Construction and

Verification of Software
2022 - 2023

MIEI - Integrated Master in Computer Science and Informatics
Consolidation block

Lecture 2 - Specification and Verification
Bernardo Toninho (btoninho@ict.unl.pt)
based on previous editions by Joao Seco and Luis Caires

N VA

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:btoninho@fct.unl.pt

Important Dates

All already on CLIP:

* Project 1 Deadline — 15/04 (Out 28 March)
* Project 2 Deadline — 12/05 (Out 25 April)
 Test1 — 13/05

* Project 3 Deadline — 02/06 (Out 16 May)

» Test2 — 14/06

Construction and Verification of Software, FCTUNL, © (uso reservado)

Part |
Software Correctness

Software Correctness: What and Ho

 Key engineering concern:
Make sure that the software developed and constructed is “correct”.

* What does this mean”?
e [sit crash-free? (“runtime safety”)
* Gives the right results? (“functional correctness”)
* Does it operate effectively? (“resource conformance”)

 Does it violate user privacy? (“security conformance”)

e several process and methodological approaches to ensure and validate
correctness exist (software engineering course)

* Inthis course, we cover some techniques to rigorously ensure and
validate correctness during software construction

Construction and Verification of Software, FCTUNL, © (uso reservado) 4

Correctness against a specification

e Then what does “correct software” mean?

e Always relative to some given (our) specification

e Correct means that software meets our specification
 There is no such thing as the absolute “right specification”
« But the spec must not be wrong !

e Crafting good / checkable specifications can be challenging.

* |t should be “easy” to check what the specitication states

 The spec must be simple, much simpler than the code

 The spec should be focused
e.g., buffers are not being overrun

e.qg., never transfer money without logging the source

Construction and Verification of Software, FCTUNL, © (uso reservado)

Checking Specs: Dynamic Verificatl

* By “dynamic verification” we mean that verification is done at
runtime, while the program executes

e Some successful approaches:
unit testing
coverage testing
regression testing
test generation

runtime monitoring

* use runtime monitors to (continuously) check that code do not
violate correctness properties

e violations causes exceptional behaviour or halt, so errors are
detected after something wrong already occurred (think of a car
crash, or a security leak)

Construction and Verification of Software, FCTUNL, © (uso reservado) 0

Checking Specs: Static Verification

e “Static verification” means verification at compile time

* Algorithmic reasoning about what programs do, by analyzing the source
code, not by running the code

e (Can ensure absence of all errors of a certain well-defined kind
(e.g., “no null dereferences”)

 (Can also address many complex correctness properties
(e.q., functionality, absence of races, security, etc.)

* Does not introduce performance overhead at runtime

e Successful techniques:
 type checking, as performed by the compiler
« extended checking, static checking of assertions

« abstract interpretation, simulates execution on a simpler decidable abstract model of
runtime data

Construction and Verification of Software, FCTUNL, © (uso reservado)

Checking Specs: Static vs. Dynamic

* Dynamic Verification
* Unsound
* Performed at runtime
* No false positives (usually)

e Execution overhead

Construction and Verification of Software, FCTUNL, © (uso reservado)

Static Verification

Sound
Compile time

Conservative
(may have false positives)

Erasure of verification (no
overhead)

Each analysis targets a
specific of property

Complex to design and use

Checking Specs: Static Verification

e Specifications are the essential tool for abstraction and
decomposition.

* For each program we need to know
* in what conditions it can be used (requires/pre-conditions)

* what are its effects (effects/ensures/post-conditions)

* If our reasoning is sound, the post condition can be
assumed after the program’s execution, provided that the
pre-conditions were met at the beginning.

 We can only know as much as what is stated in the post-
condition.

Construction and Verification of Software, FCTUNL, © (uso reservado)

Part ||
Specification and
Verification

Contract-based Verification

* Axiomatic approaches based on Hoare Logic
(Pre- and post-conditions)

* |t pre-condition holds and the program terminates then
the post-condition holds.

e |f all components are veritied then all contracts are fultilled
in all cases.

e |f a component does not fulfill a contract then no
guaranties are given about the system’s behavior.

Construction and Verification of Software, FCTUNL, © (uso reservado) 11

What may specs look like”

e A classical example is the use of “assertions”
— You may have used assertions before (POO, AED)?
e A simple and fine-grained spec is the “Hoare triple™:

tA} P 1B

e A and B are assertions (conditions on the program state)
e P is the piece of code we want to talk about
® [he Hoare triple says:

e |[f program P starts in a state satistying A, then, if it
terminates, the resulting state satisfies B.

e A is called the "pre-condition”.
e B is called the "post-condition”.

Construction and Verification of Software, FCTUNL, © (uso reservado)

12

Interface contracts in ADT specs

e ADT specitications (we will detall this later) involve method
contracts, expressed as assertions

method P(... parameters ...)
requires PRE

ensures POS
modifies MOD

{

method code

¥

¢ The method call P(...), whenever started in a state that

satisfies PRE, if it terminates, always ends in a state that
satisfies POST, and only has effects on MOD

Construction and Verification of Software, FCTUNL, © (uso reservado) 13

Invariants in ADT specs

e ADT specifications (we will detail this later) may involve
representation invariants and abstraction mappings also
expressed as assertions

class C {

var v : 1T
1nvariant REPINV
1nvariant ABSMAP

. methods...

e ADT C’s implementation relies on a representation type T
that satisfies the representation invariant REPINV and maps
Into the abstract type as specitied by ABSMAP

Construction and Verification of Software, FCTUNL, © (uso reservado) 14

Stack Example : A glimpse of Dafny code

class Stack {

var elements:array<int>;
var count: int;
var MAX: 1int;

predicate StackInv()
reads this

i
¥

0 < MAX && 0 <= count <= MAX && elements.Length == MAX

constructor()
ensures StackInv()
{
MAX := 10;
elements :
count := 0;

new 1nt[10];

}

Construction and Verification of Software, FCTUNL, © (uso reservado)

15

Stack Example : A glimpse of Dafny code

class Stack {

method push(x:int)
requires StackInv() && notFull()
ensures StackInv() && notEmpty()
modifies elements, count

{
elements[count] :=
count := count + 1;

¥

X

method pop() returns (x:int)
requires StackInv() && notEmpty()
ensures StackInv() && notFull()
modifies elements, count

{
count := count - 1;
X := elements[count];

¥

Construction and Verification of Software, FCTUNL, © (uso reservado)

predicate notFull()
reads count, MAX
{ count < MAX }

predicate notEmpty()
reads count, ~MAX
{ count > 0 }

16

Specifications and Program Logics

 Written in a logic used to prove properties of programs

 What kinds of properties are we interested in”
e Safety properties (partial correctness):

* |f the program terminates (delivers an outcome), then the final state satisfies
some property.

* Liveness properties (total correctness)

 The program terminates (at least under certain conditions)

 Hoare logic is the “mother of all program logics™: It provides a
foundation for most program logics for imperative programming
anguages.

 Reason of HL success: compositional veritication at the level of
the programming language constructs.

Construction and Verification of Software, FCTUNL, © (uso reservado)

17

Dafny

“‘Dafny is an imperative object-
based language with built-in
specification constructs. The
Dafny static program verifier
can be used to verity the
functional correctness of
orograms. The specitications
iInclude pre- and
postconditions, frame
specifications (read and write
sets), and termination metrics”

Leino, Koenig, 2010

Construction and Verification of Software, FCTUNL, © (uso reservado)

Dafny: An Automatic Program Verifier

for Functional Correctness

K. Rustan M. Leino
Microsoft Research
leino@microsoft.com

Abstract

Traditionally, the full verification of a program’s functional correctness has been obtained with
pen and paper or with interactive proof assistants, whereas only reduced verification tasks, such as ex-
tended static checking, have enjoyed the automation offered by satisfiability-modulo-theories (SMT)
solvers. More recently, powerful SMT solvers and well-designed program verifiers are starting to
break that tradition, thus reducing the effort involved in doing full verification.

This paper gives a tour of the language and verifier Dafny, which has been used to verify the
functional correctness of a number of challenging pointer-based programs. The paper describes the
features incorporated in Dafny, illustrating their use by small examples and giving a taste of how they
are coded for an SMT solver. As a larger case study, the paper shows the full functional specification
of the Schorr-Waite algorithm in Dafny.

18

Dafny on GitHub

B dafny-lang / dafny (Public

<> Code () Issues (745 £9 Pullrequests ‘95 ©3) Discussions (*) Actions

¥ master ~

(&9

]
]
]
]
]
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

8 Projects

0 wiki

keyboardDrummer Revert #3619 to fix nightly (#3701)

.github

EIENES

Scripts

Source

Test

docs

.editorconfig
.gitattributes
.gitignore
.gitmodules
.pre-commit-config.yaml
CODE_OF_CONDUCT.md
CONTRIBUTING.md
DAFNY.ORG.txt
INSTALL.md
LICENSE.txt

Makefile
NOTICES.txt
README.md
RELEASE_NOTES.md
SECURITY.md
customBoogie.patch

dotnet-tools.json

Construction and Verification of Software, FCTUNL, © (uso reservado)

@ Security

¥ 87 branches © 43 tags

|~ Insights

Go to file

v 9a52494 1 hour ago

Changes to allow making doc snapshots from branches other than m...
chore: xUnit-based lit test runner (#680)

Another attempt at #3622 (#3638)

Revert #3619 to fix nightly (#3701)

Revert #3619 to fix nightly (#3701)

Revert #3619 to fix nightly (#3701)

chore: Enable dotnet_style_parentheses_in_other_binary_opera...
Preserve line endings for dafny and dafny-server scripts

Feat: Dafny format file.dfy and IDE extension (#2399)

add dafny libraries as submodule (#1446)

fix: Move dotnet-tools.json to root, use it in pre-commit hook (#1480)
Adding a CONTRIBUTING page (#2685)

Feat: Dafny format file.dfy and IDE extension (#2399)

Brief text to fix #2805 re ownership of dafny.org (#3083)

Cl: Test all platforms (#1056)

Change license to MIT following migration to GitHub

Another attempt at #3622 (#3638)

Use pre-commit to trim trailing spaces (#394)

chore: Add Python to (quicktest.sh (#3386)

Release Dafny 3.12.0 (#3594)

Miscellaneous documentation TODOs (#2817)

Server command (#3088)

fix: Fix naming of formals in Translator and standardize Z3 path (#35...

Add file ~

<> Code v

O 5,513 commits

5 days ago

2 years ago
last week

1 hour ago

1 hour ago

1 hour ago

2 years ago

6 years ago
last month

2 years ago

2 years ago

6 months ago
last month

4 months ago
3 years ago

7 years ago
last week

4 years ago
last month

2 weeks ago
6 months ago
3 months ago

2 weeks ago

About

Dafny is a verification-aware
programming language

& dafny.org
programming-language
Readme
View license
Code of conduct
Security policy
2k stars

71 watching
215 forks

Releases 39

© Dafny 4.0.0 (Latest
4 days ago

+ 38 releases

Packages

No packages published

Contributors 72

9007 @

NPDY

+ 61 contributors

Environments 1

&7 github-pages (Active

verification

Dafny in VS Code

Dafny v3.0.5

dafny-lang > 8,636 L. 0.0.0.6.40)

Dafny for Visual Studio Code

Disable Uninstall |v £

This extension is enabled globally.

Details Feature Contributions Changelog Runtime Status

Dafny for Visual Studio Code

This extension adds Dafny 3 support to Visual Studio Code. If you require Dafny 2 support, consider using the
VSCode plugin requires the Dafny language server (shipped with the Dafny release since v3.1.0). The plugin will install it

automatically upon first use.

Features

o Compile and Run . dfYy files.
Verification as one types.
Syntax highlighting thanks to . See file LICENSE_sublime-dafny.rst for license.
Display counterexample for failing proof.
IntelliSense to suggest symbols.
Go to definition to quickly navigate.
Hover Information for symbols.

You can find

Shortcuts
Construction and Verification of Software, FCTUNL, © (uso reservado)

Dafny in VS

method max(a:array<int>) returns (m:int)
requires a.Length > 0
ensures forall i :: @ <= i < a.Length ==> m >= ali]

m := al0];
var i := 0;
while i < a.lLength
invariant @ <= i <= a.Length
invariant forall j :: @ <= j < i ==>m >= alj]

if alil > m
m:= al[il;

i=01ET
}

return m;

1

® 0A 0 % Verification Succeeded

Construction and Veri

Dafny Documentation

Dafny Documentation

This site contains links to Dafny documentation.
Project site for releases, issues, installation instructions, and source code

e Quick start material:
o Dafny Quick Reference
o Getting started tutorial, focusing mostly on simple imperative programs
o Cheatsheet: basic Dafny syntax on two pages
e Detailed documents for programmers
o Dafny Reference Manual
o Language reference for the Dafny type system, which also describes available expressions for
each type
o Style Guide for Dafny programs
e Dafny Tutorials
o Introduction to Dafny
o Value Types
Sets
Sequences
Lemmas and Induction
Modules
Termination

0

0

0

(8]

0

Construction and Verification of Software, FCTUNL, © (uso reservado)

22

Part [V
A bit of History

Some bits of history ... (extra)
Kick off:

— “Checking a large routine”

Construction and Verification of Software, FCTUNL, © (uso reservado)

24

Turing

Kick off:

— “Checking a large routine”

“How can one check a routine In the
sense of making sure that it is right?
In order that the man who checks

may not have too difficult a task the
programmer should make a number
of definite assertions which can be e, 2 e

Checking & large routisne. by Dr, A, Turing.

checked individually, and from which = s s s e s s i s s i

sdar that the man w0 checks may npot hkave too difficult « task t
ramses ahould cwko a mmber of definite assortions whioh can be

the correctness of the whole ATl el B L S L

Conalder the snalogy of oheoking an addition, If it Lla glven asy

programme easily follows.” o

Alan Turing, 24th June 1949 =

137,

Construction and Verification of Software, FCTUNL, © (uso reservado)

Assertions

Second boost:

— Floyd’s Assertion Method

Robert Floyd’s, "Assigning Meanings
to Programs," opened the field of
program verification. His basic idea
was to attach so-called "tags" in the
form of logical assertions to individual
program statements or branches that
would define the effects of the
program based on a formal semantic
definition of the programming
language.

R. Floyd, MFCS, June 1967

Construction and Verification of Software, FCTUNL, © (uso reservado)

Assertions

________ n€JT (J7 is the set of positive integers)
e
ie—1
—_—_——————— ned A\i=
L
S0
l ———————— nEJTAI=1AS=0
r4

1—1
________ ncdTANIi€EJTAISR+1IAS= 2 g
j=1

(v :
———nE€J Ai=n+1AS= Y agj; ie, S= X g
j=1 1=1
@ i—1

________ nedTAIi€EJTAISAAS =) g
v =1

i
________ n€J+/\i€J+/\i§n/\S=jZlaj

-1
________ ncdtAied A2sisn+1AS= }:la,-
]ﬂ

FiGURE 1. Flowchart of program to compute S = 2_j=1 a; (n 2 0)

Construction and Verification of Software, FCTUNL, © (uso reservado)

27

Language Based Program Specs

Lift Off:

— Hoare Logic

“Computer Programming is an
exact science in that all the
properties of a program and all
consequences of executing it in
any given environment can, in
principle, be found out from the
text of the program itself by
means of purely deductive
reasoning.”

Tony Hoare, CACM 1969

Construction and Verification of Software, FCTUNL, © (uso reservado)

AXIoM 1: ASSIGNMENT AXIOM
{plt/x]} x =t { p}.

RULE 2: CoMmPOSITION RULE

{p} Si{r}, {r} S: {q)}
{p} S1;;S:{q} .

RuLE 3: if-then-else RULE
{pANe}S {q}, {p e} S:{q}

{p} if e then S, else S: fi {¢}

RULE 4: while RULE

{pNe}S{p)
{p} while edo Sod {p N\ e}

28

Programming T.A. Standish
Languages Editor

The Weakest Precondition

Guarded Commands,
Nondeterminacy and
Formal Derivation
of Programs

Edsger W. Dijkstra
Burroughs Corporation

So-called “guarded commands” are introduced as a
building block for alternative and repetitive constructs
that allow nondeterministic program components for
which at least the activity evoked, but possibly even the
final state, is not necessarily uniquely determined by the
initial state. For the formal derivation of programs
expressed in terms of these constructs, a calculus will be
be shown.

Key Words and Phrases: programming languages,
sequencing primitives, program semantics, programming
language semantics, nondeterminacy, case-construction,
repetition, termination, correctness proof, derivation of
programs, programming methodology

CR Categories: 4.20, 4.22

Construction and Verification of Software, FCTUNL, © (uso reservado)

1. Introduction

In Section 2, two statements, an alternative con-
struct and a repetitive construct, are introduced, to-
gether with an intuitive (mechanistic) definition of their
semantics. The basic building block for both of them
is the so-called ‘“guarded command,” a statement list
prefixed by a boolean expression: only when this
boolean expression is initially true, is the statement list
eligible for execution. The potential nondeterminacy
allows us to map otherwise (trivially) different programs
on the same program text, a circumstance that seems
largely responsible for the fact that programs can now
be derived in a manner more systematic than before.

In Section 3, after a prelude defining the notation,
a formal definition of the semantics of the two con-
structs is given, together with two theorems for each
of the constructs (without proof).

In Section 4, it is shown how, based upon the above,
a formal calculus for the derivation of programs can
be founded. We would like to stress that we do not
present “an algorithm’ for the derivation of programs:
we have used the term ““a calculus” for a formal dis-
cipline—a set of rules—such that, if applied successfully:
(1) it will have derived a correct program; and (2) it
will tell us that we have reached such a goal. (We use
the term as in “integral calculus.”)

29

https://dl.acm.org/doi/10.1145/360933.360975

Closer to the present

® O O Retrospective: An Axiomatic Basis for Computer Programming | October 2009 | Communications of the ACM

n
: Stl | | re | eva nt | « | » || + [C|http:/ /cacm.acm.org/magazines/2009/10/42360-r« [E & | (Q~ Coogle

i3 Gmail ISI OutSystems S...io 4.1 Help Google eracareers CLIP - Autenticacao UROP - Und...es Program

“ The axiomatic method gives
an objective criterion of the

Abstract

quality of a programming -

language, and the ease with

In the Digital Library

which programmers could use it,

Introduction

Retrospective (1969-1999)

The latest response comes from o

Prospective (2009-)

hardware designers, who are o
using axioms in anger to define
the properties of modern

multicore chips with weak

memory consistency.”

ACM.ORG JOIN ACM 7\ ABOUT COMMUNICATION

] COMMUNICATIONS ~
— Hoare Logic TACM s e

Home News Blogs Opinion Browse by Subject

Home » Magazine Archive » 2009 » No. 10 » Retrospective: An Axiomatic Basis for Computer Programming » Full Text

VIEWPOINTS

Retrospective: An Axiomatic Basis for Computer Programming

C.A.R. Hoare revisits his past Communications article on the axiomatic approach to

programming and uses it as a touchstone for the future.
C.A.R. Hoare

Communications of the ACM
Vol. 52 No. 10, Pages 30-32
10.1145/1562764.1562779

This month marks the 40th anniversary of
the publication of the first article I wrote as
an academic.” I have been invited to give my
personal view of the advances that have been
made in the subject since then, and the
further advances that remain to be made.
Which of them did I expect, and which of
them surprised me?

C.AR. Hoare attending the NATO Software
Engineering Techniques Conference in 1969
Credit: Robert M. McClure

back to top

Retrospective (1969—1999)

My first job (1960-1968) was in the computer industry; and my first major project was to
lead a team that implemented an early compiler for ALGOL 60. Our compiler was directly
structured on the syntax of the language, so elegantly and so rigorously formalized as a
context-free language. But the semantics of the language was even more important, and
that was left informal in the language definition. It occurred to me that an elegant

Tony Hoare, CACM 2009 -

Construction and Verification of Software, FCTUNL, © (uso reservado)

Extended Static Checking

Spec#

Spec# is an extension of the
object-oriented language CH#.
It extends the type system to
include non-null types and
checked exceptions. It
provides method contracts in
the form of pre- and
postconditions as well as
object invariants.

Barnett, Leino, Schulte, 2004

Construction and Verification of Software, FCTUNL, © (uso reservado)

The Spec# Programming System: An Overview

Mike Bamett, K. Rustan M. Lemo, and Wolfram Schulte

Microsoft Research, Redmond, WA, USA
jmbarnett, leino, achulte j@microsoft.com

Manusenpt KRML 136, 12 October 2004. To appear in CASSIS 2004 proceedings.

Abstract. The Spec# programming system 1s a new attempt at a more cost effec-
tive way to develop and maintain high-quality software. This paper describes the
goals and architecture of the Spec# programming system, consisting of the object-
oriented Spec# programming language, the Spec# compiler, and the Boogie static
program verifier. The language includes constructs for writing specifications that
capture programmer intentions about how methods and data are to be used, the

compiler emits run-time checks to enforce these specifications, and the venfier
can check the consistency between a program and its specifications.

31

Dafny

Datny

Dafny is an imperative object-
based language with built-in
specification constructs. The
Dafny static program verifier
can be used to verify the
functional correctness of
programs. The specifications
include pre- and
postconditions, frame
specifications (read and write
sets), and termination metrics

Leino, Koenig, 2010

Construction and Verification of Software, FCTUNL, © (uso reservado)

Dafny: An Automatic Program Verifier

for Functional Correctness

K. Rustan M. Leino
Microsoft Research
leino@microsoft.com

Abstract

Traditionally, the full verification of a program’s functional correctness has been obtained with
pen and paper or with interactive proof assistants, whereas only reduced verification tasks, such as ex-
tended static checking, have enjoyed the automation offered by satisfiability-modulo-theories (SMT)
solvers. More recently, powerful SMT solvers and well-designed program verifiers are starting to
break that tradition, thus reducing the effort involved in doing full verification.

This paper gives a tour of the language and verifier Dafny, which has been used to verify the
functional correctness of a number of challenging pointer-based programs. The paper describes the
features incorporated in Dafny, illustrating their use by small examples and giving a taste of how they
are coded for an SMT solver. As a larger case study, the paper shows the full functional specification
of the Schorr-Waite algorithm in Dafny.

32

Separation Logic

John C. Reynolds

Construction and Verification of Software, FCTUNL, © (uso reservado)

s$;h |= Px(P—+Q) {P} C{Q}
s,h = Q {P+R}C{Q+*R)}

Peter O’Hearn

mod(C) Nfv(R) = 0

33

Verifast

Verifast

VeriFast is a verifier for
single-threaded and
multithreaded C and Java
programs annotated with
preconditions and
postconditions written in
separation logic.

{

Jacobs, Smans, Piessens,
2010 }

NB: separation logic Is a
spec language for talking
about programs that allocate
memory and use references

Construction and Verification of Software, FCTUNL, © (uso reservado)

public void broadcast_message(String message) throws IOException

room(this) &*& message !=
room(this);

room(this);
foreach(?members0,):

List membersList = this.members;
Iterator iter = membersList.iterator();
boolean hasNext = iter.hasNext();

//@ length nonnegative(members0);
while (hasNext)

/*@

foreach<Member>(?members, @member) &*& iter(iter, membersList, members, ?i)
&*& hasNext == (i < length(members)) &*& 0 <= i &*& i <= length(members);
@*/

Object o = iter.next();

Member member = (Member)o;

//@ mem nth(i, members);

//@ foreach remove<Member>(member, members);
//@ member (member) ;

Writer writer = member.writer;
writer.write(message);

writer.write("\r\n");

writer.flush();

//@ member (member) ;

//@ foreach unremove<Member>(member, members);
hasNext = iter.hasNext();

//@ iter_dispose(iter);

room(this);

Part V
Hoare Logic

Basic Program Specs (Hoare Logic)

C.A.R.HOARE
United Kingdom — 1980

For his fundamental contributions to the definition and design
of programming languages.

Construction and Verification of Software, FCTUNL, © (uso reservado)

30

Hoare Logic (1969)

An Axiomatic Basis for of axioms it is possible to deduce such simple theorems as:
] — 0
Computer Programming TEETYX
y<ror+yXg=0e—-y)+yX A+ q)
C. A. R. HoARE The proof of the second of these is:
The Queen’s Unaversity of Belfast,* Northern Ireland A5 r—y)+y X 1+ q)
= —-y)+ @WX1+yXyg

In this paper an attempt is made to explore the logical founda- A9 = @r—y)+ +y Xgq)
tions of computer programming by use of techniques which

A3 = ((r—uy

were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in- Ag =r4y
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

The axioms Al to A9 are, of cou
tional infinite set of integers in ms
they are also true of the finite sets of
manipulated by computers providec
fined to nonnegative numbers. Their

of the size of the set; furthermore, it I
KEY WORDS AND PHRASES: axiomatic method, theory of programming?’ of the choice of technique applied i1
proofs of programs, formal language definition, programming language

». .
design, machine-independent programming, program documentation flow ; for .exa.mple. .
CR CATEGORY: 4.0, 4.21, 4.22, 5.20, 5.21, 5.23, 5.24 (1) Strict interpretation: the rest
operation does not exist; when overfl

ing program never completes its op
this case, the equalities of Al to A9 ¢
that both sides exist or fail to exist

Construction and Verification of Software, FCTUNL, © (uso reservado) 37

https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjuh7-1tN_ZAhXJzlkKHSLUAZQQFggsMAA&url=https://www.cs.cmu.edu/~crary/819-f09/Hoare69.pdf&usg=AOvVaw0C3WohKPHelnsGPW5J9v_P

Simple Programming Language

E = Expressions
num

X
E+FE|..
E<FE]|..
E and E...

skip

r.=F

P; P

if F then P else P
while F do P

Construction and Verification of Software, FCTUNL, © (uso reservado)

Integer

Variable

Integer operators
Relational operators
Boolean operators

Programs

No op

Assignment

Sequential Composition
Conditional

Iteration

38

States and State Transformers

e An imperative program is a state transformer.
't transforms an initial state into a target state.

e \What is a program state”? An assignment of values to
state variables:

c={x—1,y— 2,z+— 3}

e An Imperative program transforms states into states
PEg :=y+a2:=2—2x

o |f P is executed in state o it yields state o' where
o' ={x— 3,y — 2,z 0}

¢\\Ve may say that P transforms o into ¢’

e P is only defined on states o where vars(P) € dom(o)

Construction and Verification of Software, FCTUNL, © (uso reservado) 39

States and Assertions

A (safety) property is a set of (safe) states

Essentially an assertion is a boolean expression that only
depends on observing program (state) variables

An assertion is just a pure observation, it is either true or
false, its evaluation does not change the state.

In general, one may use all the expressiveness of (first
order) logic in assertions (e.g. quantifiers, etc...).

The assertion language is part of the specification
language, separate from the programming language.

In some cases, assertions may be expressed using the
programming language itself (e.g. a subset of Dafny).

Construction and Verification of Software, FCTUNL, © (uso reservado)

40

Program Proofs in Hoare Logic

e A program proof in Hoare logic adds assertions between
program statements, making sure that all Hoare triples are
satisfied/valid.

e [or example, consider the code snippet

it (X >y) {
Z = X
} else {
Z =Y

Construction and Verification of Software, FCTUNL, © (uso reservado) 41

Program Proofs in Hoare Logic

e A Hoare Logic “proof” may look like

{ true }
1f (x > vy) {

i X >y) }

Z = X;

{ (X >y) & (z == x) }
}
else {

{1 X <=y) }

Z =Y;

i X <=y) & (z ==y) }
}

{ (oY) & (z == x) || (x<=y) && (z == y)}
{ L == mGXCX,Y) }

Construction and Verification of Software, FCTUNL, © (uso reservado)

In Dafny

function max(x:int, y:int):int { 1f x > y then x else y }

method maxImp(x:int, y:1int) returns (z:int)

ensures z == max(x,y)
{
assert true;
1t (x>y) {
assert x >y ;
Z = X;
assert z > y && z == Xx;
assert z >=y && z == Xx;
} else {
assert x <=y,
Z =Y,
assert z >= x && z == y;
3
assert (z>=y & z == x) |l (z >= x && z == y);
assert z == max(x,y);
3

Construction and Verification of Software, FCTUNL, © (uso reservado)

INnterlude
Verification of Functions

Functions as Specifications

e \We will often use functions in the specification of (imperative)
methods.

e [unctions must be pure (i.e, no state).

e Functions must provably terminate (aka total).

e Pure total functions = Mathematical functions.

function max(x:int, y:int):int { 1f x > y then x else y }

method maxImp(x:int, y:1nt) returns (z:int)
ensures z == max(x,y)

1.}

e Dafny proves, for all X and y, z is equal to max(x,y)
e \What is the relationship between max and “math” max?

Construction and Verification of Software, FCTUNL, © (uso reservado) 45

Functions as Specifications

e \\e can prove that max is actually equivalent to mathematical
max (adequacy).

e Since Dafny functions are both pure and total, we can reason
about them using relatively simple technigues:

e (alculation by evaluation (e.g. max(2,3) < 3)
e Mathematical induction
e Structural induction

¢ Reasoning about functions without totality is much harder
(and out of scope of this course).

e Reasoning about functions that manipulate state is as hard as
reasoning about imperative code.

Construction and Verification of Software, FCTUNL, © (uso reservado) 46

Function Evaluation

o |[dentify function calls with their definitions, substituting args for
formal parameters (referential transparency).

e Same as how it works in mathematics:

o If f(x) = x% — x then f(5) is definitionally the same as 20.
e max(2,3) is definitionally the same as 3.

* |n a general purpose lang., functions might not terminate anad
so we distinguish:

e FEvaluation (e < v) — e evaluates to value v (no “calculation” left).

e Reduction (e = ¢€’) — e computes to expr. e’ (some “calculation” may remain).

* |n our setting we need not make this distinction.

Construction and Verification of Software, FCTUNL, © (uso reservado)

47

Proving functional adequacy

e Assume that values (e.g., numbers, booleans) and ops. (e.g.,
+,-,”, ...) map directly onto their mathematical counterparts.

e [or non-recursive functions, proceed by calculation.

e Foralln, mintegers, max(n,M) =nifNn>m; max(n,M) =mM
otherwise.

e (Calculation: max(n,m) = if n > m then n else m

e Case #1: n>m S true , max(N,M) = n Q

e Case #2: n>m & false, max(N,M) = m Q

Construction and Verification of Software, FCTUNL, © (uso reservado)

Proving functional adequacy

e [or recursive functions, we use induction.

e [unctions on natural numbers —mathematical induction:
e Proof technigue for statements of the form Vn. P(n).
e Prove base case P(0)
e Prove inductive case Vk.P(k) — P(k+ 1)

e \\Ve can construct an argument for any n by “iterating” the
iInductive case up from the base case.

e Many equivalent variations exist:
e Base case as P(k) for some specific k (Vn > k. P(n))

¢ Strong induction, inductive case as
Vk.(Vn <k.Pn)) — P(k+ 1)

Construction and Verification of Software, FCTUNL, © (uso reservado) 49

Proving functional adequacy

e | ets prove the following function is equivalent to +:

function slowAdd(a:nat, b:int) : 1int {
1f (a==0) then b else l+slowAdd(a-1,b)
ks
* Vn,m. slowAdd(n,m) = n+m

e By induction on n

Construction and Verification of Software, FCTUNL, © (uso reservado) 50

Proving functional adequacy

e | ets prove the following function is equivalent to +:

function slowAdd(a:nat, b:int) : 1int {
1f (a==0) then b else l+slowAdd(a-1,b)
ks
* Vn,m. slowAdd(n,m) = n+m
e By induction on n
e Base case: slowAdd(0,m) < m (@

Construction and Verification of Software, FCTUNL, © (uso reservado) 51

Proving functional adequacy

e | ets prove the following function is equivalent to +:

function slowAdd(a:nat, b:int) : 1int {
1f (a==0) then b else l+slowAdd(a-1,b)
ks

* Vn,m. slowAdd(n,m) = n+m
e By induction onn
e Base case: slowAdd(0,m) < m @
¢ |nductive case:
e Assume Vm.slowAdd(k,m) < k+ m, for some K.

e Prove slowAdd(k+ 1,m) - k+ 1+ m

Construction and Verification of Software, FCTUNL, © (uso reservado) 52

Proving functional adequacy

e | ets prove the following function is equivalent to +:

function slowAdd(a:nat, b:int) : 1int {
1f (a==0) then b else l+slowAdd(a-1,b)
ks

* Vn,m. slowAdd(n,m) = n+m
e By induction onn
e Base case: slowAdd(0,m) < m @
¢ |nductive case:
e Assume Vm.slowAdd(k,m) < k+ m, for some K.
e Prove slowAdd(k+ 1,m) - k+ 1+ m

e slowAdd(k + 1,m) = l+slowAdd(k, m)

Construction and Verification of Software, FCTUNL, © (uso reservado) 53

Proving functional adequacy

e | ets prove the following function is equivalent to +:

function slowAdd(a:nat, b:int) : 1int {
1f (a==0) then b else l+slowAdd(a-1,b)
ks

* Vn,m. slowAdd(n,m) = n+m
e By induction onn
e Base case: slowAdd(0,m) < m @
¢ |nductive case:
e Assume Vm.slowAdd(k,m) < k+ m, for some K.
e Prove Vm'.slowAdd(k+ 1.m"D o k+1+m’
e slowAdd(k + 1.m"D = 1+slowAdd(k, m"
* Byih. =1+k+m'=k+1+m'D

Construction and Verification of Software, FCTUNL, © (uso reservado)

Generalizing the inductive hypothesis

e Sometimes the “obvious” statement is not general enough:

function factAcc(n:nat, a:int) : int {
1f (n==0) then a else factAcc(n-1,n*a)
ks

* VYn. factAcc(n,1) = n!
e By induction on n
e Base case: factAcc(0,1) o 1 Q
¢ |nductive case:
e Assume factAcc(k,1) o k!, for some k.

e Prove factAcc(k+1,1) - (k+1)!

e factAcc(k+ 1,1) = factAcc(k,k+ 1)
e \\e are stuck...

Construction and Verification of Software, FCTUNL, © (uso reservado)

Generalizing the inductive hypothesis

function factAcc(n:nat, a:int) : int {
1f (n==0) then a else factAcc(n-1,n*a)
¥

® |nstead, prove Vn,m. factAcc(n,m) = mxn!
e By induction on n
e Base case: Vm.factAcc(0O,m) < m=m X 0!
¢ |nductive case:
e Assume Vm.factAcc(k,m) - m X k!, for some K.

e Prove Vm'.factAcc(k+1,m) o m'X(k+1)!
e factAcc(k+ 1,m") = factAccCk,m' X (k+ 1))

e byih. m=mx(k+1)):
=m'X(k+ D xk!l=m'x(k+1)! @

Construction and Verification of Software, FCTUNL, © (uso reservado) 56

Generalizing the inductive hypothesis

e Related to inventing “good” loop invariants (later!).

e Sometimes this isn’t enough:
function fib(n:nat) : int {
1f n==0 then 0
else 1f n==1 then 1

else fib(n-1)+f1b(n-2)
ks

e Use strong induction... (Exercise!)

Construction and Verification of Software, FCTUNL, © (uso reservado)

57

Structural Induction

e Functions over inductive structures (lists, trees, etc.)
datatype List<T> = Nil | Cons(head:T, tail:List<T>)
function length<T>(1l:List<T>) : int {
match 1
case Nil => 0
case Cons(_,xs) => 1+length<T>(xs)

}

e \\Ne can prove adequacy also using (a form of) induction.

e (Generalization of mathematical induction called structural
iInduction:

e Show property holds for Nil

e Assume it holds for some 1’ : List<T>, show property
holds for Cons(n, 1"), for any n.

Construction and Verification of Software, FCTUNL, © (uso reservado)

Structural Induction

e [unctions over inductive structures (lists, trees, etc.)
datatype List<T> = Nil | Cons(head:T, tail:List<T>)

function length<T>(1l:List<T>) : int {
match 1
case Nil => 0
case Cons(_,xs) => 1+length<T>(xs)

}
e Show VI/.length < T > (I) = || (where |I] is the length of I).
e By structural induction on [
e Casel=DNil:length<T> ()=0D
e Casel = Cons(n,!) (for some n and /)
e Assume length < T > (l') = |l] (i.h)
e length < T > (Cons(n,l’)) =1+ length < T > (I')
e byih.=1+4+|/'| =|Cons(n,!’)| Q

Construction and Verification of Software, FCTUNL, © (uso reservado)

59

Part V (redux)
Hoare Logic

Program Proofs in Hoare Logic

e A Hoare Logic “proof” may look like

{ true }
1f (x > vy) {

i X >y) }

Z = X;

{ (X >y) & (z == x) }
}
else {

{1 X <=y) }

Z =Y;

i X <=y) & (z ==y) }
}

{ (oY) & (z == x) || (x<=y) && (z == y)}
{ L == mGXCX,Y) }

Construction and Verification of Software, FCTUNL, © (uso reservado)

Con

Example: Rule for Sequence

A sequence defines a dependency on the effects of both
program statements.

{A} P{B} {B}Q{C}
{A} P;Q {C}

e If {A}Y P {B} and {B} Q {C} then {4} P;Q {C}

struction and Verification of Software, FCTUNL, © (uso reservado)

62

Rules of Hoare Logic (general form)

e The inference rules of Hoare logic are used to derive (valid)
Hoare triples given some already derived Hoare triples

(ALY P {By) ... {A,} P, {B,)
(AYC(PL,...P,) (B}

e \\/hat IS nice here:

¢ the program in the conclusion contains the subprograms
P+, ... Pnas components

e \we derive properties of the composite from the properties
of its parts (compositionality)

e pretty much the same as with a type system

Construction and Verification of Software, FCTUNL, © (uso reservado)

63

“Structural” Proof Rules

e Basic logic proof systems operate on assertions, e.g.

A A= B A B A B
B ANDB AV B AV B

e Hoare logic proof system operates on Hoare triples, e.g.

{A} P{B} {B}Q{C}
{A} P;Q {C}

Construction and Verification of Software, FCTUNL, © (uso reservado)

64

One rule for each PL construct

AXIoM 1: ASSIGNMENT AXIOM

{plt/x]} x =t {p}.
RULE 2: ComPoSITION RULE

{p} Si{r}, {r} S: {q}
{p} Si; S {q} .

RuULE 3: if-then-else RULE

{p/e}S {q}), {p/\7e}S:{q}
{p} if e then S, else S; fi {g}

RULE 4: while RULE

{pNe}S{p)
{p} whileedo Sod {p A\ e}

e A coolidea;

e Programmers can use the rules informally to
mentally check their code

e Jools exist that automate most of the process
e | ets go through each rule, one by one...

Construction and Verification of Software, FCTUNL, © (uso reservado)

65

Simple Programming Language

E = Expressions
num Integer
x Variable
E+FE|.. Integer operators
E<FE]|.. Relational operators
E and E ... Boolean operators
P = Programs
skip No op
x:.=F Assignment
P: P Sequential Composition

if F then P else P C(Conditional
while FE do P Iteration

Construction and Verification of Software, FCTUNL, © (uso reservado) 06

Rule for Skip

1A} skip {4}

Construction and Verification of Software, FCTUNL, © (uso reservado)

67

Rule for Skip

1A} skip {4}

if x <0
1 X 1= -X; }

Construction and Verification of Software, FCTUNL, © (uso reservado)

1f x < 0

{ X = -X;
else

skip

68

Rule for Sequence %

A sequence defines a dependency on the effects of both
program statements.

{A} P{B} {B}Q{C}
{A} P;Q {C}

Construction and Verification of Software, FCTUNL, © (uso reservado) 69

Con

Rule for Conditional

ANE}Y P{B) {ANDE} Q (B}

{A} if F then P else Q {B}

struction and Verification of Software, FCTUNL, © (uso reservado)

70

Rule for Deduction

A — A {AVP{B' B — B
{A’} P{B'}

e A= B means “A logically implies B”

e \Ve prove A = B using the principles of first order logic, plus

basic properties of the domain data types, e.g. properties of
Integers, arrays, etc.

Construction and Verification of Software, FCTUNL, © (uso reservado)

71

Rule for Assignment

{A[":]} = = E {A}

o A[®/] means:
e Result of replacing all free occurrences of variable x in
assertion A by the expression E

e [or this rule to be sound, we require E to be an expression
without side effects (a pure expression)

Construction and Verification of Software, FCTUNL, © (uso reservado)

/2

Rule for Assignment

{A[%/:]} z = E {4}

e \We can think of A as a condition where “x” appears in some
places. A is a condition dependent on “x”.

* [he assignment x := E changes the value of x to E, but leaves
everything else unchanged

e 50 everything that could be said of E in the precondition, can

be said of X in the postcondition, since the value of x after the
assignment is &

o Example: {x+1>0}x:=x+1{x>0]}

Construction and Verification of Software, FCTUNL, © (uso reservado) /3

Con

Rule for Assignment

{A[":]} 2 = E {A}

e Example, let'scheck {x>-1}x:=x+1{x>0}
{(X+1>0)}x:=x+1 {x>0} by the := Rule
thatis, { (x > O)[x+1/x]} x:=Xx+1) {x>0]}

{(Xx>-1}x=x+1{x>0]} by deduction

struction and Verification of Software, FCTUNL, © (uso reservado)

74

Rule for Assignment

{A[":]} = = E {A}

e Jrick: If x does not appear In E or A.

We can always write { A&& E==E} X:=E { X ==
S0, If X does not occur in E, A the triple

(A}x:=E{A8 x==F)

IS always valid

Construction and Verification of Software, FCTUNL, © (uso reservado)

|

75

Con

Rule for Assignment

{A[":]} 2 = E {A}

e Exercises. Derive:
¢ [y>0}Xx=y{x>0&&Yy==x}
o [X==y}Xx:=2"%X{y==xdiv?2]
e {P(y)&& Qz)} (here P and Q are any properties)
X:=VY;,Yy:=2, Z:=X
{ P(2) && QUY) }

struction and Verification of Software, FCTUNL, © (uso reservado)

/6

Example

e (Consider the program
P2if(x>y)thenz:=xelsez:=y
e \Ve can (mechanically) check the triple

{true } P { z == max(x,y) }

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

77

Example

e (Consider the program
P2if(x>y)thenz:=xelsez:=y

e \Ve can (mechanically) check the triple
{true } P { z == max(x,y) }

{ X ==max(x,y) } z:=x{z==max(x,y) }
{x>y} z:=x{z==max(x,y) }

{y ==max(x,y) } z:=Yy {zZ==max(x,y) |
{y>=x}z:=vy{z==max(x,y) }

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

/8

Procedures and method calls

E Expressions

Statements

r:=m(FE,..., E,) Call + Assignment

Declarations

method m(z1,...,x,)returns (r)
requires Pre(xq,...,ZTn,)
ensures Post(x1,...,Tn,T)

15}

P = Program
| D

S
|l

Construction and Verification of Software, FCTUNL, © (uso reservado)

Procedures and method calls

e Declarations annotated with pre- and post-conditions.
e Method calls built into a form of assignment.
e A program P is a set of method declarations.

e Fach method decl. is validated, assuming its pre-condition
and establishing its post-condition:

{Pre(x1,...,xn)} S{Post(zy,...,x,,7)}
method m(x1,...,x,)returns (r)
requires Pre(z1,...,2,)
ensures Post(x1,...,x,,1r) {S}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Procedures and method calls

e Method calls built into a form of assignment:

method m(xy,...,x,)returns (r)
requires Pre(x1,...,xy,) cP
ensures Post(z1,...,x,,7) {S}

A= Pre(Ey,...,E,) Post(Ei,...,E,,r)= B["/,]

{Alx :=m(F4,...,E,){B}

Construction and Verification of Software, FCTUNL, © (uso reservado)

81

Procedures and method calls

method m(xy,...,x,)returns (r)
requires Pre(x1,...,xy,) cP
ensures Post(zy1,...,x,,7) {S}

A= Pre(Ey,...,E,) Post(Ei,...,E,,7)= B["/,]

{Alx . =m(Fy,...,E,){B}

¢ |nstantiated method pre-condition must follow from A

¢ |nstantiated method post-condition must imply B
e (Calls are opaque! We only know what’s in the post-condition.

e \/erification with method calls is modular.

Construction and Verification of Software, FCTUNL, © (uso reservado)

32

Procedures and method calls

method maxImp(x:int,y:1nt) returns (r:int)
ensures r >= X && r >=y

{
ifx>y{r:=x; }else {r :=y; }
return r;
3
method Main() {
var a = -10;
var b := 23;
var ¢ := maxImp(a,b);
assert (c == b); (X) assertion violation Verifier
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

33

Procedures and method calls

method maxImp(x:int,y:1nt) returns (r:int)
ensures r >= X && r >= vy

{
if x>y {r:=x; }else {r :=y; }
return r;

}

method Main() {

var a := -10;
var b := 23;
var ¢ := maxImp(a,b);

assert (c >= b);

Construction and Verification of Software, FCTUNL, © (uso reservado)

34

Procedures and method calls

method maxImp(x:int,y:1nt) returns (r:int)

{
if x>y {r ::=x; }else {r :=vy; }
return r;

¥

method Main() {

var a := -10;

var b := 23;

var ¢ := maxImp(a,b);
assert (c == b);

Construction and Verification of Software, FCTUNL, © (uso reservado)

Next Week:

 Hoare Logic (continuation)
* Loops and Loop invariants

e \erification of ADTs

Construction and Verification of Software, FCTUNL, © (uso reservado)

80

