
    int MAX = 100;
    BCounter c = new BCounter(MAX);
    //@ assert BCounterInv(c,0,MAX);
    giveAway(c); // potentially give other thread access to c
    if (c.get() < MAX) {
      //@ assert BCounterInv(c,?v,MAX) &*& v < MAX;
      c.inc();
      // not safe any more as other thread may have acted
    }
  }

28
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1st: Serialise access to shared state
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;

  CCounter(int max) {
    N = 0;
    MAX = max;
    mon = new ReentrantLock();
  }
  …

29
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Example (Bounded Counter)
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;
  …
  void inc()
  { 
      mon.”enter”(); //request permission to the shared state
      N++;
      mon.”leave”(); //release ownership of the shared state
  } 

  void dec()
  { 
      mon.”enter”(); //request permission to the shared state
      N--; 
      mon.”leave”(); //release ownership of the shared state
  } 

30
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Example (Bounded Counter)
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;
  …
  void inc()
  { 
      mon.lock(); //request permission to the shared state
      N++;
      mon.unlock(); //release ownership of the shared state
  } 

  void dec()
  { 
      mon.lock(); //request permission to the shared state
      N--; 
      mon.lock(); //release ownership of the shared state
  } 

31

Tiago
Realce

Tiago
Realce



Construction and Verification of Software, FCTUNL, © (uso reservado)

Example (Bounded Counter)
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;
… 
  int get()
  {  
      int r;
      mon.”enter”(); 
      r = N; // put a copy on the stack, private to the thread
      mon.”leave”();
      return r;
  } 

32
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Summary
• Undisciplined concurrent access to shared memory 

causes unexpected (thus invalid) behaviour. 
• (Conservatively) Implement all operations in a monitor, 

where only one thread is allowed at a time. 
  T op()
  {  
      T result;
      mon.”enter”();
      // Thread has access to shared state
      result = Expression;
      // Thread releases access to shared state
      mon.”leave”();
      return result;
  } 

• (Next) will define more flexible mechanisms that allow 
more interleaving of operations.

33
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Part III 
Verifying Monitors
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Reasoning about monitor operations
• Monitor “guards” the access to the ADT shared state. 

  shared state = footprint of the monitor operations 
• The “enter” operation gives access to the footprint 
• The “leave” operation captures the footprint back

35
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SharedStateInv() is the representation invariant of the 
ADT that is used to verify operations in exclusive ownership of 
the monitor 

In our example ... 
//@ predicate CCounterInv(CCounter c) = 
    c.N |-> ?v &*& c.MAX |-> ?m &*& v>=0 &*& v<=m;
so: 

{ emp } m.lock() { CCounterInv(this) }

Hoare Rule for enter/leave (lock/unlock)

36

{ emp } m.enter() { SharedStateInv() }

<latexit sha1_base64="rm1aEV2a7blDooarlsblYi5Iavk="></latexit>

{ SharedStateInv() } m.leave() { emp }

<latexit sha1_base64="fkLHwrfO0bl4CEPXgUvrFDjKNac="></latexit>
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Hoare Rule for enter/leave (lock/unlock)
• Representation Invariant is available inside the monitor 

class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;

 void inc()
  //@ requires …
  //@ ensures  …
  { 
     //@ request permission to the shared state

      mon.lock(); 
      //@ assert CCounterInv(this,?n,?m)
      N++;
      //@ assert CCounterInv(this,n+1,m)
      mon.unlock(); 
      //@ release ownership of the shared state
  } 

37
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Warning: Red assertions not available!
• Representation Invariant is available inside the monitor 

class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;

 void inc()
  //@ requires CCounterInv(this,?n,?m) &*& n < m;
  //@ ensures  CCounterInv(this,n+1,m);
  { 
     //@ request permission to the shared state

      mon.lock(); 
      //@ assert CCounterInv(this,?n,?m)
      N++;
      //@ assert CCounterInv(this,n+1,m)
      mon.unlock(); 
      //@ release ownership of the shared state
  } 

38
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How can a client check n<m ?  

39
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How can an ADT capture the footprint in a lock?

40

Tiago
Realce



Construction and Verification of Software, FCTUNL, © (uso reservado)

“invisible” abstract state
• Many threads may be interfering, so the only thing one may 

assume is the invariant, only after entering the shared state a 
client may know extra details about the concrete state. 

• In fact, nothing specific about the abstract state may be 
revealed to client code, and we need to be less informative 
about the abstract state (e.g., no current val) 

• Inside the object, the only unprotected objects are the locks  
(or the single lock).  

• Each lock can be used to ask permission to access a disjoint 
part of the shared state. 

• We must precisely define which part of the shared state is 
separately owned by each lock.
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Example (Bounded Counter)
/*@ 
    predicate_ctor CCounter_shared_state (BCounter c) () =
        c.N |-> ?v &*& v >= 0 &*& c.MAX |-> ?m &*& 0 < m &*& v <= m;
*@/
/*@ predicate CCounterInv(CCounter c) = 
          c.mon |-> ?l 
    &*&  l != null 
    &*&  lck(l, 1, CCounter_shared_state(c))

 @*/
class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;
  
  CCounter(int max)
  //@ ensures CCounterInv(this);
  { 
    N = 0 ; 
    MAX = max;
    mon = new ReentrantLock();
  }
}

42
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First-order predicates
• Define a family of predicates that can be stored by other 

predicates through a predicate constructor 

   predicate_ctor CCounter_shared_state (CCounter c) () =
      c.N |-> ?v &*& v >= 0 &*& c.MAX |-> ?m &*& 0 < m &*& v <= m;

• and then instantiate them to produce a predicate instance 

     lck(l, 1, CCounter_shared_state(c))

• and use it in other predicates 

     CCounter_shared_state(this)()
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ReentrantLock constructor
• The ReentrantLock class signature ensures the establishment of 

the “native” predicate lck based on the invariant predicate inv 
predicate enter_lck(real p, predicate() inv) = inv() ;
predicate lck(Lock s; real p, predicate() inv);

public class ReentrantLock {
    public ReentrantLock();
    //@ requires enter_lck(1,?inv);
    //@ ensures lck(this, 1, inv);
    …
}
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Example (Bounded Counter)
class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;
  CCounter(int max)
  //@ ensures CCounterInv(this);
  { 
    N = 0 ; 
    MAX = max;
    //@ close CCounter_shared_state(this);
    //@ close enter_lck(1, CCounter_shared_state(this));
    mon = new ReentrantLock();
    //@ assert lck(mon, 1, CCounter_shared_state(this));
    //@ close CCounterInv(this);
  }
}

45
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Example (Bounded Counter)
• Representation invariant captures the resources that can be 

used in a concurrent context  
class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;

  void inc()
  //@ requires CCounterInv(this);
  //@ ensures  CCounterInv(this);
  { 
    mon.lock(); // request permission to the shared state
    //@ open CCounter_shared_state(this)();
    N++; 
    //@ close CCounter_shared_state(this)();
    mon.unlock(); // release ownership of the shared state
  } 
}

46
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ReentrantLock operations
• The ReentrantLock methods lock and unlock use the 

predicate lck to make the invariant available inside the monitor 
and captured again outside the exclusive access region. 

predicate lck(Lock s; real p, predicate() inv);

public class ReentrantLock {
    …
    public void lock();
    //@ requires lck(?t, 1, ?inv);
    //@ ensures lck(t, 0, inv) &*& inv();
    
    public void unlock();
    //@ requires lck(?t, 0, ?inv) &*& inv();
    //@ ensures lck(t, 1, inv);
    …
}
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Example (Bounded Counter)
• Representation invariant captures the resources that can be 

used in a concurrent context  
class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;

  void dec()
  //@ requires CCounterInv(this);
  //@ ensures  CCounterInv(this);
  { 
    mon.lock(); 
    //@ open CCounter_shared_state(this)();
    N--; 
    //@ close CCounter_shared_state(this)();
    mon.unlock();
  } 
}

48
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What if N==0 ?

49
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What if N==0 ?
• The “public” representation invariant cannot reveal information 

to make the pre-condition hold. 
class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;

  void dec()
  //@ requires CCounterInv(this); // no way to reveal a pre-cond!
  //@ ensures  CCounterInv(this);
  { 
    mon.enter(); 
    //@ open CCounter_shared_state(this)();
    N--; 
    //@ close CCounter_shared_state(this)(); // must ensure N>=0!
    mon.leave();
  } 
}
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Summary
• This structured monitor implementation makes the 

shared state representation invariant available inside the 
exclusive access area. 

• The operations lock and unlock release and capture the 
representation invariant. 

• Operations cannot enforce preconditions in the caller 
context due to possible interleaving of operations 
outside the monitor. 
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How can a client check n<m ?  
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What if N==0 ?
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How can a client check n<m ?  
• Concurrency control mechanisms replace pre-condition 

checking (on the client side) by explicit waiting for the 
precondition to hold (inside the ADT). 

• The pre-condition for some ADT operation can only be 
enabled by executing some other ADT operation. 

• Waiting for a pre-condition is managed by special 
programming language or system support, in a 
coordinated way with other ADT operations. 

Monitor Conditions
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Partition shared state using conditions
• Conditions implement queues of suspended threads… 

class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;
  Condition notzero;
  Condition notmax;

  void dec()
  //@ requires CCounterInv(this);
  //@ ensures  CCounterInv(this);
  { 
    mon.enter(); 
    //@ open CCounter_shared_state(this)();
    if (N==0) notzero.await(); 
    N--;
    //@ close CCounter_shared_state(this)();
    mon.leave();
  } 
}

56

Tiago
Realce

Tiago
Realce



Construction and Verification of Software, FCTUNL, © (uso reservado)

Partition shared state using conditions
• Conditions represent operations’ preconditions, that are 

checked in the callee context, where access is granted 
class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;
  Condition notzero;
  Condition notmax;

  void dec()
  //@ requires CCounterInv(this);
  //@ ensures  CCounterInv(this);
  { 
    mon.enter(); 
    //@ open CCounter_shared_state(this)();
    if (N==0) notzero.await(); 
    N--;
    //@ close CCounter_shared_state(this)();
    mon.leave();
  }
  …
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Cond(C) is the refinement of the shared state property denoted by condition C. 

In our example: 
• Cond(notzero)  =  (N > 0) 
• Cond(notmax)  =  (N < MAX) 

Hoare Rule for wait (await)
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{ SharedStateInv() } C.wait() { SharedStateInv() ^ Cond(C) }

<latexit sha1_base64="KAg2kS/1d25mSkCw40FMwslXy2o="></latexit>
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Partition shared state using conditions
/*@
predicate_ctor CCounter_shared_state (CCounter c) () =
   c.N |-> ?v &*& v >= 0 &*& c.MAX |-> ?m &*& m > 0 &*& v <= m;

predicate_ctor CCounter_nonzero (CCounter c) () =
   c.N |-> ?v &*& c.MAX |-> ?m &*& v > 0 &*& m > 0 &*& v <= m; 

predicate_ctor CCounter_nonmax (CCounter c) () =
   c.N |-> ?v &*& c.MAX |-> ?m &*& v < m &*& m > 0 &*& v >= 0; 

predicate CCounterInv(CCounter c) = 
        c.mon |-> ?l 
    &*& l != null 
    &*& lck(l,1, CCounter_shared_state(c)) 
    &*& c.notzero |-> ?cc 
    &*& cc != null 
    &*& cond(cc, CCounter_shared_state(c), CCounter_nonzero(c))
    &*& c.notmax |-> ?cm 
    &*& cm != null 
    &*& cond(cm, CCounter_shared_state(c), CCounter_nonmax(c));
@*/
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ReentrantLock Conditions await
• The Condition method await makes a transformation from the 

generic shared state (inv) to the refined state corresponding to 
that condition (acond). 

public interface Condition {

    public void await();
        //@ requires cond(this,?inv,?acond) &*& inv();
        //@ ensures  cond(this, inv, acond) &*& acond();
    …
}

60

Tiago
Realce

Tiago
Realce



Construction and Verification of Software, FCTUNL, © (uso reservado)

Partition shared state using conditions
• Conditions grant the access to the refined state condition 

class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;
  Condition notzero; 
  Condition notmax;
  void dec()
  //@ requires CCounterInv(this);
  //@ ensures CCounterInv(this);
  { 
    mon.lock(); 
    //@ open CCounter_shared_state(this)();
    if (N == 0) notzero.await(); 
    //@ open CCounter_notzero(this)(); // refined state with N > 0
    N--;
    //@ close CCounter_shared_state(this)();
    mon.unlock();
  } 
}
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Example (Bounded Counter)
• Conditions are defined with relation to both the 

representation invariant and the refined state. 
class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;
  Condition notzero; 
  Condition notmax; 

  BCounter(int max)
  //@ requires max > 0;
  //@ ensures CCounterInv(this);
  { 
   MAX = max; 
   mon = new ReentrantLock();
   
   //@ close CCounter_shared_state(this)();
   //@ close set_cond(CCounter_shared_state(this),CCounter_nonzero(this));  
   notzero = mon.newCondition(); // notzero set to mean N > 0  !!
    
   //@ close set_cond(CCounter_shared_state(this),CCounter_nonmax(this));  
   notmax = mon.newCondition();  // notmax set to mean N < MAX !!
  }
}
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ReentrantLock Conditions await
• Conditions are defined with relation to the representation 

invariant (inv) and the refined state (pred). 

public class ReentrantLock {

    …
    public Condition newCondition();
    //@ requires lck(?t, 1, ?inv) &*& set_cond(inv, ?pred);
    //@ ensures  lck(t, 1, inv)   &*& result != null &*& cond(result,inv,pred);
}
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Partition shared state using conditions
• Different conditions give access to different refinements 

class CCounter {
  int N;
  int MAX;
  ReentrantLock mon;
  Condition notzero; Condition notmax;

  void inc()
  //@ requires CCounterInv(this);
  //@ ensures CCounterInv(this);
  { 
    mon.enter(); 
    //@ open CCounter_shared_state(this)();
    if (N == MAX) notmax.await(); 
    //@ open CCounter_notmax(this)(); // refined state N < max
    N++;
    //@ close CCounter_shared_state(this)();
    mon.leave();
  } 
}
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Wait and Signal work together
• Wait and signal represents a voluntary yielding of control 

flow and exclusive access to the monitor. 
• Wait suspends a thread until a precondition is “satisfied” 
• Signal states that a precondition is explicitly “satisfied”
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Ensure progress using signalling
• Wait and signal represents a voluntary yielding of control 

flow and exclusive access to the monitor. 
  void inc()
  //@ requires CCounterInv(this);
  //@ ensures CCounterInv(this);
  { 
    mon.enter(); 
    //@ open CCounter_shared_state(this)();
    if (N == MAX) notmax.await(); 
    //@ assert CCounter_notmax(this)();
    N++;
    //@ close CCounter_notzero(this)();
    notzero.signal();
    //@ close CCounter_shared_state(this)();
    mon.leave();
  } 
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Ensure progress using signalling
• Wait and signal represents a voluntary yielding of control 

flow and exclusive access to the monitor. 
  void dec()
  //@ requires CCounterInv(this);
  //@ ensures CCounterInv(this);
  { 
    mon.enter(); 
    //@ open CCounter_shared_state(this)();
    if (N == 0) notzero.await(); 
    //@ assert CCounter_notzero(this)();
    N--;
    //@ close CCounter_notmax(this)();
    notmax.signal();
    //@ close CCounter_shared_state(this)();
    mon.leave();
  } 
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Cond(C) is the refinement of the shared state property denoted by condition C. 

In our example: 
• Cond(notzero)  =  (N > 0) 
• Cond(notmax)  =  (N < MAX) 

Hoare Rule for wait/signal (await/signal)
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{ SharedStateInv() } C.wait() { SharedStateInv() ^ Cond(C) }

<latexit sha1_base64="KAg2kS/1d25mSkCw40FMwslXy2o="></latexit>

{ SharedStateInv() ^ Cond(C) } C.signal() { SharedStateInv() }

<latexit sha1_base64="cKTIPA0Oc0BcnULWtCekbEExu9g="></latexit>
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Defending against unsound implementation
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Defending against unsound implementation

Excerpt from Java API documentation: 

Implementation Considerations 

When waiting upon a Condition, a "spurious wakeup" is permitted to occur, in 
general, as a concession to the underlying platform semantics.  
This has little practical impact on most application programs as a Condition 
should always be waited upon in a loop, testing the state predicate that is being 
waited for.  
An implementation is free to remove the possibility of spurious wakeups but it is 
recommended that applications programmers always assume that they can occur 
and so always wait in a loop. 
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Defending against unsound implementation

  void inc()
  //@ requires CCounterInv(this);
  //@ ensures CCounterInv(this);
  { 
    mon.lock(); 
    //@ open CCounter_shared_state(this)();
    while(N==MAX) notmax.await(); 
    //@ assert CCounter_notmax(this)();
    N++;
    //@ close CCounter_notzero(this)();
    notzero.signal();
    //@ assert CCounter_shared_state(this)();
    mon.unlock();
  } 
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Defending against unsound implementation

  void dec()
  //@ requires CCounterInv(this);
  //@ ensures CCounterInv(this);
  { 
    mon.lock(); 
    //@ open CCounter_shared_state(this)();
    while (N==0) notzero.await(); 
    //@ assert CCounter_notzero(this)();
    N--;
    //@ close CCounter_notmax(this)();
    notmax.signal();
    //@ assert CCounter_shared_state(this)();
    mon.unlock();
  } 
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Defending against unsound implementation
 void inc()
  //@ requires CCounterInv(this);
  //@ ensures CCounterInv(this);
  {
    mon.lock();
    //@ open CCounter_shared_state(this)();
   while (N == MAX)
    /*@ invariant this.N |-> ?v &*& v >= 0 
              &*& this.MAX |-> ?m 
              &*& m > 0 &*& v <= m
              &*& this.notzero |-> ?cc &*& cc !=null 
              &*& cond(cc,CCounter_shared_state(this), CCounter_nonzero(this)) 
              &*& this.notmax |-> ?cm
              &*& cm !=null &*& cond(cm, CCounter_shared_state(this),CCounter_nonmax(this));
     @*/
    { 
      //@ close CCounter_shared_state(this)();
      try { notmax.await(); } catch (InterruptedException e) {}
      //@ open CCounter_nonmax(this)();
    }
    N++;
   //@ close CCounter_nonzero(this)();
    notzero.signal();
    mon.unlock();
    //@ close CCounterInv(this);
  }
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Summary
• Implementing preconditions using monitor conditions 
• The operations await and signal yield control in a 

structured way. 
• Unsound real implementations lead to active waiting 

code (that can also be verified) on the conditions.
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Concurrent ADT Construction Steps
Challenge: Can we systematically transform and verify 
correct a “sequential” ADT implementation into an efficient 
“concurrent” ADT implementation?
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Concurrent ADT Recipe
1. Associate a monitor to the ADT (ReentrantLock - mon) 

2. Define the sequential ADT Representation Invariant (RepInv) that talks about 
the shared state. 
The Representation Invariant describes the memory footprint of the shared state, subject to other various 
conditions. 

3. Define the concurrent ADT Representation Invariant that talks about the monitor 
and associated conditions. 

4. In the implementation of each operation of the CADT: 

1. Get access to the shared state representation invariant, use mon.lock() 

2. When done and only if the shared state representation invariant holds, use 
mon.unlock()

5. Replace the ADT operation pre-conditions by monitor conditions inside the 
monitor (this part must be carefully thought!).  

6. Design voluntary yielding points to implement the correct interleaving of 
operations.

77

Tiago
Realce

Tiago
Realce
the sharedstate predicate

Tiago
Realce

Tiago
Realce
the normal invariant, which will have info about the monitors, shared state and conditions

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Construction and Verification of Software, FCTUNL, © (uso reservado)

Concurrent ADT Construction Steps
To replace ADT operation pre-conditions by monitor conditions inside the monitor, we 
must consider the following aspects: 

• When a thread enters a CADT operation and gets ownership of the representation 
invariant, it should check the state to satisfy (or not) the pre-condition (e.g., wants 
to decrement but counter value is zero) 

• The thread must then await for the condition to hold  
(e.g, for the value to be > 0). 

• Conversely, whenever a thread running inside the CADT establishes any one of 
the monitor conditions (e.g., inc establishes value >0), it has the duty to signal the 
condition (so that the runtime system may awake a waiting thread). 

• Notice: signalling is there to help the system to progress, and simplify the 
implementation of monitors.
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