
MIEI/MEI - Integrated Master in Computer Science and Informatics
Consolidation block

Lecture 1 - Introduction and Motivation
Bernardo Toninho (btoninho@fct.unl.pt)

based on previous editions by João Seco and Luís Caires

Construction and
Verification of Software

2022 - 2023

mailto:btoninho@fct.unl.pt

Construction and Verification of Software, FCTUNL, © (uso reservado)

A small exercise…
• To determine the maximum of the first N elements of an array.

2

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug?
• To determine the maximum of the first N elements of an array.

3

public class MyCollection {

 static int max(int[] a, int N) {
 int m = 0;
 for(int i = 0; i < a.length; i++)
 if(a[i] >= m) m = a[i];
 return m;
 }
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug?
• To determine the maximum of the first N elements of an array.

4

public class MyCollectionTest {

 @Test
 public void test1() {
 assertEquals(1, MyCollection.max(new int[]{1,2,3,4,5,6},1));
 assertEquals(2, MyCollection.max(new int[]{1,2,3,4,5,6},2));
 assertEquals(4, MyCollection.max(new int[]{1,2,3,4,5,6},4));
 assertEquals(6, MyCollection.max(new int[]{1,2,3,4,5,6},6));
 }
}

public class MyCollection {

 static int max(int[] a, int N) {
 int m = 0;
 for(int i = 0; i < a.length; i++)
 if(a[i] >= m) m = a[i];
 return m;
 }
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug?
• To determine the maximum of the first N elements of an array.

5

public class MyCollection {

 static int max(int[] a, int N) {
 int m = 0;
 for(int i = 0; i < N; i++)
 if(a[i] >= m) m = a[i];
 return m;
 }
}
public class MyCollectionTest {

 @Test
 public void test1() {
 assertEquals(1, MyCollection.max(new int[]{1,2,3,4,5,6},1));
 assertEquals(2, MyCollection.max(new int[]{1,2,3,4,5,6},2));
 assertEquals(4, MyCollection.max(new int[]{1,2,3,4,5,6},4));
 assertEquals(6, MyCollection.max(new int[]{1,2,3,4,5,6},6));
 }
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug?
• To determine the maximum of the first N elements of an array.

6

public class MyCollection {

 static int max(int[] a, int N) {
 int m = 0;
 for(int i = 0; i < N; i++)
 if(a[i] >= m) m = a[i];
 return m;
 }
}
public class MyCollectionTest {

 @Test
 public void test2() {
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},1));
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},2));
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},4));
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},6));
 }
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug?
• To determine the maximum of the first N elements of an array.

7

public class MyCollection {

 static int max(int[] a, int N) {
 int m = Integer.MAX_VALUE;
 for(int i = 0; i < N; i++)
 if(a[i] >= m) m = a[i];
 return m;
 }
}
public class MyCollectionTest {

 @Test
 public void test2() {
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},1));
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},2));
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},4));
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},6));
 }
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug?
• To determine the maximum of the first N elements of an array.

8

public class MyCollection {

 static int max(int[] a, int N) {
 int m = Integer.MIN_VALUE;
 for(int i = 0; i < N; i++)
 if(a[i] >= m) m = a[i];
 return m;
 }
}
public class MyCollectionTest {

 @Test
 public void test2() {
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},1));
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},2));
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},4));
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},6));
 }
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug?
• To determine the maximum of the first N elements of an array.

9

public class MyCollection {

 static int max(int[] a, int N) {
 int m = a[0];
 for(int i = 1; i < N; i++)
 if(a[i] >= m) m = a[i];
 return m;
 }
}
public class MyCollectionTest {

 @Test
 public void test2() {
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},1));
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},2));
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},4));
 assertEquals(-1, MyCollection.max(new int[]{-1,-2,-3,-4,-5,-6},6));
 }
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug?
• To determine the maximum of the first N elements of an array.

10

Can't compile: Request compile failed with message:
max.dfy(3,16): Error: index out of range
max.dfy(6,8): Error: index out of range

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug?
• To determine the maximum of the first N elements of an array.

11

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug?
• To determine the maximum of the first N elements of an array.

12

Construction and Verification of Software, FCTUNL, © (uso reservado)

Another small exercise…
• Binary search in an array:

13

int binarySearch(int key, int[] arr) {
 int low = 0;
 int high = arr.length;

 while (low < high) {
 int mid = (low+high)/2;

 if (arr[mid] == key)
 return mid; //found
 else if (arr[mid] < key) low = mid + 1;
 else high = mid;

 }
 return -1; //not found
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Binary Search in an array — Bug?

14

int binarySearch(int key, int[] arr) {
 int low = 0;
 int high = arr.length;

 while (low < high) {
 int mid = (low+high)/2;

 if (arr[mid] == key)
 return mid; //found
 else if (arr[mid] < key) low = mid + 1;
 else high = mid;

 }
 return -1; //not found
}

@Test
public void testBS() {
 assertEquals(-1, MyCollection.binarySearch(-6, new int[]{-5,-4,-3,-2,-1}));
 assertEquals(-1, MyCollection.binarySearch(0, new int[]{-5,-4,-3,-2,-1}));
 assertEquals(2, MyCollection.binarySearch(-3, new int[]{-5,-4,-3,-2,-1}));
 assertEquals(0, MyCollection.binarySearch(-5, new int[]{-5,-4,-3,-2,-1}));
 assertEquals(4, MyCollection.binarySearch(-1, new int[]{-5,-4,-3,-2,-1}));
 //...
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Binary Search in an array — Bug?

15

int binarySearch(int key, int[] arr) {
 int low = 0;
 int high = arr.length;

 while (low < high) {
 int mid = (low+high)/2;

 if (arr[mid] == key)
 return mid; //found
 else if (arr[mid] < key) low = mid + 1;
 else high = mid;

 }
 return -1; //not found
}

@Test
public void testBS() {
 assertEquals(-1, MyCollection.binarySearch(-6, new int[]{-5,-4,-3,-2,-1}));
 assertEquals(-1, MyCollection.binarySearch(0, new int[]{-5,-4,-3,-2,-1}));
 assertEquals(2, MyCollection.binarySearch(-3, new int[]{-5,-4,-3,-2,-1}));
 assertEquals(0, MyCollection.binarySearch(-5, new int[]{-5,-4,-3,-2,-1}));
 assertEquals(4, MyCollection.binarySearch(-1, new int[]{-5,-4,-3,-2,-1}));
 //...
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Binary Search in an array — Bug?
• The algorithm is correct….

• But what if low+high > 231 - 1 ?

• mid = (low+high) / 2 becomes negative!

‣ Best case: ArrayIndexOutOfBoundsException

‣ Worst case: undefined (i.e., arbitrary) behavior!

• We run code, not algorithms.

16

int binarySearch(int key, int[] arr) {
 int low = 0;
 int high = arr.length;

 while (low < high) {
 int mid = (low+high)/2;

 if (arr[mid] == key)
 return mid; //found
 else if (arr[mid] < key) low = mid + 1;
 else high = mid;

 }
 return -1; //not found
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Binary Search in an array — Fixing the bug
• Need to make sure we do not overflow at any point.

• mid = (low + high) / 2

• mid = low + (high - low)/2

17

int binarySearch(int key, int[] arr) {
 int low = 0;
 int high = arr.length;

 while (low < high) {
 int mid = low+(high-low)/2;

 if (arr[mid] == key)
 return mid; //found
 else if (arr[mid] < key) low = mid + 1;
 else high = mid;

 }
 return -1; //not found
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Binary Search in an array — Fixing the bug

18

Construction and Verification of Software, FCTUNL, © (uso reservado)

Binary Search in an array — Fixing the bug

19

Construction and Verification of Software, FCTUNL, © (uso reservado)

Binary Search in an array (32-bit integers)

20

Construction and Verification of Software, FCTUNL, © (uso reservado)

Construction and Verification of Software

This course covers principles, methods, techniques and tools for the
dependable and trustworthy construction and validation of software
systems, ensuring as much as possible the absence of programming
errors ("bugs"), with a focus on provable correctness and safety.

Project based learning using specialised techniques and tools.

21

Construction and Verification of Software, FCTUNL, © (uso reservado)

Learning Outcomes
• Static Verification of Software

• Understand the principles and know how to use assertion methods in practice
to specify, reason about, and verify software.

• ADTs and Concurrent Programming
• Write correct concurrent programs and ADTs

• Understand ADT programming methodologies

• Understand concurrent programming methodologies

• Dynamic Verification of Software
• Understand principles and methods for software testing.

22

Construction and Verification of Software, FCTUNL, © (uso reservado)

Learning Outcomes
• Advantages and trade-offs of static over runtime verification

• How to prove the correctness of stateful imperative programs:

• via functional / executable or logical specifications;

• Small scale (individual procedures);

• Larger scale (ADTs);

• Total vs partial correctness

• How to prove the correctness of concurrent programs:

• Using concurrent separation logic

• A little bit about dynamic verification

23

Construction and Verification of Software, FCTUNL, © (uso reservado)

Syllabus
• Verified Software Construction

• Assertion methods; Hoare and Separation Logic; Functional correctness;
Abstract and Behavioural types; Representation Invariants; inductive reasoning.

• Hands-on exercises / projects using verification tools  
(e.g. Dafny, Verifast).

• Concurrent Programming
• Sharing, confinement, ownership. Control of interference. Reasoning about

concurrent code with monitors and locks based on resource invariants.
Construction of concurrency control code from behavioral specs.

• Software Testing
• Test selection and test generation; Model-based testing; Fault-based testing.

Property based testing; Symbolic execution; Automated testing; Tools.

24

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bibliography
Program Development In Java:  
Abstraction, Specification, and Object-Oriented Design.  
Barbara Liskov (with John Guttag); MIT Press.

Code Complete:  
A Practical Handbook of Software Construction, Second Edition.  
Steve McConnell, Microsoft Press.

The Art of Software Testing, Second Edition 
Glenford Myers, Corey Sandler, Tom Badgett

Java Concurrency in Practice,  
Goetz et al. Addison-Wesley, 2006.

Tutorials for Dafny and Verifast

25

Construction and Verification of Software, FCTUNL, © (uso reservado)

Administrivia
• ~12-13 Lectures

• Midterm (W9) and Final Test (W14) — Dates TBD

• Lab Sessions (3 Eval. components)

• Teams of 2 students

• 3 Handouts/projects (2 Dafny, 1 Verifast)

• Weeks 4-6, 7-9, 10-12

• Communication channel: https://discord.gg/
4cmqBCJvA4

• Evaluation 60% tests + 40% Projects (“Frequência”
required).

26

https://discord.gg/4cmqBCJvA4
https://discord.gg/4cmqBCJvA4

Part II

True Cost of a Bug?

Construction and Verification of Software, FCTUNL, © (uso reservado)

What’s the True Cost of a Software Bug?

• A software bug can have direct impact in time and
revenue and also indirect costs in user loyalty and
reputation of a company.

28
https://crossbrowsertesting.com/blog/development/software-bug-cost/

“the cost to fix an error found after product release was 4 to 5 times higher
than if it’s uncovered during the design phase, and up to 100 more
expensive than if it’s identified in the maintenance phase.” (IBM)

http://blog.celerity.com/the-true-cost-of-a-software-bug

Construction and Verification of Software, FCTUNL, © (uso reservado) 29

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

http://servicevirtualization.com/report-software-failures-cost-1-1-trillion-2016/

Not really a new
thing

• Byte Magazine  
1995

Construction and Verification of Software, FCTUNL, © (uso reservado)

Too easy to make flawed software

32

Construction and Verification of Software, FCTUNL, © (uso reservado)

Bug Report from Apple (2013)

33
http://news.cnet.com/8301-1009_3-57603787-83/apple-promises-to-fix-ios-7-lock-screen-hack/

http://news.cnet.com/8301-1009_3-57603787-83/apple-promises-to-fix-ios-7-lock-screen-hack/

Construction and Verification of Software, FCTUNL, © (uso reservado)

This is really bad!! (all over the news)

34

https://twitter.com/lemiorhan/status/935578694541770752

Construction and Verification of Software, FCTUNL, © (uso reservado) 35

Construction and Verification of Software, FCTUNL, © (uso reservado) 36

Construction and Verification of Software, FCTUNL, © (uso reservado) 37

Construction and Verification of Software, FCTUNL, © (uso reservado)

Making Sure Software Really Works
• Software failures:

• System crashes

• Unresponsive services

• Data losses

• Incorrect behaviours

• Security flaws

• Dramatic impacts:

• Economic: NASA’s Mars Climate Orbiter - $125M+; Ariane5, $8B+;

• User hassle: FB - 2.2B; Gmail - 1B+; Instagram - 500M; Twitter -

330M; Netflix - 120M

• data and systems security: Vulnerabilities reported in 10y

(Microsoft:3000, Oracle:3100, Apple:2600, …)

• military: Stuxnet (USA->Iran); F22 Crash; Patriot Missiles missed

targets;
38

https://raygun.com/blog/10-costly-software-errors-history/
https://www.darkreading.com/vulnerabilities---threats/the-10-worst-vulnerabilities-of-the-last-10-years/d/d-id/1325425?
https://en.wikipedia.org/wiki/List_of_software_bugs#Military

Construction and Verification of Software, FCTUNL, © (uso reservado)

Pressure to update software fast
• Software development is increasingly competitive

• Any mistake can be extremely expensive

• Pressure is on to deliver fast and change even faster

• Companies deploy software at 

an astonishing pace:

• Amazon: “every 11.7 seconds”

• Netflix:  

“thousands of times per day”

• Facebook:  

“bi-weekly app updates”

39

Part III

Software Correctness

Construction and Verification of Software, FCTUNL, © (uso reservado)

Relevance of Software Correctness
• Quality procedures must be enforced at all levels, in particular

at the construction phase, where most of the issues are
introduced and difficult to circumvent.

• Questions for you now:

• What methods do you currently use to make sure your code is “bullet-

proof” ?

• How can you prove to yourself (and others) that your code is “bullet-
proof” ?

• What arguments do you use to convince yourself and others that your
code works as expected and not goes wrong, with respect to functional
correctness, security, or concurrency errors?

43

Construction and Verification of Software, FCTUNL, © (uso reservado)

Relevance of Software Correctness
• Quality procedures must be enforced at all levels, in particular

at the construction phase, where most of the issues are
introduced and difficult to circumvent.

• Questions for you now:

• What methods do you currently use to make sure your code is “bullet-

proof” ?

• How can you prove to yourself (and others) that your code is “bullet-
proof” ?

• What arguments do you use to convince yourself and others that your
code works as expected and not goes wrong, with respect to functional
correctness, security, or concurrency errors?

• You will know better answers at the end of this course.

44

Construction and Verification of Software, FCTUNL, © (uso reservado)

Software Correctness: What and How
• Key engineering concern: 

Make sure that the software developed and constructed is “correct”.

• What does this mean?

• Is it crash-free? (“runtime safety”)

• Gives the right results? (“functional correctness”)

• Does it operate effectively? (“resource conformance”)

• Does it violate user privacy? (“security conformance”)

• …

• Several processes and methodological approaches to ensure and
validate correctness exist (software engineering course)

• In this course, we cover some techniques to rigorously ensure and
validate correctness during software construction

45

Construction and Verification of Software, FCTUNL, © (uso reservado)

Software Correctness: What and How
• “Runtime safety” (no crashes, etc.) is a bit easier to define

• Programming language type systems help a bit …

• Other kinds of correctness are not so easy to define

• Usually relative to some assumptions:

• what the system is supposed to do: play chess, manage bank accounts

• the available resources: bandwidth, memory, processing speed

• the security policies: only my friends can see my photos

• To precisely define such assumptions, we need

• Precise specifications

• Ways of validating that the system satisfies the specification

46

Construction and Verification of Software, FCTUNL, © (uso reservado)

Correctness against a specification
• Then what does “correct software” mean?

• Always relative to some given (our) specification

• Correct means that software meets our specification

• There is no such thing as the absolute “right specification”

• But the spec must not be wrong !

• Crafting good / checkable specifications can be challenging.

• It should be “easy” to check what the specification states

• The spec must be simple, much simpler than the code

• The spec should be focused

• e.g., buffers are not being overrun

• e.g., never transfer money without logging the source
47

Construction and Verification of Software, FCTUNL, © (uso reservado)

Dynamic Verification
• Verification that is done at runtime, during program execution.

• Some successful approaches:

• unit testing

• coverage testing

• regression testing

• test generation

• runtime monitoring

• Use runtime monitors to (continuously) check that code do not violate
correctness properties

• Violations cause exceptional behaviour or halt, so errors are detected after
something wrong already occurred (think of a car crash, or a security leak).

48

Construction and Verification of Software, FCTUNL, © (uso reservado)

Dynamic Verification
• Shortcomings of dynamic verification:

• Can introduce a level of performance overhead.

• Inadequate in production / critical settings.

• Can show the existence of some errors, but does not ensure
absence of errors.

• Challenge: how do you make sure that you are
defining the “right” tests and “enough” tests

• Will talk again about testing methods later on in the
course

49

Quiz

Construction and Verification of Software, FCTUNL, © (uso reservado)

Testing your tests
“The program reads three integer values from an input
dialog. The three values represent the lengths of the
sides of a triangle. The program displays a message that
states whether the triangle is scalene, isosceles, or
equilateral.”

51

Create specific tests (10 minutes)

Construction and Verification of Software, FCTUNL, © (uso reservado)

Quiz
1. Do you have a test case that represents a valid scalene triangle?  

(Cases such as 1, 2, 3 and 2, 5, 10 are not valid triangles)

2. Do you have a test case that represents a valid equilateral
triangle?

3. Do you have a test case that represents a valid isosceles
triangle? (Cases such as 2,2,4 are not valid triangles.)

4. Do you have at least three test cases that represent valid
isosceles triangles such that you have tried all three permutations
of two equal sides (e.g. 3,3,4; 3,4,3; and 4,3,3)?

5. Do you have a test case in which one side has a zero value?

6. Do you have a test case in which one side has a negative value?

52

Construction and Verification of Software, FCTUNL, © (uso reservado)

Quiz
7. Do you have a test case with three integers greater than zero

such that the sum of two of the numbers is equal to the third? (If
1,2,3 is a scalene triangle, it’s a bug.)

8. Do you have at least three test cases in category 7 such that you
have tried all three permutations where the length of one side is
equal to the sum of the lengths of the other two sides (for
example, 1,2,3; 1,3,2; and 3,1,2)?

9. Do you have a test case with three integers greater than zero
such that the sum of two of the numbers is less than the third
(such as 1,2,4 or 12,15,30)?

10. Do you have at least three test cases in category 9 such that you
have tried all three permutations (for example, 1,2,4; 1,4,2; and
4,1,2)?

53

Construction and Verification of Software, FCTUNL, © (uso reservado)

Quiz
11. Do you have a test case in which all sides are zero

(0,0,0)?

12. Do you have at least one test case specifying
noninteger values (such as 2.5,3.5,5.5)?

13. Do you have at least one test case specifying the wrong
number of values (two rather than three integers, for
example)?

14. For each test case did you specify the expected output
from the program in addition to the input values?

54

result = ?

Construction and Verification of Software, FCTUNL, © (uso reservado)

Quiz
11. Do you have a test case in which all sides are zero

(0,0,0)?

12. Do you have at least one test case specifying
noninteger values (such as 2.5,3.5,5.5)?

13. Do you have at least one test case specifying the wrong
number of values (two rather than three integers, for
example)?

14. For each test case did you specify the expected output
from the program in addition to the input values?

55

resultado = ?

0 to 4

5 to 7

8+

How do we know if
software is correct?

Construction and Verification of Software, FCTUNL, © (uso reservado)

How to know if software is correct?
• One approach: Testing (i.e., Dynamic verification)

• Probably incomplete, but still very useful.

• Exhaustive testing is not feasible

• Another: Code review

• Main concern is not correctness (although important).

• Humans are fallible and bugs can be subtle.

• Specification often unclear

• Better: prove correctness (i.e., Static verification)

• Specification must be precise.

• Meaning of code must be well-defined.

• Reasoning must be sound.

57

Construction and Verification of Software, FCTUNL, © (uso reservado)

Approaches and Techniques
• Functional Programming: Dependent Types

• Proofs are expressed in programs (e.g. Agda).

• Proof tactics are expressed as programs (e.g. Coq, Lean).

• Imperative Programming: Logical contracts

• Properties are expressed in contracts.

• Reduce correctness to logical propositions (verification

conditions).

• Use automated provers to discharge VCs.

• This course: A bit of both!

• Functional and imperative code in Dafny.

• Automated provers for VCs (which sometimes need “help”).

58

Construction and Verification of Software, FCTUNL, © (uso reservado)

Automated / Algorithmic Verification

59

• Formal proofs are tedious

• Automatic methods can help:

• Fill-in low level “tedious” details.

• Give diagnostic information (e.g. counter-examples).

• Verify “everything”.

• In this course:

• Make use of these methods.

• Understand when/how they work.

Construction and Verification of Software, FCTUNL, © (uso reservado)

Automated / Algorithmic Verification

60

• Problem is undecidable!

• Requires annotations

• Relieves manual burden by inferring some annotations.

• Verifiers are complex systems

• Why trust the verifier?

• This course provides a “big picture” understanding

Systems that prove that programs match their specifications

Part IV

Success Stories

Construction and Verification of Software, FCTUNL, © (uso reservado)

Astrée Static Analyzer (Abstract Interpretation) [2003-]

62

Construction and Verification of Software, FCTUNL, © (uso reservado)

VCC (Contract-based verification) [2008]

63

Construction and Verification of Software, FCTUNL, © (uso reservado)

Compcert (Coq) [2009]

64

Construction and Verification of Software, FCTUNL, © (uso reservado)

seL4 (Isabelle/HOL) [2010]

65

Construction and Verification of Software, FCTUNL, © (uso reservado)

Infer (Abs Int.+) [2010-]

66

Each month, hundreds of potential bugs
identified by Facebook Infer are fixed by our
developers before they are committed to our
codebases and deployed to people’s
phones. This saves our developers many
hours finding and fixing bugs, and results in
better products for people.

Construction and Verification of Software, FCTUNL, © (uso reservado)

Readings
• Cost of Bugs 

https://crossbrowsertesting.com/blog/development/software-bug-cost/

• Pentium Bug 1990s 
https://www.cs.earlham.edu/~dusko/cs63/fdiv.html

• Meltdown and Spectre 
https://meltdownattack.com/

• EWD303 
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/
EWD303.html

• EWD268 Structured Programming 
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/
EWD268.html

• Program Development in Java, Liskov/Guttag (ch1 and ch10).

• “Dafny: An Automatic Program Verifier for Functional Correctness”, Leino.
67

https://crossbrowsertesting.com/blog/development/software-bug-cost/
https://www.cs.earlham.edu/~dusko/cs63/fdiv.html
https://meltdownattack.com/
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD268.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD268.html

Construction and Verification of Software, FCTUNL, © (uso reservado)

CVS, TLDR:
• Part I: Verified Software Construction (Dafny)

• Functional Correctness, Contract-based approaches (Hoare Logic)

• Pre- and post-conditions, loop invariants, assertions.

• Termination metrics.

• Part II: Concurrent Programming (Java + Verifast)
• Sharing, confinement, ownership. Control of interference. Reasoning about

concurrent code with monitors and locks based on resource invariants.
Construction of concurrency control code from behavioural specs.

• Part III: Software Testing
• Test selection and test generation; Model-based testing; Fault-based testing.

Property based testing; Symbolic execution; Automated testing; Tools.

68

