
Handout 1
Sums, Arrays and Lists

Construction and Verification of Software
FCT-NOVA

Bernardo Toninho

28 March, 2023

This handout is due on Saturday, April 15, at 23h59m. The exact details on how to turn in
your solution will be made available at a later date, but you will only have to submit a zip file
with your Dafny source files.

The handout consists of two verification exercises: one on calculating the ranged sums of
array elements (Section 1) and another on the relationship between a functional list and its
representation as an array (Section 2).

1 Cumulative Sums over Arrays

In many programming scenarios, we are faced with a problem which can be encoded as
follows: given a fixed-length sequence of (integer) values, we want to compute some ranged
queries over the elements of the sequence. For this particular assignment, our ranged query of
choice is a ranged sum (i.e., the sum of all elements within a given range in the sequence).

(a) Define a Dafny specification function called sum that takes as arguments an array of in-
tegers a and two indices into the array, i and j, that calculates the sum over the interval
[ai, aj[, with i ≤ j. This function will recur over the array either “from the start” (i.e.,
recursive calls increase the argument i), or “from the end” (i.e., recursive calls decrease
the argument j). Note: You will need to add to the function signature a specification of
the form reads a, to indicate that the function can read from the memory denoted by the
array. You will also likely reduce future pain if you constrain (i.e., require) i and j such
that both sum(a,a.Length,a.Length) and sum(a,0,0) are valid function calls.

(b) In Dafny, implement a query method that takes as arguments an array of integers a and
two indices into the array, i and j, that calculates the sum over the interval [ai, aj[, with
i ≤ j. Your method must be imperative (i.e., use mutable variables and loops) and cannot
be recursive. Moreover, your method must ensure its result value coincides with the
corresponding call of sum from point (a).

Hint: Note that you can implement this method by traversing the array from lower to
higher indices or vice-versa. As usual, coming up with the right loop invariant will be
your biggest challenge. While there is more than one correct loop invariant, your partic-
ular choices of invariant, implementation and recursive function will affect how easy (or

1

FUNCTIONAL LISTS AND IMPERATIVE ARRAYS 2

hard) it is to prove the invariant. Depending on these choices, you may find that Dafny
is unable to immediately prove that adding an element to your running sum is the same
as adding that element to sum over the smaller (by 1) interval. If this is the case, you will
need a lemma (which you will have to state and ensure that Dafny can prove) that relates
the value of sum(a,i,j) and adding a value from the end (respectively, the start) of the
array to the result of summing the elements over the smaller interval.

(c) You will now implement a version of query that runs in O(1) time by presupposing that
we have pre-computed all prefix cumulative sums over the given array. Given an array
[1, 10, 3,−4, 5], its prefix sums are given by the array s = [0, 1, 11, 14, 10, 15]. That is, each
element of array s corresponds to the sum of all elements of the original array up to a
given index. Note that s0 corresponds to the sum of no indices of the array (i.e., the index
interval [0, 0[), s1 to the sum of the index interval [0, 1[, s2 to the sum of the index interval
[0, 2[, and so on, up to the length of the array.

The goal is to implement a method that, given a sequence of prefix sums (as an array) c
for a given array a, and indices i and j as before, returns the sum of all elements in the
original array in the index interval [i, j[in O(1) time. The signature of the method should
be (you will need fill in the blanks):

method queryFast(a: array<int>, c: array<int>, i: int, j: int)
returns (r: int)
requires is_prefix_sum_for(a,c) ∧
ensures . . .
{ . . . }

As the signature above suggests, you will need to define a predicate that codifies the rela-
tion of being a prefix sum. The predicate should be defined as follows:

predicate is_prefix_sum_for (a: array<int>, c: array<int>)
reads c, a

{ . . . }

where the body of the predicate is a logical formula that characterizes the prefix sum array
c in terms of the array a (and its contents in terms of sum of elements of a).

Hint: The body of method queryFast should be extremely simple – think of how to
compute a sum over a range [i, j[in terms of sums over [0, i[and [0, j[. However, to
establish the appropriate post-condition for method queryFast you will likely need to
call upon a lemma (which you will have to state and ensure that Dafny can prove) that
identifies the fact that the interval sum over [i, j[is equal to the sum over [i, k[plus the
sum over [k, j[, for any appropriate j.

2 Functional Lists and Imperative Arrays

Now that you have suffered a bit with prefix sums over arrays, your task is now much
simpler. We start with the standard definition of (functional-style) lists in Dafny:

datatype List<T> = Nil | Cons(head: T, tail: List<T>)

All we ask is that you implement and prove correct an imperative, non-recursive method:

LECTURE NOTES 28 March, 2023

GRADING 3

method from_array<T>(a: array<T>) returns (l: List<T>)
requires . . .
ensures . . .
{ . . . }

That takes any a : array<T> and produces a value of type List<T> containing exactly the
elements of the given array. You should try to make your specification as precise as you can.
The more precise specification you can prove, the better your grade!

Hint: You will need to define a notion of membership over lists in terms of functions or
predicates. We suggest you define something along the lines of: function mem<T(==)> (x: T, l:
List<T>) : bool ... which returns true if and only if the element x is in list l. Note that you
will not need to provide a specification for this function / predicate, but you will need to use it
in the specification of from_array.

3 Grading

Your submission must have non-trivial postconditions in order to be graded. Your precondi-
tions cannot be equivalent to false (i.e., it must be possible to invoke your methods).

If your submission is not fully checked by Dafny, your grade will be significantly penalized.
Exercises in Group 1 are with 65% of the full grade, the exercise in Group 2 is worth 35% of

the full grade. For Group 2, your grade will be a function of how precise your proved specifica-
tion is.

LECTURE NOTES 28 March, 2023

	Cumulative Sums over Arrays
	Functional Lists and Imperative Arrays
	Grading

