Construction and

Verification of Software
2022 - 2023

MIEI/MEI - Integrated Master in Computer Science and Informatics
Consolidation block

Lecture 1 - Introduction and Motivation
Bernardo Toninho (btoninho@fct.unl.pt)
based on previous editions by Joao Seco and Luis Caires

N VA

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:btoninho@fct.unl.pt

A small exercise...

* Jo determine the maximum of the first N elements of an array.

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug”?

* Jo determine the maximum of the first N elements of an array.

public class MyCollection {

static int max(int[] a, 1nt N) {
int m = 0;
for(int 1 = 0; 1 < a.length; 1++)
1fC a[i1] >=m) m = a[1];
return m;

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug”?

* Jo determine the maximum of the first N elements of an array.

public class MyCollection {

static int max(int[] a, 1nt N) {
int m = 0;
for(int 1 = 0; 1 < a.length; 1++)
1fC a[1] >=m) m = a[1];

return m;
¥
¥
public class MyCollectionTest {
@Test
public void testl() {

Q assertEquals(l, MyCollection.max(Cnew int[]{1,2,3,4,5,6},1));
assertEquals(2, MyCollection.max(new int[]{1,2,3,4,5,6},2));
assertEquals(4, MyCollection.max(new int[]{1,2,3,4,5,6},4));
assertEquals(6, MyCollection.max(new int[]{1,2,3,4,5,6} 6));

¥

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug”?

* Jo determine the maximum of the first N elements of an array.

public class MyCollection {

static int max(int[] a, 1nt N) {
int m = 0;
for(int 1 = 0; 1 < N; 1++)
1fC a[i1] >=m) m = a[1];

return m;
¥
¥
public class MyCollectionTest {
@Test
public void testl() {
assertEquals(l, MyCollection.max(Cnew int[]{1,2,3,4,5,6},1));
assertEquals(2, MyCollection.max(new int[]{1,2,3,4,5,6},2));
assertEquals(4, MyCollection.max(new int[]{1,2,3,4,5,6},4));
assertEquals(6, MyCollection.max(new int[]{1,2,3,4,5,6} 6));

¥

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug”?

* Jo determine the maximum of the first N elements of an array.

public class MyCollection {

static int max(int[] a, 1nt N) {

int m = 0;
for(int 1 =

1fC a[1] >=m) m =
return m;

}

public class MyCollectionTest {

@Test

public void testZ2() {
assertEquals(-1, MyCollection
assertEquals(-1, MyCollection
assertEquals(-1, MyCollection
assertEquals(-1, MyCollection

X

}

Construction and Verification of Software, FCTUNL, © (uso reservado)

0; 1 < N; 1++)

ali];

.max(new 1
.max(hew 1
.max(new 1
.max(new 1

int[1{-1,-2,-3,-4,-5,-6},1));
int[]{-1,-2,-3,-4,-5,-6},2));
int[1{-1,-2,-3,-4,-5,-6},4));
int[1{-1,-2,-3,-4,-5,-6},6));

Bug”?

* Jo determine the maximum of the first N elements of an array.

public class MyCollection {

static int max(int[] a, 1nt N) {
int m = Integer.MAX_VALUE;

for(int 1 =
1fC a[1] >=m) m =
return m;

}

public class MyCollectionTest {

@Test

public void testZ2() {
assertEquals(-1, MyCollection
assertEquals(-1, MyCollection
assertEquals(-1, MyCollection
assertEquals(-1, MyCollection

X

}

Construction and Verification of Software, FCTUNL, © (uso reservado)

0; 1 < N; 1++)

ali];

.max(new 1
.max(hew 1
.max(new 1
.max(new 1

int[1{-1,-2,-3,-4,-5,-6},1));
int[]{-1,-2,-3,-4,-5,-6},2));
int[1{-1,-2,-3,-4,-5,-6},4));
int[1{-1,-2,-3,-4,-5,-6},6));

Bug”?

* Jo determine the maximum of the first N elements of an array.

public class MyCollection {

static int max(int[] a, 1nt N) {
int m = Integer .MIN_VALUE;

for(int 1 =
1fC a[1] >=m) m =
return m;

}

public class MyCollectionTest {

@Test

public void testZ2() {
assertEquals(-1, MyCollection
assertEquals(-1, MyCollection
assertEquals(-1, MyCollection
assertEquals(-1, MyCollection

&

}

Construction and Verification of Software, FCTUNL, © (uso reservado)

0; 1 < N; 1++)

ali];

.max(new 1
.max(hew 1
.max(new 1
.max(new 1

int[1{-1,-2,-3,-4,-5,-6},1));
int[]{-1,-2,-3,-4,-5,-6},2));
int[1{-1,-2,-3,-4,-5,-6},4));
int[1{-1,-2,-3,-4,-5,-6},6));

Bug”?

* Jo determine the maximum of the first N elements of an array.

public class MyCollection {

static int max(int[] a, 1nt N) {

int m = a[0];
for(int 1 =

1fC a[1] >=m) m =
return m;

}

public class MyCollectionTest {

@Test

public void testZ2() {
assertEquals(-1, MyCollection
assertEquals(-1, MyCollection
assertEquals(-1, MyCollection
assertEquals(-1, MyCollection

&

}

Construction and Verification of Software, FCTUNL, © (uso reservado)

1; 1 < N; 1++)

ali];

.max(new 1
.max(hew 1
.max(new 1
.max(new 1

int[1{-1,-2,-3,-4,-5,-6},1));
int[]{-1,-2,-3,-4,-5,-6},2));
int[1{-1,-2,-3,-4,-5,-6},4));
int[1{-1,-2,-3,-4,-5,-6},6));

Bug”?

* Jo determine the maximum of the first N elements of an array.

method max(a:array<int>, N:int) returns (M:int)
{
var m:int := a[@];
var i1:int := 0;
while 1 < N {
1€:) 1 :=1+ 1;
hy

return m;

Can't compile: Request compile failed with message:
max.dfy(3,16): Error: index out of range
max.dfy(6,8): Error: index out of range

Construction and Verification of Software, FCTUNL, © (uso reservado)

10

Bug”?

* Jo determine the maximum of the first N elements of an array.

method max(a:array<int>, N:int) returns (M:int)
requires @ < N <= a.lLength

{
var m:int := a[0];
var i:int := 0;
while 1 < N

Q decreases N - 1

{

if a[i] >=m {m :=a[i]; }
1 :=1 + 1;
}

return m;

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug”?

* Jo determine the maximum of the first N elements of an array.

method max(a:array<int>, N:int) returns (M:int)
requires @ < N <= a.Length

ensures forall 1 :: @ <=1 < N ==> M >= a[1]
{

var m:int := a[@];

var i:int := 0;

Q while 1 < N
decreases N - 1

invariant @ <= 1 <= N

invariant forall j :: @ <=] <1 ==> m >= a[j]
{

i1f a[i] >=m { m := a[1]; }

1 :=1+ 1;
}
return m;

}

Construction and Verification of Software, FCTUNL, © (uso reservado)

12

Another small exercise...

* Binary search in an array:

int binarySearch(int key, int[] arr) {
int low = 0;
int high = arr.length;

while (low < high) {
int mid = (low+high)/Z;

1f (arr[mid] == key)

return mid; //found
else 1f (arr[mid] < key) low
else high = mid;

5
return -1; //not found

Construction and Verification of Software, FCTUNL, © (uso reservado)

mid + 1;

13

Binary Search in an array — Bug?

int binarySearch(int key, int[] arr) {
int low = 0;
int high = arr.length;

while (low < high) {
int mid = (low+high)/Z;

1f Carr[mid] == key)

return mid; //found
else 1f (Carr[mid] < key) low = mid + 1;
else high = mid;

ks

return -1; //not found
hy
@Test

public void testBS() {
assertEquals(-1, MyCollection.binarySearch(-6, new int[]{-5,-4,-3,-2,-1}));

assertEquals(-1, MyCollection.binarySearch(®, new int[]{-5,-4,-3,-2,-1}));
assertEquals(2, MyCollection.binarySearch(-3, new int[]{-5,-4,-3,-2,-1}));
assertEquals(@, MyCollection.binarySearch(-5, new int[]{-5,-4,-3,-2,-1}));
assertEquals(4, MyCollection.binarySearch(-1, new int[]{-5,-4,-3,-2,-1}));

/...

Construction and Verification of Software, FCTUNL, © (uso reservado)

14

Binary Search in an array — Bug?

int binarySearch(int key, int[] arr) {
int low = 0;
int high = arr.length;

while (low < high) {
int mid = (low+high)/Z;

1f Carr[mid] == key)

return mid; //found
else 1f (Carr[mid] < key) low = mid + 1;
else high = mid;

ks

return -1; //not found
hy
@Test

public void testBS() {
assertEquals(-1, MyCollection.binarySearch(-6, new int[]{-5,-4,-3,-2,-1}));

assertEquals(-1, MyCollection.binarySearch(®, new int[]{-5,-4,-3,-2,-1}));
Q assertEquals(2, MyCollection.binarySearch(-3, new int[]{-5,-4,-3,-2,-1}));
assertEquals(@, MyCollection.binarySearch(-5, new int[]{-5,-4,-3,-2,-1}));
assertEquals(4, MyCollection.binarySearch(-1, new int[]{-5,-4,-3,-2,-1}));

/...

Construction and Verification of Software, FCTUNL, © (uso reservado) 15

Binary Search in an array — Bug?

* The algorithm is correct....

* But what if low+high > 231 -1 ?

* mid = (low+high) / 2 becomes negative!

» Best case: ArrayIndexOutOfBoundsException

» Worst case: undefined (i.e., arbitrary) behavior!

int

 We run code, not algorithms.

Construction and Verification of Software, FCTUNL, © (uso reservado)

binarySearch(int key, int[] arr) {
int low = 0;
int high = arr.length;

while (low < high) {
int mid = (low+high)/2Z;

1f Carr[mid] == key)

return mid; //found
else 1f (arr[mid] < key) low = mid + 1;
else high = mid;

}
return -1; //not found

16

Binary Search in an array — Fixing the bug

* Need to make sure we do not overflow at any point.
e mid = (low + high) / 2 @
low + (high - low)/2 0

 mid

int binarySearch(int key, int[] arr) {
int low = 0;
int high = arr.length;

while (low < high) {
int mid = low+Chigh-low)/2Z;

1f Carr[mid] == key)

return mid; //found
else if (arr[mid] < key) low = mid + 1;
else high = mid;

}

return -1; //not found

Construction and Verification of Software, FCTUNL, © (uso reservado)

17

Binary Search in an array — Fixing the bug

newtype int32 = x | -0x8000_0000 <= x < 0x8000_0000

method BinarySearchInt32(a: array<int>, key: int) returns (r: int32)
requires a.Length < 0x8000_0000
{
var lo, hi := @, a.Length as int32;
while lo < hi
invariant @ <= lo <= hi <= a.Length as int32

{
var mid := (lo + hi) / 2; // error: possible overflow
if key < a[mid] {
hi := mid;

} else if a[mid] < key {
lo := mid + 1;

} else {
return mid;

}
}

return -1;

}

X result of operation might violate newtype constraint for 'int32'

Construction and Verification of Software, FCTUNL, © (uso reservado)

18

Binary Search in an array — Fixing the bug

newtype int32 = x | -0x8000_0000 <= x < 0x8000_0000

method BinarySearchInt32(a: array<int>, key: int) returns (r: int32)
requires a.Length < 0x8000_0000
{
var lo, hi := @, a.Length as int32;
while lo < hi
invariant @ <= lo <= hi <= a.Length as int32
{
var mid := lo + (hi - 1o0) / 2, // fixed overflow
if key < a[mid] {
hi := mid;
} else if a[mid] < key {
lo := mid + 1;
} else {
return mid;

}
}

return -1;

}

Construction and Verification of Software, FCTUNL, © (uso reservado)

19

Binary Search in an array (32-bit integers)

newtype int32 = x | -0x8000_0000 <= x < 0x8000_0000

method BinarySearchInt32(a: array<int>, key: int) returns (r: int32)
requires a.Length < 0x8000_0000

requires forall i1,j :: @ <= 1 < j < a.Length ==> a[i] <= a[]j]
ensures @ <= r ==> r < a.Length as int32 && a[r] == key
ensures r < @ ==> key !in a[..]

{

var lo, hi := @, a.Length as int32;
while lo < hi
invariant @ <= lo <= hi <= a.Length as int32
invariant key !in a[..lo] && key !in alhi..]
{
var mid := lo + (hi - 1o) / 2, // fixed overflow
if key < a[mid] {
hi := mid;
} else if a[mid] < key {
lo := mid + 1;
} else {
return mid;

}
}

return -1;

}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Construction and Verification of Software

This course covers principles, methods, techniques and tools for the
dependable and trustworthy construction and validation of software
systems, ensuring as much as possible the absence of programming
errors ("bugs’), with a focus on provable correctness and safety.

Project based learning using specialised technigues and tools.

Construction and Verification of Software, FCTUNL, © (uso reservado)

21

Learning Outcomes

Static Verification of Software

 Understand the principles and know how to use assertion methods in practice
to specify, reason about, and verify software.

ADTs and Concurrent Programming
* Write correct concurrent programs and ADTs
 Understand ADT programming methodologies

 Understand concurrent programming methodologies

Dynamic Verification of Software

 Understand principles and methods for software testing.

Construction and Verification of Software, FCTUNL, © (uso reservado)

22

Learning Outcomes

* Advantages and trade-offs of static over runtime verification

* How to prove the correctness of stateful imperative programs:
* via functional / executable or logical specifications;
 Small scale (individual procedures);
* Larger scale (ADTs);
* Total vs partial correctness

* How to prove the correctness of concurrent programs:
* Using concurrent separation logic

* A little bit about dynamic veritication

Construction and Verification of Software, FCTUNL, © (uso reservado)

23

Svyllabus

Verified Software Construction

e Assertion methods; Hoare and Separation Logic; Functional correctness;

Abstract and Behavioural types; Representation Invariants; inductive reasoning.

 Hands-on exercises / projects using verification tools
(e.g. Dafny, Verifast).

Concurrent Programming

« Sharing, confinement, ownership. Control of interference. Reasoning about
concurrent code with monitors and locks based on resource invariants.
Construction of concurrency control code from behavioral specs.

Software Testing

» Test selection and test generation; Model-based testing; Fault-based testing.
Property based testing; Symbolic execution; Automated testing; Tools.

Construction and Verification of Software, FCTUNL, © (uso reservado)

24

Bibliograpnhy

Program Development In Java:
Abstraction, Specification, and Object-Oriented Design.
Barbara Liskov (with John Guttag); MIT Press.

Code Complete:

A Practical Handbook of Software Construction, Second Edition.

Steve McConnell, Microsoft Press.

The Art of Software Testing, Second Edition
Glenford Myers, Corey Sandler, Tom Badgett

Java Concurrency in Practice,
Goetz et al. Addison-Wesley, 2006.

Tutorials for Dafny and Veritast

Construction and Verification of Software, FCTUNL, © (uso reservado)

Program
Development
in Java

Abstraction,
Specification, and
Object-Oriented Design

Barbara Liskov

With J“} = 3 " Microsoft
ODE 2
1\ [E

COMPLETE

I
i
I
] (::
i
I
I
i
i
iy
I
1
I
1
N0
&

1
Hel e

heA'R/Tof
SOFTWARE
ES TG

IIIIIIIIIIIIII
BRIAN GOETZ

LLLLLLLLLLLLLLLLLLLLLLLLLLL
JOSERFH BOWBEER, DAVID HOLMES,
AND DOUG LEA

Administrivia
* ~12-13 Lectures
 Midterm (W9) and Final Test (W14) — Dates TBD
e [Lab Sessions (3 Eval. components)

e TJeams of 2 students

« 3 Handouts/projects (2 Dafny, 1 Verifast)

Weeks 4-6, 7-9, 10-12

 Communication channel: https://discord.gqg/
4cmgBCJVvA4

e Evaluation 60% tests + 40% Projects (“Frequéncia’
required).

Construction and Verification of Software, FCTUNL, © (uso reservado)

20

https://discord.gg/4cmqBCJvA4
https://discord.gg/4cmqBCJvA4

Part |
True Cost of a Bug?

What's the True Cost of a Software Bug”

* A software bug can have direct impact in time and
revenue and also indirect costs in user loyalty and
reputation of a company.

“the cost to fix an error found after product release was 4 to 5 times higher
than 1f 1t’s uncovered during the design phase, and up to 100 more
expensive than if 1t’s identified 1n the maintenance phase.” (IBM)

https://crossbrowsertesting.com/blog/development/software-bug-cost/

Construction and Verification of Software, FCTUNL, © (uso reservado) 28

http://blog.celerity.com/the-true-cost-of-a-software-bug

Null References: The Billion Dollar Mistake
oy ke e]

View Presentation [Il] Speed: 1X 1.5X 2X

Null References:
The Billion Dollar

Enterprise Software Development Community

» 0:00/1:01:58 D)

Mistake

Summary
Tony Hoare

Tony Hoare introduced Null references in ALGOL W back in
1965 "simply because it was so easy to implement", says
Mr. Hoare. He talks about that decision considering it "my
billion-dollar mistake".

Construction and Verification of Software, FCTUNL, © (uso reservado)

29

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

SERVICE VIRTUALIZATION TODAY ABOUT SV 101

REPORT: SOFTWARE FAILURES COST $1.1
TRILLION IN 2016

® March 8,2017 a Michael Joseph

http://servicevirtualization.com/report-software-failures-cost-1-1-trillion-2016/

thing R Ty

VIE=
Not really a new Comart 153
HOW

- Byte Magazine

1995 Do W\

* WOR (
g%q y

AND WHAT
YOU CAN DO
ABOUT IT

Too easy to make flawed software

United Airlines SOCIEDADE

A first-class cock up A justica num verdadeiro
Feb 16th 2015, 16355 BY BR. (8) Timekeeper W Tweet |68 «estado de Citius»

Reporter TVI verificou com os préprios olhos o caos vivido nos
tribunais. Programa informatico que suporta a atividade judicial
esta sem funcionar ha mais de 30 dias

Por: Redagdo / Claudia Rosenbuch | 29 de Setembro de 2014 as 22:59

Topic: Security Follow via:),

Microsoft reveals Windows
vulnerable to FREAK SSL flaw

Summary: Redmond has said that the FREAK security flaw is found in versions of its Windows
operating system from Windows Server 2003, Windows Vista, and higher.

i . By Chris Duckett | March 6, 2015 -- 03:12 GMT (03:12 GMT)

= s+ W Follow @dobes { 2,273 followers Get the ZDNet Announce UK newsletter now

Comments 74 f Share on Facebook# 71“ W Tweet i@‘ 89 more +

Reuters

The FREAK security bug that allows attackers to conduct man-in-the-middle attacks on Secure Sockets

WH EN Matt and Emll, a COUpIe Of eXPat Americans I|V|ng in London, were inVited tO be Layer (SSL) and Transport Layer Security (TLS) connections encrypted using an outmoded cipher has

claimed another victim. This time, it is Microsoft's Secure Channel stack.

groomsmen at a friend’s wedding in New York, they feared they would not be able to afford

"Microsoft is aware of a security feature bypass vulnerability in Secure Channel (Schannel) that affects

to make the transaﬂantic tnp And then fortune intervened_ They heard about a g||tch on all supported releases of Microsoft Windows," the company said in a security advisory. "The vulnerability
facilitates exploitation of the publicly disclosed FREAK technique, which is an industry-wide issue that is

United Airlines' British website. A computer error meant that the airline was offering trips not specific to Windows operating systems.”

. . . Although Microsoft Research was part of the team to uncover FREAK alongside European

across the pond for JUSt £52 ($80)’ as |0ng users seIeCted to pay in Dan|Sh kroner' Even cryptographers, Redmond chose not to reveal Windows as vulnerable until today.

more remarkably, the tickets were for the first-class cabin. "When this security advisory was originally released, Microsoft
had not received any information to indicate that this issue had What's Hot on ZDNet
been publicly used to attack customers," the company said. > Windows 10: Will your PC run it?

1 — —

Construction and Verification of Software, FCTUNL, © (uso reservado) 32

Bug Report from Apple (2013)

10S 7.0.2

= Passcode Lock
Available for: iPhone 4 and later
Impact: A person with physical access to the device may be able to make calls to any number

Description: A NULL dereference existed in the lock screen which would cause it to restart if the emergency
call button was tapped repeatedly. While the lock screen was restarting, the call dialer could not get the lock
screen state and assumed the device was unlocked, and so allowed non-emergency numbers to be dialed.
This issue was addressed by avoiding the NULL dereference.

CVE-ID

CVE-2013-5160 : Karam Daoud of PART - Marketing & Business Development, Andrew Chung, Mariusz Rysz
= Passcode Lock

Available for: iPhone 4 and later, iPod touch (5th generation) and later, iPad 2 and later

Impact: A person with physical access to the device may be able to see recently used apps, see, edit, and
share photos

Description: The list of apps you opened could be accessed during some transitions while the device was
locked, and the Camera app could be opened while the device was locked.

CVE-ID

CVE-2013-5161 : videosdebarraquito

http://news.cnet.com/8301-1009 3-57603787-83/apple-promises-to-fix-ios-7-lock-screen-hack/

Construction and Verification of Software, FCTUNL, © (uso reservado)

http://news.cnet.com/8301-1009_3-57603787-83/apple-promises-to-fix-ios-7-lock-screen-hack/

This is really bad!! (all over the news

© us 0 cu N My : N Ses B nat ®© us 0 cu Microsc Verified nat196¢ 0 cu

® & Twitter, Inc. (US) ‘ https://twitter.com/lemiorhan/status/935578694541770752 oo vy IiINn D @ ©

Lemi Orhan Ergin o
@lemiorhan

Dear @AppleSupport, we noticed a
HUGE security issue at MacOS High
Sierra. Anyone can login as "root" with
empty password after clicking on login
button several times. Are you aware of it
@Apple?

6:38 PM - 28 Nov 2017

12,665 Retweets 15539 Likes & P 0 PP EH

O 12k 10 13K Q 16K &

[Tweet |
-4 weet your reply

You can access it via System Preferences>Users & Groups>Click the lock to
make changes. Then use "root" with no password. And try it for several times.
Result is unbelievable!

@ Lemi Orhan Ergin @lemiorhan - 28 Nov 2017 v

Users & Groups

System Preferences is trying to unlock Users &
Groups preferences.

Enter an administrator’s name and password to
allow this.

User Name: rood

Password:

Cancel

Cnntacte Card- Onen

https://twitter.com/lemiorhan/status/935578694541770752

Boeing 787 software bug can shut down planes'
generators IN FLIGHT

Have you turned it off and on again? That's the way to stop the plane becoming a brick

Simon Sharwood Fri 1 May 2015 // 06:30 UTC
160 (J The US Federal Aviation Administration (FAA) has issued a new airworthiness
directive (PDF) for Boeing's 787 because a software bug shuts down the
[1] plane's electricity generators every 248 days.

“We have been advised by Boeing of an issue identified during laboratory
testing,” the directive says. That issue sees “The software counter internal to
the generator control units (GCUs) will overflow after 248 days of continuous
power, causing that GCU to go into failsafe mode.”

When the GCU is in failsafe mode it isn't making any power. That'll be bad
news if all four of the GCUs aboard a 787 were powered up at the same time,
because all will then shut down, “resulting in a loss of all AC electrical power
regardless of flight phase.”

And presumably also turning the 787 into a brick with no power for its fly-by-
wire systems, lighting, climate control or in-flight movies.

Construction and Verification of Software, FCTUNL, © (uso reservado)

Navin Kabra
; @NGKabra
OMG. A person whose last name is "True" has been

locked out of iCloud for 6 months because the code got
confused between the last name and the boolean value!

e Rachel True & @RachelTrue - Feb 27

Anyone else getting this error from Apple iCloud ? In past or now?
I'm 6 months deep freeze & looking for any help.

| rem dead coding languages like kobalt.. & this seems like an Apple coding
issue — not hardware

Show this thread

| iCloud has stopped responding.

¢ An error has prevented this application from working properly.

Help Apple improve its products by sending us diagnostic and
usage information about iCloud.

V¥ Details

REPORTED ERROR TITLE
Type error: cannot sei. value "true’ to property "lastName on

REPORTED ERROR TYPE
UNHANDLED EXCEPTION

By clicking 'Send to Apple' you agree that Apple will collect and use this information
as part of its support services and to improve its products and services. This report
will include personal information such as your member name and user data. To learn

5:21 AM - Mar 6, 2021 - Twit6

Construction and Verification of Software, FCTUNL, © (uso reservado)

30

FEDERAL TRADE COMMISSION
PROTECTING AMERICA’S CONSUMERS

ABOUT THE FTC NEWS & EVENTS ENFORCEMENT POLICY TIPS & ADVICE

Home » News & Events » Blogs » Tech@FTC » FTC warns companies to remediate Log4j security vulnerability

FTC warns companies to remediate Log4j security
~vulnerability

By: This blog is a collaboration between CTO and DPIP staff and the Al Str DIVE BRIEF

= Apache tells US Senate committee the
TAGS: Accounabily | Datasecury | Pathos Log4j vulnerability could take years to

Log4j is a ubiquitous piece of software used to record activities in a wide ra l

products and services. Recently, a serious vulnerability in the popular Java re SO Ve
(CVE-2021-44228) was disclosed, posing a severe risk to millions of consu

web applications. This vulnerability is being widely exploited by a growings Published Feb. 9, 2022

When vulnerabilities are discovered and exploited, it risks a loss or breach
and other irreversible harms. The duty to take reasonable steps to mitigate By David Jones
implicates laws including, among others, the Federal Trade Commission Ac
critical that companies and their vendors relying on Log4j act now, in order
consumers, and to avoid FTC legal action. According to the complaint in Ec
vulnerability irreversibly exposed the personal information of 147 million coi
million to settle actions by the Federal Trade Commission, the Consumer Fir
states. The FTC intends to use its full legal authority to pursue companies tl
consumer data from exposure as a result of Logdj, or similar known vulnera

Reporter

Check if you use the Log4j software library by consulting the Cybersecurity
(CISA) guidance: https://www.cisa.gov/uscert/apache-log4j-vulnerability-gui

Construction and Verification of Software, FCTUNL, © (uso reservado) 37

Making Sure Software Really Works

e Software failures:

e System crashes
e Unresponsive services
e Data losses

e |ncorrect behaviours

e Security flaws

e Dramatic impacts:
e Economic: NASA's Mars Climate Orbiter - $125M+: Ariane5, $8B+;

e User hassle: FB - 2.2B; Gmail - 1B+; Instagram - 500M; Twitter -
330M; Netflix - 120M

e data and systems security: Vulnerabilities reported in 10y
(Microsoft:3000, Oracle:3100, Apple:2600, ...)

e military: Stuxnet (USA->Iran); F22 Crash; Patriot Missiles missed
fargets;

Construction and Verification of Software, FCTUNL, © (uso reservado)

38

https://raygun.com/blog/10-costly-software-errors-history/
https://www.darkreading.com/vulnerabilities---threats/the-10-worst-vulnerabilities-of-the-last-10-years/d/d-id/1325425?
https://en.wikipedia.org/wiki/List_of_software_bugs#Military

Pressure to update software fast

e Software development is increasingly competitive

e Any mistake can be extremely expensive
e Pressure is on to deliver tast and change even taster

e Companies deploy software at
an astonishing pace:

e Amazon: “every 11.7 seconds”

o Netflix:
‘thousands of times per day”

® Facebook:
“bl-weekly app updates”

onstruction and Verification of Software, FCTUNL, © (uso reservado)

39

Top 50 Vendors By Total Number Of "Distinct” Vulnerabilities

Go to year: 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 20
Leaders

Vendor Name Number of Products Number of Vulnerabilities #Vulnerabilities/#Products

1 Microsoft 665 8394 13
2 Oracle 969 8243 9
3 Google 128 6911 54
4 Debian 108 5989 55
5 Apple 140 2467 39
6 IBM 1335 5365 4
7 Cisco 5607 4159 1
8 Redhat 426 4032 9
9 Canonical 49 3165 65
10 Fedoraproject 21 2850 136
11 Linux 23 2791 121
12 Opensuse 51 2499 49
13 Mozilla 32 2347 73
14 HP 8268 1786 0
15 Apache 280 1663 6

—
(o))
7))
=
=
N
o
o))
[y
o
W
o
~N

Top 50 Products By Total Number Of "Distinct” Vulnerabilities

Leaders

Product Name Vendor Name Product Type Number of Vulnerabilities

1 Debian Linux Debian 0S 5862
2 Android Google 0S 4073
3 Ubuntu Linux Canonical 0S 3126
4 Mac Os X Apple 0S 2965
5 Fedora Fedoraproject OS 2788
6 Linux Kernel Linux 0S 2762
7 Windows 10 Microsoft 0S 2590
8 Iphone Os Apple 0S 2573
9 Chrome Google Application 2346
10 Windows Server 2016 Microsoft 0S 2334
11 Windows Server 2008 Microsoft 0S 2154
12 Windows 7 Microsoft (O)5) 2019
13 Firefox Mozilla Application 1993
14 Windows Server 2012 Microsoft 0S 1954
15 Windows 8.1 Microsoft oS 1841
16 Windows Server 2019 Microsoft 0S 1792

Part 11
Software Correctness

Relevance of Software Correctness

* Quality procedures must be enforced at all levels, in particular
at the construction phase, where most of the issues are
introduced and difficult to circumvent.

* Questions for you now:

 What methods do you currently use to make sure your code is “bullet-
proof” ?

« How can you prove to yourself (and others) that your code is “bullet-
proof” ?

 What arguments do you use to convince yourself and others that your
code works as expected and not goes wrong, with respect to functional
correctness, security, or concurrency errors”

Construction and Verification of Software, FCTUNL, © (uso reservado)

43

Relevance of Software Correctness

* Quality procedures must be enforced at all levels, in particular
at the construction phase, where most of the issues are
introduced and difficult to circumvent.

* Questions for you now:

 What methods do you currently use to make sure your code is “bullet-
proof” ?

« How can you prove to yourself (and others) that your code is “bullet-
proof” ?

 What arguments do you use to convince yourself and others that your
code works as expected and not goes wrong, with respect to functional
correctness, security, or concurrency errors”

 You will know better answers at the end of this course.

Construction and Verification of Software, FCTUNL, © (uso reservado)

44

Software Correctness: What and How

* Key engineering concern:
Make sure that the software developed and constructed is “correct”.

* What does this mean”
e Isitcrash-free? (“runtime safety”)
* (ives the right results”? (“functional correctness”)
« Does it operate effectively? (“resource conformance”)

 Does it violate user privacy? (“security conformance”)

e Several processes and methodological approaches to ensure and
validate correctness exist (software engineering course)

* Inthis course, we cover some technigues to rigorously ensure and
validate correctness during software construction

Construction and Verification of Software, FCTUNL, © (uso reservado)

45

Software Correctness: What and How

* "Runtime safety” (no crashes, etc.) is a bit easier to define

 Programming language type systems help a bit ...
» (QOther kinds of correctness are not so easy to define

» Usually relative to some assumptions:
 what the system is supposed to do: play chess, manage bank accounts
e the available resources: bandwidth, memory, processing speed

e the security policies: only my friends can see my photos

* [o precisely define such assumptions, we need
* Precise specifications

 Ways of validating that the system satisfies the specitication

Construction and Verification of Software, FCTUNL, © (uso reservado)

46

Correctness against a specification

e Then what does “correct software” mean?

e Always relative to some given (our) specification

e Correct means that software meets our specification
 There is no such thing as the absolute “right specification”
« But the spec must not be wrong !

e Crafting good / checkable specifications can be challenging.

e |t should be “easy” to check what the specitication states

 The spec must be simple, much simpler than the code

 The spec should be focused
e.g., buffers are not being overrun

e.qg., never transfer money without logging the source

Construction and Verification of Software, FCTUNL, © (uso reservado)

47

Dynamic Veritication

* Verification that is done at runtime, during program execution.

e Some successful approaches:
unit testing
coverage testing
regression testing
test generation

runtime monitoring

e Use runtime monitors to (continuously) check that code do not violate
correctness properties

e \Violations cause exceptional behaviour or halt, so errors are detected after
something wrong already occurred (think of a car crash, or a security leak).

Construction and Verification of Software, FCTUNL, © (uso reservado) 48

Dynamic Veritication

e Shortcomings of dynamic verification:
* (Can introduce a level of performance overhead.
* |nadequate in production / critical settings.

e (Can show the existence of some errors, but does not ensure
absence of errors.

* Challenge: how do you make sure that you are
defining the “right” tests and “enough” tests

 Will talk again about testing methods later on in the
course

Construction and Verification of Software, FCTUNL, © (uso reservado)

49

Quiz

Testing your tests

“The program reads three integer values from an input
dialog. The three values represent the lengths of the
sides of a triangle. The program displays a message that
states whether the triangle Is scalene, isosceles, or
equilateral.”

& A B

Create specific tests (10 minutes)

The ART of
SOFTWARE
TES TG

Construction and Verification of Software, FCTUNL, © (uso reservado)

Quiz

1.

Do you have a test case that represents a valid scalene triangle”
(Cases such as 1, 2, 3and 2, 5, 10 are not valid triangles)

Do you have a test case that represents a valid equilateral
triangle?

Do you have a test case that represents a valid isosceles
triangle? (Cases such as 2,2,4 are not valid triangles.)

Do you have at least three test cases that represent valid
Isosceles triangles such that you have tried all three permutations
of two equal sides (e.g. 3,3,4; 3,4,3; and 4,3,3)7

Do you have a test case in which one side has a zero value”

Do you have a test case in which one side has a negative value”

Construction and Verification of Software, FCTUNL, © (uso reservado)

52

Quiz

7. Do you have a test case with three integers greater than zero
such that the sum of two of the numbers is equal to the third? (If
1,2,3 Is a scalene triangle, it's a bug.)

8. Do you have at least three test cases in category 7 such that you
have tried all three permutations where the length of one side is
equal to the sum of the lengths of the other two sides (for
example, 1,2,3; 1,3,2; and 3,1,2)7

9. Do you have a test case with three integers greater than zero
such that the sum of two of the numbers is less than the third
(suchas 1,2,4 or 12,15,30)7

10. Do you have at least three test cases in category 9 such that you
have tried all three permutations (for example, 1,2,4; 1,4,2; and
4,1,2)7

Construction and Verification of Software, FCTUNL, © (uso reservado)

53

Quiz

11. Do you have a test case in which all sides are zero
(0,0,0)?

12. Do you have at least one test case specitying
noninteger values (such as 2.5,3.5,5.5)?

13. Do you have at least one test case specitying the wrong
number of values (two rather than three integers, for

example)?

14. For each test case did you specity the expected output
from the program in addition to the input values?

result = ?

Construction and Verification of Software, FCTUNL, © (uso reservado)

54

Quiz

11. Do you have a test case in which all sides are zero
(0,0,0)?

12. Do you have at least one test case specitying

| [l /o W el o YW sl sl anl W 4D

nonintegel
13. Do you ha he wrong
number of Oto 4 'S, for
example)
14. For each ftf 5t 7 d output
from the p 57
8+ 9

Construction and Verification of Software, FCTUNL, © (uso reservado) 55

How do we know |f
software Is correct”?

How to know If software Is correct?

e One approach: Testing (i.e., Dynamic verification)

e Probably incomplete, but still very useful.

e Exhaustive testing is not feasible

e Another: Code review
e Main concern is not correctness (although important).
e Humans are fallible and bugs can be subtle.

e Specification often unclear

e Better: prove correctness (i.e., Static verification)

e Specification must be precise.
¢ Meaning of code must be well-defined.

e Reasoning must be sound.

Construction and Verification of Software, FCTUNL, © (uso reservado)

57

Approaches and lechniques

e Functional Programming: Dependent Types
e Proofs are expressed in programs (e.g. Agda).

e Proof tactics are expressed as programs (e.g. Coq, Lean).

e |Imperative Programming: Logical contracts
e Properties are expressed in contracts.

e Reduce correctness to logical propositions (verification
conditions).

e Use automated provers to discharge VCs.

e [his course: A bit of both!

e Functional and imperative code in Dafny.

e Automated provers for VCs (which sometimes need “help”).

Construction and Verification of Software, FCTUNL, © (uso reservado)

58

Automated / Algorithmic Verification

e Formal proofs are tedious

e Automatic methods can help:
e Hill-in low level "tedious” detalls.
e Give diagnostic information (e.g. counter-examples).
e \erify “everything”.

® |n this course:

e Make use of these methods.

e Understand when/how they work.

Construction and Verification of Software, FCTUNL, © (uso reservado)

59

Automated / Algorithmic Verification

Systems that prove that programs match their specifications

e Problem is undecidable!
¢ Requires annotations

e Relieves manual burden by inferring some annotations.
e \erifiers are complex systems

e \Why trust the veritier?

e [his course provides a "big picture” understanding

Construction and Verification of Software, FCTUNL, © (uso reservado) 60

Part |V
Success Stories

Astrée Static Analyzer (Abstract Interpretation) [2003-]

The Astrée Static Analyzer

% Centre National de la Recherche Scientifique W ' _ Ecole Normale Supérieure éz,u’a/- INRIA (since Sep. 2007)

Participants:

Patrick Cousot (project leader), Radhia Cousot, Jérome Feret, Antoine Miné, Xavier Rival

Former narticinants:

Industrial Applications of Astrée

The main applications of Astrée appeared two years after starting the project. Since then, Astrée has achieved the following unprecedented results on the
static analysis of synchronous, time-triggered, real-time, safety critical, embedded software written or automatically generated in the C programming language:

» In Nov. 2003, Astrée was able to prove completely automatically the absence of any RTE in the primary flight control

software of the Airbus A340 fly-by-wire system, a program of 132,000 lines of C analyzed in 120 on a 2.8 GHz 32-bit
PC using 300 Mb of memory (and 50mn on a 64-bit AMD Athlon™ 64 using 580 Mb of memory).

e From Jan. 2004 on, Astrée was extended to analyze the electric flight control codes then in development and test for
the A380 series. The operational application by Airbus France at the end of 2004 was just in time before the A380
maiden flight on Wednesday, 27 April, 2005.

e In April 2008, Astrée was able to prove completely automatically the absence of any RTE in a C version of the
automatic docking software of the Jules Vernes Automated Transfer Vehicle (ATV) enabling ESA to transport payloads
to the International Space Station [32].

Construction and Verification of Software, FCTUNL, © (uso reservado) 62

VCC (Contract-based verification) [2008

VCC: A Practical System for Verifying Con(International Symposium on Formal Methods

FM 2009: FM 2009: Formal Methods pp 806-809 | Cite as

Michal Moskal, Thomas Santen, Wolfram Schulte

Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009 | January 2009 Veriinng the MiCI’OSOﬂ Hyper'v HypeI'ViSOI' With VCC

Published by Springer

Authors Authors and affiliations

VCC is an industrial-strength verification environment for low-level concurrent system code written il

(annotated with function contracts, state assertions, and type invariants) and attempts to prove the ¢ Dirk Leinenbach, Thomas Santen

It includes tools for monitoring proof attempts and constructing partial counterexample executions {

motivates VCC, describes our verification methodology, describes the architecture of VCC, and repor Conference paper

to verify the Microsoft Hyper-V hypervisor. 60 4 1.9k

Citations Mentions Downloads

© Springer Verlag Berlin Heidelberg

PikeOS RTOS & Hypervisor

PikeOS is a real-time operating system that offers a separation kernel-based hypervisor with multiple partitions for many other operating systems and
applications. It enables you to build devices for environments with strong demands for Safety and Security. PikeOS is compliant to the highest Safety

standards for Avionics & Space, Railway, Automotive, Medical and Industrial Automation markets.

nt, low-
n
from the
Due to its separation kernel approach, PikeOS is the first choice for systems which demand protection against Cyber- arnel.
oest SUsE: ool . Security attacks. In addition to the broad usage within millions of loT and edge systems, it has also been deployed within
perating Runtime Native Drivers
System Environment

various high critical communication infrastructures.

PikeOS brings together virtualization and real-time by means of unique and never seen before technologies. It allows you

to migrate numerous complex embedded circuit boards in to a single hardware. It does not stop when it comes to new
PikeOS hardware concepts such as Big SoCs (Systems-on-a-Chip) with multiple heterogeneous processor cores. Finally, when it
comes to certification, SYSGO offers you the right certification kit in order to help you facing the certification authorities.

e PikeOS runs on several architectures - supporting processors that come with a Memory Management Unit (MMU) as well

Avionics Railway Automotive Industrial Medical m
Network [Network [Network Network [Network as less complex SOCs that contain a <> Memory Protection Unit (MPU) only. Please refer to the BSP list for more
details.

D020

Construction and Verification of Software, FCTUNL, © (uso reservado) 63

Compcert (Coq) [2009]

THE COMPCERT C COMPILER (cOmpcen c) S‘de‘eﬂ‘em“‘{ Clight |Peelimination c#minorj

") of expressions Jloop simplifications

& Download CompCert C & Read the manual stack allocation

Optimizations: constant prop., CSE,

" ” N
CompCert C is a compiler for the C programming language. Its ir g > inlining, tail calls, dead code of “&" variables

compilation of life-critical and mission-critical software written CEG construction (. instruction ()
levels of assurance. It accepts most of the ISO C 99 language, wi RTL Cmino rSe[: Cminor
expr. decomp. { selection L

few extensions. It produces machine code for the PowerPC, ARM

bits) architectures. Performance of the generated code is decen

_ register allocation (IRC)
PowerPC, about 90% of the performance of GCC version 4 at opt

calling conventions

What sets CompCert C apart from any other production compile

~ : . N
verified, using machine-assisted mathematical proofs, to be exe [LT |. linearization »[LI near layo ut of { M ac h j
issues. In other words, the executable code it produces is prove Y, of the CFG Y, stack frames ,

specified by the semantics of the source C program. This level o -
correctness of the compilation process is unprecedented and coi as ge tion
highest levels of software assurance. In particular, using the Con

natural complement to applying formal verification techniques ([Asm x86] [Asm ARM) [Asm PPC]

proof, model checking) at the source code level: the correctnes

guarantees that all safety properties verified on the source code

Part 2: Compilation of CompCert C AST to assembly AST. This part is the bulk of the
compiler and the one that is proved correct in Coq. It is structured in 16 passes and uses 10

intermediate language, as depicted on the following diagram.
All intermediate languages are given formal semantics, and each of the transformation

passes is proved to preserve semantics.

Construction and Verification of Software, FCTUNL, © (uso reservado) 04

selL 4 (Isabelle/HOL) [2010]

The seL4" Microkernel

Security is no excuse for bad performance

The benchmark for [There are two broad approached to formal verification: fully automated methods
The world's most hic such as model checking that work on limited systems and properties, and
Open source & comr interactive mathematical proof which requires manual effort.

The sel 4 verification uses formal mathematical proof in the theorem prover
Isabelle/HOL[#". This theorem prover is interactive, but offers a comparatively
high degree of automation. It also offers a very high degree of assurance that the
resulting proof is correct.

What does sel4’s formal verification mean?

Unique about selL 4 is its unprecedented degree of assurance, achieved through
formal verification. Specifically, the ARM, ARM_HYP (ARM with virtualisation
extensions), and X64 versions of seL4 comprise the first (and still only) general-
purpose OS kernel with a full code-level functional correctness proof, meaning a
mathematical proof that the implementation (written in C) adheres to its
specification. In short, the implementation is proved to be bug-free (see below).
This also implies a number of other properties, such as freedom from buffer
overflows, null pointer exceptions, use-after-free, etc.

Construction and Verification of Software, FCTUNL, © (uso reservado)

65

Infer (Abs Int.+) [2010-]

Open-sourcing Facebook Infer: Identify bugs before you ship

‘ Cristiano Calcagno @ Dino Distefano Peter O'Hearn

Today, we're open-sourcing Facebook Infer, a static program analyzer that Facebook uses to
identify

«urce 2@Ch month, hundreds of potential bugs
esing jdentified by Facebook Infer are fixed by our

correci

.o developers before they are committed to our
rror codebases and deployed to people’s

Faceb(

nana PhoONes. This saves our developers many
erots hours finding and fixing bugs, and results in

large ¢

better products for people.

Construction and Verification of Software, FCTUNL, © (uso reservado)

Readings

 (Cost of Bugs
https://crossbrowsertesting.com/blog/development/software-bug-cost/

e Pentium Bug 1990s
https://www.cs.earlham.edu/~dusko/cs63/fdiv.html

 Meltdown and Spectre
https://meltdownattack.com/

« EWD303
nttps://www.cs.utexas.edu/users/EWD/transcriptions/EWDO3xx/
EWD303.htm

« EWDZ268 Structured Programming

nttps://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/
—\WD268.htm

 Program Development in Java, Liskov/Guttag (ch1 and ch10).

e “Dafny: An Automatic Program Veritier for Functional Correctness”, Leino.

Construction and Verification of Software, FCTUNL, © (uso reservado)

67

https://crossbrowsertesting.com/blog/development/software-bug-cost/
https://www.cs.earlham.edu/~dusko/cs63/fdiv.html
https://meltdownattack.com/
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD268.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD268.html

CVS, TLDR:

Part I: Verified Software Construction (Dafny)
* Functional Correctness, Contract-based approaches (Hoare Logic)
 Pre- and post-conditions, loop invariants, assertions.

e Jermination metrics.

Part ll: Concurrent Programming (Java + Verifast)

e Sharing, confinement, ownership. Control of interference. Reasoning about
concurrent code with monitors and locks based on resource invariants.
Construction of concurrency control code from behavioural specs.

Part lll: Software Testing

 Jest selection and test generation; Model-based testing; Fault-based testing.
Property based testing; Symbolic execution; Automated testing; Tools.

Construction and Verification of Software, FCTUNL, © (uso reservado)

