Construction and

Verification of Software
2022 - 2023

MIEI - Integrated Master in Computer Science and Informatics
Consolidation block

Lecture 3 - Specification and Verification
Bernardo Toninho (btoninho@fct.unl.pt)
based on previous editions by Joao Seco and Luis Caires

N VA

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:btoninho@fct.unl.pt

Administrivia

» First handout will be out next week! (~2 week to turn in).

Construction and Verification of Software, FCTUNL, © (uso reservado)

Outline
 Hoare Logic revisited (Axiomatic approach)

 |teration (Loop Invariants)

* Algorithmic approach to verification

 Examples

Construction and Verification of Software, FCTUNL, © (uso reservado)

Part |
Hoare Logic (Recap)

Procedures and method calls

Expressions

&
|l

Statements

L = m(El,...,En)

Declarations

S
|l

requires Pre(xq, ..
ensures Post(x1, ..

15}

P = Program
| D

Construction and Verification of Software, FCTUNL, © (uso reservado)

method m(xq,...,x,)returns (r)

3 Tn)
Ty, T)

Call + Assignment

Procedures and method calls

e Declarations annotated with pre- and post-conditions.
e Method calls built into a form of assignment.
e A program P is a set of method declarations.

e Fach method decl. is validated, assuming its pre-condition
and establishing its post-condition:

{Pre(xq1,...,2,)} S{Post(x1,...,2n,7)}
method m(x1,...,x,)returns (r)
requires Pre(z1,...,2,)
ensures Post(x1,...,x,,1r) {S}

Construction and Verification of Software, FCTUNL, © (uso reservado) 0

Procedures and method calls

e Method calls built into a form of assignment:

method m(xy,...,x,)returns (r)
requires Pre(x1,...,xy,) cP
ensures Post(z1,...,x,,7) {S}

A= Pre(E1,...,E,) Post(Ei,...,E,,r)= B["/,]
{Alx :=m(Fq,...,E,){B}

Construction and Verification of Software, FCTUNL, © (uso reservado) /

Procedures and method calls

method m(xy,...,x,)returns (r)
requires Pre(x1,...,xy,) cP
ensures Post(zy1,...,x,,7) {S}

A= Pre(E,..., E,) Post(E1,...,E,,r) = B[/4]
{Alx :=m(Fq,...,E,){B}

¢ |nstantiated method pre-condition must follow from A

¢ |nstantiated method post-condition must imply B
e (Calls are opaque! We only know what’s in the post-condition.

e \/erification with method calls is modular.

Construction and Verification of Software, FCTUNL, © (uso reservado) 8

Procedures and method calls

method maxImp(x:int,y:1nt) returns (r:int)
ensures r >= X && r >=y

{
ifx>y{r:=x; }else {r :=y; }
return r;
3
method Main() {
var a .= -10;
var b := 23;
var ¢ := maxImp(a,b);
assert (c == b); (X) assertion violation Verifier
}

Construction and Verification of Software, FCTUNL, © (uso reservado) 9

Procedures and method calls

method maxImp(x:int,y:1nt) returns (r:int)
ensures r >= X && r >= vy

{
if x>y {r:=x; }else {r :=y; }
return r;

}

method Main() {

var a := -10;
var b := 23;
var c = maxImp(a b);

assert (c >= b);

Construction and Verification of Software, FCTUNL, © (uso reservado) 10

Procedures and method calls

method maxImp(x:int,y:1nt) returns (r:int)

{
if x>y {r ::=x; }else {r :=vy; }
return r;

¥

method Main() {

var a := -10;

var b := 23;

var ¢ := maxImp(a,b);
assert (c == b);

Construction and Verification of Software, FCTUNL, © (uso reservado) 11

Hoare Logic - Rules %

{A} skip {A}
(A[PL]} @ = B {A)

{A} P{B} {B}Q{C}
{A} P;Q {C}

A — A {AVP{B' B — B
{A’} P{B'}

TUNL, © (uso reservado) 12

Rule for Assignment

{A[":]} = = E {A}

e AJE/X] means:

e the result of replacing all free occurrences of variable X Iin
assertion A by the expression E

e [or this rule to be sound, we require E to be an expression
without side effects (a pure expression)

Construction and Verification of Software, FCTUNL, © (uso reservado) 13

Rule for Assignment

{A[":]} = = E {A}

We can think of A as a condition where “x” appears in some
places. A is a condition dependent on “x”.

The assignment x := E changes the value of x to kE, but leaves
everything else unchanged

SO everything that could be said of E in the precondition, can

be said of X in the postcondition, since the value of x after the
assignment is &

Example: {x+1>0}x:=x+1{x>0}

Construction and Verification of Software, FCTUNL, © (uso reservado) 14

Exercises

Prove using the assignment rule that:

assert y > 0;

X =Y,

assert x > 0 && y == Xx;
assert y == X;

X =2 * X;

assert y == x / 2;

Construction and Verification of Software, FCTUNL, © (uso reservado)

15

Exercises

Prove using the assignment rule that:

function P(x:1int):bool {

}
function Q(x:1int):bool {
}

var X = ..;

var y = ..

var z;

assert P(x) & Q(y);

Z 1= X;
X =Y,
y = Z;

assert,P(y) && Q(x);

Construction and Verification of Software, FCTUNL, © (uso reservado)

16

Example

e (Consider the program
P2if (x>y)thenz:=xelsez:=vy
e \We (mechanically) check the triple

{true } P { z == max(x,y) }

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

17

Example

e (Consider the program
P2if (x>y)thenz:=xelsez:=vy
e \We (mechanically) check the triple
{true } P { z == max(x,y) }

{ X ==max(x,y) } z:=x{z==max(x,y) }
{x>y} z:=x{z==max(x,y) }

{y ==max(x,y) } z:=Yy {zZ==max(x,y) |
{y>=x}z:=vy{z==max(x,y) }

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

18

Part |l
| oops and Loop
Invariants

Rule for lteration

(2AEY P {7
(A} while E do P {—EA?}

Any precise post condition depends on how many times P is
executed ... P can be executed O, 1, 2 ... ntimes, nis generally
not known at compile/verification time.

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

20

Rule for lteration

while F do P =
if £ then FP;
if I then P;
if £ then P, ...
else skip
else skip
else skip

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

21

Rule for lteration

{A}while E do P{B} =
{A}if FE then {AANFE} P{B;};
{Bl}if E then {Bl/\E}P{BQ},
{BQ}if E then {BQ/\E}P{BS},

else skip{—F A By}

else skip{—F A By}
else skip{—F N A}

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

22

Con

Rule for lteration

stru

[ANEY P {A)

{A} while F do P {ANA-E}

ction and Verification of Software, DI - FCTUNL, © (uso reservado)

AN—E A

23

Rule for lteration

INV = Invariant Condition

/N

{Inv NE} P {Inv}
{Inv} while F do P {Inv A\—-FE}

e \We cannot predict in general for how many iterations the
while loop will run (undecidabillity of the halting problem).

e \We approximate all iterations by an invariant condition

e A |loop invariant is a condition that holds at loop entry and at
loop exit.

Construction and Verification of Software, DI - FCTUNL, © (uso reservado) 24

Rule for lteration

INV = Invariant Condition

/N

{Inv NE} P {Inv}
{Inv} while F do P {Inv A\—-FE}

e [f the invariant holds initially and is preserved by the loop
oody, it will hold when the loop terminates!

e |t does not matter how many iterations will run.

e Unlike the other rules of Hoare logic, finding the invariant
requires human intelligence and creativity.

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

Rule for lteration

INV = Invariant Condition

/N

{Inv NE} P {Inv}

{Inv} while F do P {Inv A\—-FE}

e [he invariant depicts the state in all iterations of a loop.

o |

O

O0op body Is t

ne Invariant works like the
r00f. The base case Is the
ne Induction st

N+1.There mu

st exist a valic

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

oop executed O

ep that iterates

iINnduction meas

iInduction hypothesis in a

times, the

rTom step n to

Ure.

20

Loop Invariants

10 <nj

1 = 0;

while ¢ <n do {
1 =1+ 1

j

{1 ==nj}

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

27

Loop Invariants

onstruct

{0 < n}

1 = 0;

{i==0A0<n}

{0 <7< n}

while ¢ <n do {
{0<i<nAi<n}
{0 <i<n}
{0<i+1<n}
1 =1+ 1
{0 <i<n}

;

{O<i<nAi>:n}

{Z }

and Verification of Software, DI - FCTUNL, © (u

28

Part [l
Breaking and Fixing Loop
Invariants

Con

Loop Invariants
» Consider program P defined by

P25:=0; i:=0; while i<n do {i:=i+1; s:=5+1i}
* What is the specification of P? What does P do?

1A P B}

struction and Verification of Software, DI - FCTUNL, © (uso reservado)

30

Con

Loop Invariants
» Consider program P defined by

P25:=0; i:=0; while i<n do {i:=i+1; s:=5+1i}
* What is the specification of P? What does P do?

(n=0}P{s=j)

Is this a good specification for program P?

Can we mechanically check the Hoare triple?

struction and Verification of Software, DI - FCTUNL, © (uso reservado)

31

Con

Loop Invariants

stru

{0 < nj}

s = 0;

1 = 0;

while ¢ <n do {
1 =1+ 1;
S:=8+1

} (4’
(s==3 i}

ction and Verification of Software, DI - FCTUNL, © (uso reservado)

32

Con

Loop Invariants

stru

10 < nj

s = 0;
{s=0A0<n}
1 1= 0;

{s=0N0<1i<n}

while ¢ <n do {
1 =1+ 1;
S:=8-+1

ction and Verification of Software, DI - FCTUNL, © (uso reservado)

33

Loop Invariants

{0 <nj

s = 0;
{s=0A0<n}
1 = 0;

{s=0N0<1i<n}

1
{0<i<nAs= > j}

j=0
while ¢ <n do {

1 =1+ 1;
S =84 1;

; |
{i=nAs= ;()j}

(s =37}

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

34

Loop Invariants

{0 <nj

s :=0;
{s=0A0<n}
1 := 0;

{s=0Ni=0A0<1i<n}
{0<i<nAs= > j}

j=0
while ¢ <n do {

1

{OgignA&:ZM}‘&\\\\\
J=0
1 =1+ 1;

S:=8-+1

{0<i<nAs=) j}

) o
-UZRASZ%%ﬁ
(5=)

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

Invariant holds

35

Loop Invariants

* The loop invariant may be broken inside the body of the
loop, but must be re-established at the end.

* Notice the assignment rule
{A[%):]} & == E {A}

e that breaks the invariant...

{0<i<nAi<nAs= ioj}
iz

{O§i<n/\s:§:j}
1 =1+ 1 "
0<i-l<nis=S)

- 7=
{Oﬁign/\SZZi:j}

iz

Construction and Verification of Software, FCTUNL, © (uso reservado) 36

Con

Loop Invariants

stru

* The loop invariant may be broken inside the body of the
loop, but must be re-established at the end.

* Notice the assignment rule
{A[%):]} & == E {A}
* and then re-establishes it

i—1
{0<i<nAs= > j}

=0
S:=8+1

i—1
{0<i<nAs=(> j)+i}

=0
(0<i<nAs=(%4)
=0

ction and Verification of Software, FCTUNL, © (uso reservado) 37

Loop Invariants

{0 <nj}

s :=0;
{s=0A0<n}
1 := 0;

{s=0N1=0N0<i<n}
{0<i<nAs= > j}

7=0
while ¢ <n do {

{0<i<nAs= > j}

j=0 \
1 =1+ 1;
S:=84+1 /
{0<i<nAs= > j}

j=0

j |
{i=nANs= ;Oj}

{s = i:oj}

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

Invariant holds

38

Loop Invariants

{0 <nj

S

= 0;

{s=0A0<n}
1 :=0;
{s=0Ni=0A0<i<n}

{0<i<nAs=)> j}

j=0

while i <n do {

}

{0<i<nAI<nAs=) j}

Ost=mhe =20 Invariant
1 =1+ 1;

{Ogi—1<n/\5:l§j} N brOken
{O<z§n/\5:z§]}

s:=5-4+1 JD_ I . t
0<isnas=(N)+i) o nvarian

Osi<nns=3) restored

{i=nnNs= ioj}
fs=%j}

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

39

Loop Invariants

{0 <nj}

s :=0;
{s=0A0<n}
1 := 0;

(s=0Ai=0A0<i<n)
{0<i<nAs=> j}

j=0
while i <n do {

{0<i<nAi<nAs= > j}

. 7=0
{0<i<nAs= ij}
1:=1+ 1; =
0<i-l<nis=S j}

=0
{OSiSn/\SZZilj}
§:=5+1 T

{Ogign/\S:(ig)j)—i—i}

{0<i<nAs=> j}
j=0

} |
{i=nANs= ;oj}
fs=34)

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

Invariant holds

40

Hints for finding loop Invariants

e First: carefully think about the post condition of the loop

e Jypically the post-condition talks about a property
“accumulated” across a “range’
(this is why you are using a loop, right?)

* c.g., maximum of all elements of an array
® c.g., sort visited elements in a data structure

Construction and Verification of Software, DI - FCTUNL, © (uso reservado) 41

Hints for finding loop Invariants

e Second: design a “generalized” version of the post-
condition, in which the already visited part of the data is

made explicit as a function of the “loop control variable”
(generalizing the I.h, remember?)

e [he loop body may temporarily break the invariant, but must
restore it at the end of the body

e Important: make sure that the invariant together (&&) with
the termination condition really implies your post-condition

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

42

Examples, what kind of invariant we need for...

Max of an array

e All elements to the left are smaller than the max so far

Array Searching (unsorted)

e All elements left of the index are different from the value being searched

Array Searching (sorted)

 The element is between the lower and the higher limits

Sorting (bubblesort, insertion sort, etc.)

e Everything to the left of the cursor is sorted

List Reversing

« All elements to the left of the cursor are placed on the right of the result

Construction and Verification of Software, FCTUNL, © (uso reservado)

43

Part [V
Weakest Pre-condition
Algorithm

Programming T.A. Standish
Languages Editor

The Weakest Precondition

Guarded Commands,
Nondeterminacy and
Formal Derivation
of Programs

Edsger W. Dijkstra
Burroughs Corporation

So-called “guarded commands” are introduced as a
building block for alternative and repetitive constructs
that allow nondeterministic program components for
which at least the activity evoked, but possibly even the
final state, is not necessarily uniquely determined by the
initial state. For the formal derivation of programs
expressed in terms of these constructs, a calculus will be
be shown.

Key Words and Phrases: programming languages,
sequencing primitives, program semantics, programming
language semantics, nondeterminacy, case-construction,
repetition, termination, correctness proof, derivation of
programs, programming methodology

CR Categories: 4.20, 4.22

Construction and Verification of Software, FCTUNL, © (uso reservado)

1. Introduction

In Section 2, two statements, an alternative con-
struct and a repetitive construct, are introduced, to-
gether with an intuitive (mechanistic) definition of their
semantics. The basic building block for both of them
is the so-called ‘“guarded command,” a statement list
prefixed by a boolean expression: only when this
boolean expression is initially true, is the statement list
eligible for execution. The potential nondeterminacy
allows us to map otherwise (trivially) different programs
on the same program text, a circumstance that seems
largely responsible for the fact that programs can now
be derived in a manner more systematic than before.

In Section 3, after a prelude defining the notation,
a formal definition of the semantics of the two con-
structs is given, together with two theorems for each
of the constructs (without proof).

In Section 4, it is shown how, based upon the above,
a formal calculus for the derivation of programs can
be founded. We would like to stress that we do not
present “an algorithm’ for the derivation of programs:
we have used the term ““a calculus” for a formal dis-
cipline—a set of rules—such that, if applied successfully:
(1) it will have derived a correct program; and (2) it
will tell us that we have reached such a goal. (We use
the term as in “integral calculus.”)

45

https://dl.acm.org/doi/10.1145/360933.360975

Con

Predicate transtormer semantics

e Algorithmic approach to verity a while program

e Defines a predicate transtormer that produces the
weakest precondition for a pair of program/assertion

wp (P, B)

* Any Hoare triple {A} P {B} is provable if and only if the
predicate A = wp(P, B) holds.

* [he predicate is (recursively) defined on the cases of the
program syntax.

struction and Verification of Software, FCTUNL, © (uso reservado)

46

Predicate transformer semantics

{A} skip {A} wp(skip, A) = A

{A} P{B} {B}Q{C} wp(P;Q,C) = wp(P,wp(Q,C))
{A} P;Q {C}

(AL} 2 = E {A) wp(z := E, A) & A["/,]

{ANE} P{B} {AN-E}Q{B} wp(if E then P, else P»,DB) £
{A} if F then P else Q {B} E = wp(P;,B) N —=FE = wp(Ps, B)

Construction and Verification of Software, FCTUNL, © (uso reservado) 47

Example (again)

e (Consider the program
P2if (x>y)thenz:=xelsez:=vy
e \We (mechanically) check the triple

{true } P { z == max(x,y) }

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

48

Example (again)

e (Consider the program

P2Xx:=y,y:=2z z=X

We (mechanically) check the triple
{ Ply) &&Q(2) } P { P(2) & QlY) }

(here P and Q are any properties)

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

49

Cons

Algorithmic approach for lteration

wp(while E do P,B) =
INENI= wp(P,I))AN(-ENI= B)

truction and Verification of Software, DI - FCTUNL, © (uso reservado)

50

