Construction and

Verification of Software
2022 - 2023

MIEI - Integrated Master in Computer Science and Informatics
Consolidation block

Lecture 4 - Loop Invariants (cont.) and Sorting
Bernardo Toninho (btoninho@fct.unl.pt)
based on previous editions by Joao Seco and Luis Caires

N VA

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:btoninho@fct.unl.pt

Outline

e Loop Invariants (recap)

e Sorted Arrays

e Sorting algorithms

e Verification with bounded integers

* Abstract Data Types (intro)

Construction and Verification of Software, FCTUNL, © (uso reservado)

Part |
| oop Invariants

Loop Invariants

e Loop invariant approximate state assertions before the
loop, between iterations, and at the end of the loop.

method MaxArray(a:array<int>) returns (m:int)
requires @ < a.lLength

ensures forall k : int :: @ <= k < a.Length ==> alk] <=m
{
m := al0];
var 1 := 1;
while 1 < a.Length
invariant 1 <= i <= a.Length
invariant forall k : int :: @ <= k < 1 ==> al[k] <=m
{
if m < alil
{m:=alil; }
1 :=1+ 1;
I3
s

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example: BinarySearch

predicate sorted(a:array<char>, n:int)
requires @ <= n <= a.Length
reads a
{ forall i, j:: (0 <= i <3 <n) == alil <= aljl }

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example: BinarySearch

predicate sorted(a:array<char>, n:int)
requires @ <= n <= a.Length
reads a
{ forall i, j:: (0 <= i <3 <n) == alil <= aljl }

method BSearch(a:array<char>, n:int, value:char) returns (pos:int)
requires @ <= n <= a.lLength && sorted(a, n)
ensures ..
ensures ..

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example: BinarySearch

predicate sorted(a:array<char>, n:int)
requires @ <= n <= a.Length
reads a
{ forall i, j:: (0 <= i <3 <n) == alil <= aljl }

method BSearch(a:array<char>, n:int, value:char) returns (pos:int)
requires @ <= n <= a.lLength && sorted(a, n)

ensures @ <= pos ==> pos < n && a[pos] == value
ensures pos < @ ==> forall i :: (0<= i < n) ==> ali] != value
{
1 X m h == n
1 m | X h n
1 | x [m h n
L | xm| h n
I3

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example: Binary Search

predicate sorted(a:array<char>, n:int)
requires @ <= n <= a.lLength
reads a
{ forall 1, j:: (0 <=1 < J < n) == a[i1] <= a[7] }

method BSearch(a:array<char>, n:int, value:char) returns (pos:int)
requires @ <= n <= a.Length && sorted(a, n)

ensures @ <= pos ==> pos < h && a[pos] == value
ensures pos < @ ==> forall 1 :: (@<= 1 < n) ==> a[1] !'= value
{
var low, high := 0, n;
while low < high
decreases high - low
invariant 7777
invariant 7777
invariant 7777
{
var mid := low + Chigh-low) / 2;
1f a[mid] < value { low :=mid + 1; }
else 1f value < a[mid] { high := mid; }
else /* value == a[mid] */ { return mid; }
¥
return -1;
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example: Binary Search

predicate sorted(a:array<char>, n:int)
requires @ <= n <= a.lLength
reads a
{ forall i, j:: (@ <=1 < j < n) ==> a[i] <= a[j] }

method BSearch(a:array<char>, n:int, value:char) returns (pos:int)

requires @ <= n <= a.Length && sorted(a, n)

ensures @ <= pos ==> pos < h && a[pos] == value
ensures pos < @ ==> forall 1 :: (B<= 1 < n) ==> al[1i]
{
var low, high := 0, n;
while low < high
decreases high - low
invariant @ <= low <= high <= n
invariant forall 1 :: @ <=1 < n & 1 < low ==> a[1i]
invariant forall 1 :: @ <= 1 < n & high <= 1 ==> a[1]
{
var mid := low + Chigh-low) / 2;
1f a[mid] < value { low :=mid + 1; }
else 1f value < a[mid] { high := mid; }
else /* value == a[mid] */ { return mid; }
ks
return -1;
hy

Construction and Verification of Software, FCTUNL, © (uso reservado)

= value

= value
= value

Part ||
Sorting

Sorting — Rationale

e Sorting algorithms often iteratively traverse the
data structure gradually sorting its elements.

* The loop invariants capture the transient
status of the sorting algorithm.

* We illustrate that using selection sort.

Construction and Verification of Software, FCTUNL, © (uso reservado)

11

Selection Sort

Construction and Verification of Software, FCTUNL, © (uso reservado)

12

Selection Sort

e Some auxiliary predicates

predicate sorted(a:array<char>, n:int) 114|129 |3 |6
requires @ <= n <= a.lLength
reads a 1121149 (3|6

{ forall 1, jJ:: (0 <=1 < J <n) ==>ali] <= a[7] }

predicate partitioned(a:array<char>,1:1nt,n:int)
requires @ <= n <= a.lLength
reads a

{ forall k, 1 :: 0 <=k <1 <=1 < n == (a[k] <= a[l]) }

Construction and Verification of Software, FCTUNL, © (uso reservado) 13

Selection Sort

method selectionSort(a:array<int>)

{

var 1 := 0;
while 1 < a.Length
{
selectSmaller(a,1i);
1 = 1+1;
¥
¥
method selectSmaller(a:array<int>,1:1nt)
{
var jMin := 1;
var j := 1+1;
while (j < a.lLength)
{
if (alj]l < a[jMin]) {
jMin := J;
¥
J = J+1;
¥
1f (GM1in !'= 1) {
ali] , a[jMin] := a[jMin] , a[1];
¥
¥

Construction and Verification of Software, FCTUNL, © (uso reservado)

14

Selection Sort

method selectionSort(a:array<int>)
ensures sorted(a,a.Length)
modifies a

{
var 1 := 0;
while 1 < a.lLength
invariant @ <= 1 <= a.Length
invariant sorted(a,1i)
invariant partitioned(a,i,a.Length)
{
selectSmaller(a,1);
1 := 1+1;
ks
3

method selectSmaller(a:array<int>,1:1int)
requires @ <= 1 < a.lLength
requires sorted(a,1)
requires partitioned(a,i,a.Length)
modifies a
ensures sorted(a,i+1)
ensures partitioned(a,i+1,a.Length)

{ .}

Construction and Verification of Software, FCTUNL, © (uso reservado)

15

Selection Sort

method selectSmaller(a:array<int>,1:1nt)
requires @ <= 1 < a.Length
requires sorted(a,1)
requires partitioned(a,i,a.Length)
modifies a
ensures sorted(a,i+1)
ensures partitioned(a,i+l,a.Length)

{
var jMin := 1;
var j = 1+1;
while (J < a.Length)
invariant 1+1 <= j <= a.length
invariant 1 <= jMin < j
invariant forall k :: 1 <= k < J == a[jMin] <= a[k]
invariant sorted(a, 1)
invariant partitioned(a, 1, a.Length)
{
if Ca[j] < a[jMin]) {
jMin := 7J;
Iy
J 1= J+1;
¥
1f (GMin !'= 1) {
a[i] , a[jMin] := a[jMin] , a[i];
¥
Iy

Construction and Verification of Software, FCTUNL, © (uso reservado)

16

Exercise

e orderedlnsert

method insert(a:array<char>, 1:1nt, elem:char, n:int)
requires @ <= n < a.Length
requires sorted(a, n)
modifies a
ensures sorted(a, n+l)

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

17

Exercise
 orderedlnsert

method insert(a:array<char>, 1:1nt, elem:char, n:int)
requires @ <= n < a.Length
requires sorted(a, n)
modifies a
ensures sorted(a, n+l)

* Problem: Any method that maintains the order of the
elements and adds an extra one satisfies the
specification! (a related issue arises in the spec. of

sort from before)

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

18

Exercise

e orderedlnsert

method insert(a:array<char>, 1:1nt, elem:char, n:int)
requires @ <= n < a.Length
requires sorted(a, n)
modifies a
ensures sorted(a, n+l)
{
1f (n > 0)
{ aln] := a[n-1]; }

Construction and Verification of Software, DI - FCTUNL, © (uso reservado)

19

A better specification

A more precise specification is needed:
* Return the position of the inserted element.

e State that position is valid and contains inserted element.

method insert(a:array<int>, n:int, e:int) returns (pos:int)
requires @ <= n < a.lLength
requires sorted(a, n)
ensures sorted(a, n+l)
ensures @ <= pos <= n && a[pos] == e

Construction and Verification of Software, FCTUNL, © (uso reservado)

20

A better specification

A more precise specification is needed:
* Return the position of the inserted element.

e State that position is valid and contains inserted element.

method insert(a:array<int>, n:int, e:int) returns (pos:int)
requires @ <= n < a.lLength
requires sorted(a, n)
ensures sorted(a, n+l)

ensures @ <= pos <= n && a[pos] == e
modifies a

{
var i1 := 0;

while (1 < n)
invariant @ <= 1 <= n
invariant forall j :: @ <= J < 1 ==> a[j] == e
invariant sorted(a,1i)
{
a[i] := e;
1 = 1+1;
} .
pos := 1;
a[pos] := e;

Construction and Verification of Software, FCTUNL, © (uso reservado)

21

An even better specification

* A more precise specification is needed:

* Return the position of the inserted element.

e State that position is valid and contains inserted element.

* All positions up to pos stay unchanged.

* All positions beyond pos are shifted by one.

method insert(a:array<int>, n:int, e:int) returns (pos:int)
requires @ <= n < a.lLength
requires sorted(a, n)
ensures sorted(a, n+l)
ensures @ <= pos <= n && a[pos] == e
ensures forall k :: @ <= k < pos ==> a[k] == old(Ca[k])
ensures forall k :: pos < k <= n ==> a[k] == old(Ca[k-1])
modifies a

{ -}

Construction and Verification of Software, FCTUNL, © (uso reservado)

22

An even better specification

method insert(a:array<int>, n:int, e:int) returns (pos:int)
requires @ <= n < a.lLength
requires sorted(a, n)
ensures sorted(a, n+1)
ensures @ <= pos <= n && a[pos] == e
ensures forall k :: @ <= k < pos ==> a[k] == old(Ca[k])
ensures forall k :: pos < k <= n ==> a[k] == old(a[k-1])
modifies a

var i := n;

ifC n >0)

{ aln] := a[n-1]; }

while 0 < 1 && e < a[1-1]
invariant @ <= 1 <= n
invariant sorted(a, n+1)
invariant forall k :: 1 < k < n+l ==> e <= a[k]
invariant forall k :: @ <= k < 1 ==> al[k] == old(a[k])
invariant forall k :: 1 < k <= n ==> a[k] == old(a[k-1])

{
al[i] := a[1-1];
1 :=1 - 1;

}

ali] := e;

return 1i;

Construction and Verification of Software, FCTUNL, © (uso reservado)

Part [l
Verification with Bounded
Arithmetic

Verification and Arithmetic

* Until now all our proofs have assumed mathematical
iIntegers.

e Our reasoning is sound, provided the code that
executes using arbitrary precision integers.

* Check the code generated by Dafny!

 What it we want to use 32-bit or 64-bit integers?

* What do we know about our implementations??

e Qverflow?

 What happens? (Modulo arith., saturated arith., abrupt
termination. etc.)

Construction and Verification of Software, FCTUNL, © (uso reservado)

25

Verification with Machine Integers

 Goal: Prove that a program is safe with respect to
overflows.

e 32-bit signed integers in two-complement
representation: integers between -231 and 237-1.

* |f the mathematical result of an operation fits in the
range, that is the computed result.

o Otherwise, an overflow occurs:

* Behavior depends on language and environment.

* A program is safe wrt overflow it no overflow can occur.

Construction and Verification of Software, FCTUNL, © (uso reservado)

20

Verification with Machine Integers

Idea: Replace all arith. operations by methods with
preconditions.

X+y becomes int32_add(x,y), and so on:

method int3Z2_add(x:int,y:1int) returns (r:int)
requires -2_147_483_648 <= x+y <= 2_147_483_647
ensures r == Xx+y

{

return x+y;

}

* Not great: range constraints of integer must be added
explicitly everywhere...

Construction and Verification of Software, FCTUNL, © (uso reservado)

27

Verification with Machine Integers

Better Idea: Replace int with a refined type int32

newtype 1nt32 = x:int | -2_147_483_648 <= X <= 2_147_483_647

Dafny provides projection back to int

Can even replace operations with custom methods with
appropriate spec:

method 1nt3Z2_add(x:1int32,y:1nt32) returns (r:int32)
requires -2_147_483_648 <= (x as int + y as 1int) <= 2_147_483_647
ensures r == x+y

{

return Xx+y;

}

Construction and Verification of Software, FCTUNL, © (uso reservado)

28

Verification with Machine Integers

method BSearch(a:array<int>, n:int32, value:int) returns (pos:int32)
requires @ <= n as int <= a.lLength && sorted(a, n as int) &% a.lLength <= 2_147_483_647

ensures @ <= pos ==> pos < n &% a[pos] == value
ensures pos < @ ==> forall 1 :: (@<= 1 < n) == a[i] != value
{
var low:int32, high:int32 := 0, n;
while low < high
decreases high - low
invariant @ <= low <= high <= n
invariant forall i :: @ <= 1 < n & 1 < low ==> a[i] != value
invariant forall i :: @ <= 1 < n & high <= 1 ==> a[i] != value
{
var md := (highilow)/z;) result of operation might violate newtype constraint for 'int32' Verifier
if a[mid] < value { low :=mid + 1; }
else if value < a[mid] { high := mid; }
else /* value == a[mid] */ { return mid; }
}
return -1;
}

Construction and Verification of Software, FCTUNL, © (uso reservado)

29

Verification with Machine Integers

method BSearch(a:array<int>, n:int32, value:int) returns (pos:int32)
requires @ <= n as int <= a.Length && sorted(a, n as int) && a.lLength <= 2_147_483_647

ensures @ <= pos ==> pos < n && a[pos] == value
ensures pos < @ ==> forall 1 :: (B<= 1 < n) ==> a[i1] '= value
{
var low:int32, high:int32 := 0, n;
while low < high
decreases high - low
invariant @ <= low <= high <= n
invariant forall 1 :: @ <=1 < nh & 1 < low ==> a[1] !'= value
invariant forall 1 :: @ <=1 < n & high <= 1 ==> a[1] !'= value
{
var mid:int32 := low + Chigh-low)/2;
i1f a[mid] < value { low :=mid + 1; }
else if value < a[mid] { high := mid; }
else /* value == a[mid] */ { return mid; }
hy
return -1;
hy

Construction and Verification of Software, FCTUNL, © (uso reservado)

30

Verification with Machine Integers

function gcd(x:int,y:int) : int
requires y >=0
decreases y

{
1f y == 0 then x else gcd(y, x % y)

}

method euclid(u:1nt32, v:int32) returns (r:int32)
requires u >= 0 && v >= 0

ensures r as int == gcd(u as int,v as int)
{
ro.= uj;
var y = v;
while y > 0
invariant @ <=y <= v
invariant gcd(u as int,v as int) == gcd(r as int,y as 1int)
{
var tmp :=vy;
y :=r %vy;
ro:= tmp;
¥
by

Construction and Verification of Software, FCTUNL, © (uso reservado)

31

Cons

Verification with Machine Integers

- Caveat emptor: Reasoning with machine integers in this
way can be challenging to Dafny’s automation.

- What if we want to reason with overflow?

-+ Datny (and many related tools) support (unsigned) bit-
vectors.

-+ Dafny includes a family of types bvN, where N denotes
the bit vector length.

truction and Verification of Software, FCTUNL, © (uso reservado)

32

Verification with Bit-based integers

e Bit-vectors capture common “tricks™:

method multby2(a:bv32) returns (r:bv32)

ensures r == a*2

{
return a << 1;

Iy

method divby2(a:bv32) returns (r:bv32)
ensures r == a/2

{
return a >> 1;

¥

method multby3(a:bv32) returns (r:bv32)
ensures r == a*3

{
return (a << 1)+a;

Iy

 Not very easy to use in practice / not automation friendly.

e Verification using bit-vectors is ongoing research.

Construction and Verification of Software, FCTUNL, © (uso reservado)

33

Part |V
Abstract Data Types
(INtro)

Abstract Data Types (Liskov, 78)

e ADTs are the building blocks for software construction
— Consist of:
— A description of the data elements of the type
— A set of operations over the data elements of the ADT
— A software system is a composition of ADTs
— ADTs behave like regular types in a programming language

— Promotes modularity, encapsulation, information hiding, and
hence reuse, modifiability, and correctness.

Construction and Verification of Software, FCTUNL, © (uso reservado)

35

ADTs (Liskov & Zilles, 78)

PROGRAMMING WITH ABSTRACT DATA TYPES

Barbara Liskov
Massachusetts Institute of Technology
Project MAC
Cambridge, Massachusetts

Stephen Zilles
Cambridge Systems Group
IBM Systems Development Division
Cambridge, Massachusetts

Abstract

The motivation behind the work in very-high-level languages is to ease the programming task by pro-
viding the programmer with a language containing primitives or abstractions suitable to his problem area.
The programmer is then able to spend his effort in the right place; he concentrates on solving his problem,
and the resulting program will be more reliable as a result. Clearly, this is a worthwhile goal.

Unfortunately, it is very difficult for a designer to select in advance all the abstractions which the
users of his language might need. If a language is to be used at all, it is likely to be used to solve
problems which its designer did not envision, and for which the abstractions embedded in the language are
not sufficient.

This paper presents an approach which allows the set of built-in abstractions to be augmented when the
need for a new data abstraction is discovered. This approach to the handling of abstraction is an outgrowth
of work on designing a language for structured programming. Relevant aspects of this language are described,
and examples of the use and definitions of abstractions are given.

CJUIISI.IUULIUII dla veriiceduorl ol oullwdlie, r'U 1 UNL, \&» (USO 1Ee5€1vdUL) OO

Barbara Liskov (MIT)

BARBARA LISKOV
United States — 2008

For contributions to practical and theoretical foundations of
programming language and system design, especially related to data
abstraction, fault tolerance, and distributed computing.

Construction and Verification of Software, FCTUNL, © (uso reservado) 37

Abstract Data lype

Abstract types are intended to be very much
like the built-in types provided by a programming
language. The user of a built-in type, such as
integer or integer array, is only concerned with
creating objects of that type and then performing
operations on them. He is not (usually) concerned
with how the data objects are represented, and he
views the operations on the objects as indivisible
and atomic when in fact several machine instructions
may be required to perform them. In addition, he is
not (in general) permitted to decompose the objects.
Consider, for example, the built-~in type integer.

A programmer wants to declare objects of type
integer and to perform the usual arithmetic opera-
tions on them. He is usually not interested in an
integer object as a bit string, and cannot make use
of the format of the bits within a computer word.
Also, he would like the language to protect him
from foolishmisuses of types (e.g., adding an in-
teger to a character) either by treating such a
thing as an error (strong typing), or by some sort
of automatic type conversion.

Construction and Verification of Software, FCTUNL, © (uso reservado)

Abstract Data Type (External View)

o External View
— A public opague data type (that clients will use)
Note: opague means = behaves as a primitive type
— A set of operations on this data type

— Operations must neither reveal, nor allow a client to invalidate the
internal representation of the ADT

— pre and post conditions on these operations must be expressed
in terms of the abstract type (the only type known to the client)

— This is why ADTs promote reuse, modifiability, and correctness:
the developer can change the implementation anytime, without
breaking contracts

Construction and Verification of Software, FCTUNL, © (uso reservado)

39

Abstract Data Type (Internal View)

e |nternal View
— A representation data type (hidden from clients)

— A set of operations on the representation data type

» Key remarks:

— A programmer must define the operations in such a way that the
representation state (invisible to clients) is kept consistent with the
iIntended abstract state

— Pre-conditions on the public operations, expressed on the
abstract state, must map into pre-conditions expressed in terms of
the representation state

— The same for post-conditions

— At all times the concrete state must represent a well defined
abstract state (otherwise something is wrong!)

Construction and Verification of Software, FCTUNL, © (uso reservado) 40

Example (Positive Set ADT)

class PSet A
// an abstract set of positive numbers

method new(sz:int) A{..}
// initializes the set (e.g., Java constructor)

method add(v:int) {..}
// adds v to the set if space available

function size() : int {..}
// returns number of elems 1n the set

function contains(v:int) : bool {..}
// returns number of elems equal to v in the set

function maxsize() : int {..}
// returns max number of elems allowed in the set

Construction and Verification of Software, FCTUNL, © (uso reservado)

41

Technical ingredients in ADT design

e [he abstract state

— defines how client code sees the object

* [he representation type

— chosen by the programmer to implement the ADT internals. The
programmer is free to choose the implementation strategy (data-
structures, algorithms). This is done at construction time.

e [he concrete state

— In general, not all representation states are legal concrete states

— a concrete state Is a representation state that really represents
some well-defined abstract state

Construction and Verification of Software, FCTUNL, © (uso reservado) 42

Technical ingredients in ADT design

* [he representation invariant

— The representation invariant is a condition that restricts the
representation type to the set of (safe) concrete states

— It the ADT representation falls outside the rep invariant,
something is wrong (inconsistent representation state).

e [he abstraction function

— maps every concrete state into some abstract state

* [he operation pre- and post- conditions
— expressed for the representation type

— also expressed for the abstract type (for client code)

Construction and Verification of Software, FCTUNL, © (uso reservado)

43

Part V
Abstract Data Types (with
objects)

Bank Account ADT
e Abstract State

— the account balance (bal)

— bal is of type 1nt subject to the constraint (bal >= 0)

Construction and Verification of Software, FCTUNL, © (uso reservado)

45

Bank Account ADT

® Representation type
— an integer bal

— In this simple case the representation type is the same as the
abstract type

— the true "meaning” of the representation and abstract types are
different

— not all operations on integers are valid on account balances
(e.g., to multiply bank accounts)

Construction and Verification of Software, FCTUNL, © (uso reservado)

46

Bank Account ADT

® Representation type

— an integer bal

— In this simple case the representation type is the same as the
abstract type

— the true "meaning” of the representation and abstract types are
different

— not all operations on integers are valid on account balances
(e.g., to multiply bank accounts)

e Representation invariant
— (bal >= 0)

— this time, pretty simple

Construction and Verification of Software, FCTUNL, © (uso reservado)

47

Example (Account)

class Account {
var bal: 1int;

predicate RepInv()

// specifies the representation invariant
reads this
{

}

bal >= 0

Construction and Verification of Software, FCTUNL, © (uso reservado)

48

Example (Account)

class Account {
var bal: int:

predicate Valid()

// specifies the representation invariant
reads this
{

¥

bal >= 0

constructor()
ensures Valid()
{ bal := 0; }

Construction and Verification of Software, FCTUNL, © (uso reservado)

49

Example (Account)

class Account {
var bal: int;

// All operations must require the representation invariant
// ALl operations must ensure the representation invariant
method deposit(v:int)

modifies this;

requires Valid() && v >= 0

ensures Valid()
{ bal := bal + v; }

method withdraw(v:int)
modifies this
requires Valid() && v >= 0
ensures Valid()

{ if (bal>=v) { bal := bal - v; } }

Construction and Verification of Software, FCTUNL, © (uso reservado)

50

Example (Account)

class Account {
var bal: 1int;

function method getBal():int
reads this
{ bal }

method withdraw(v:int)
modifies this;
requires Valid() && @ <= v <= getBal()
ensures Valid()

{ bal := bal - v; }

Construction and Verification of Software, FCTUNL, © (uso reservado)

51

Set ADT

class ASet {
// an abstract Set of numbers

constructor(sz:int) {}
// initializes aset (e.g., Java constructor)

method add(v:int) {}
// adds v to aset if space available)

function size() : int
// returns number of elems 1n aset

function contains(v:int) : bool
// check if v belongs to set

function maxsize() : int
// returns max number of elems allowed 1n aset

Construction and Verification of Software, FCTUNL, © (uso reservado)

52

Set ADT
e Abstract State

— a set of positive integers aset

Construction and Verification of Software, FCTUNL, © (uso reservado)

53

Set ADT

® Representation type
— an array of integers store with sufficient large size

— an integer nelems counting the elements in store

Construction and Verification of Software, FCTUNL, © (uso reservado)

54

Set ADT

® Representation type

— an array of distinct integers store

— an integer nelems counting the elements in store

e Representation invariant
(store !'= null) &&
(@ <= nelems <= store.Length) &&

forall k :: (@<=k<nelements) ==> forall j::(k<j<nelements)

Construction and Verification of Software, FCTUNL, © (uso reservado)

==> b[k] != b[]]

55

Set ADT

® Representation type

— an array of distinct integers store

— an integer nelems counting the elements in store

e Representation invariant
(store !'= null) &&
(@ <= nelems <= store.length) &&

forall k :: (@<=k<nelements) ==> forall j::(k<j<nelements)

Construction and Verification of Software, FCTUNL, © (uso reservado)

==> b[k] != b[]]

56

Set ADT

® Representation type

— an array of distinct integers store

— an integer nelems counting the elements in store

e Representation invariant
(store !'= null) &&
(@ <= nelems <= store.length) &&

forall k :: (@<=k<nelements) ==> forall j::(k<j<nelements) ==> b[k] '= b[7]
e Abstraction mapping
— <nelems=n, STOre=[VO,V1,---Vstore.Length-1]> — {Vo,...,Vn-1}

— more later

Construction and Verification of Software, FCTUNL, © (uso reservado)

57

Set ADT

class ASet {

var a:array<int>;
var size:int;

constructor(SIZE:int)
requires SIZE > 0
ensures Valid()

{
a := new int[SIZE];
size := 0;

}

Construction and Verification of Software, FCTUNL, © (uso reservado)

58

Set ADT

class ASet {

var a:array<int>;
var size:int;

constructor(SIZE:int)
requires SIZE > 0,
ensures Valid()

{
a := new int[SIZE];
size := 0;

}

predicate Valid()
reads this,a;

{
-

Construction and Verification of Software, FCTUNL, © (uso reservado)

Set ADT

class ASet {

var a:array<int>;
var size:int;

predicate RepInv()
reads this,a
{
al=null &&
O < a.Length &&
0 <= size <= a.lLength &&
unique(a, 0, size)

Construction and Verification of Software, FCTUNL, © (uso reservado)

60

Set ADT

class ASet {

var a:array<int>;
var size:int;

predicate unique(b:array<int>, l:int, h:int)
reads b

requires b !'= null && 0<=1 <= h <= b.Length
{

}

forall k::(l<=k<h) ==> forall j::(k<j<h)

Construction and Verification of Software, FCTUNL, © (uso reservado)

==> b [k]

= b[j]

61

Set ADT

class ASet {

var a:array<int>;
var size:int;

function method count():int
reads this,a;

requires Valid()

{ size }

function method maxsize():int
reads this,a;

requires Valid()

{ a.Length }

method add(x:int)

modifies this, a;

requires Valid() && count() < maxsize()
ensures Valid()

{
var f:int := find(x);
if (f < 0) {
alsize] := x;
size := size + 1;
¥

}

Construction and Verification of Software, FCTUNL, © (uso reservado)

62

Set ADT

class ASet {

var a:array<int>;
var size:int:

method find(x:int) returns (r:int)
requires Valid();
ensures -1 <= r < size;

ensures r < @ ==> forall j::(0<=j<size) ==> x !'= aljl;
ensures r >=0 ==> alr] == x;
{

var 1:int := 0;

while (i<size)
decreases size-1
lnvarliant O<=i<=size;

invariant forall j::(0<=j<i) ==> x !'= aljl;
{
if (alil==x) { return i; }
1 =1+ 1;
¥
return -1;

Construction and Verification of Software, FCTUNL, © (uso reservado)

63

Set ADT

class ASet {

var a:array<int>;
var size:int;

method contains(v:int) returns (f:bool)
requires Valid()
ensures f <==> exists j::(0<=j<size) && v == aljl;
ensures Valid()
{
var p:int := find(v);
f = (p >= 0);
I3
I3

Construction and Verification of Software, FCTUNL, © (uso reservado)

Next week
e More on ADTs

e Soundness and Abstraction mapping

®* Framing

Construction and Verification of Software, FCTUNL, © (uso reservado)

65

