
1

Mestrado Integrado em Engenharia Informática
Departamento de Informática
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

Interpretação e Compilação de
Linguagens (de Programação)

21/22
Luís Caires (http://ctp.di.fct.unl.pt/~lcaires/)

2

Naming

Names are the first tool one uses to introduce abstraction in a programming
language (and any language in fact!).
Names allows us to refer to complex things in a concise way!
A name / identifier used in some expression or program always denotes a value
previously defined.
Fundamentally, the meaning of a program fragment with names is obtained by
replacing each name with the value assigned to it in its definition.

• Literals versus names
• Binding (declaration) of names
• Scope of a definition
• Occurrences of names (free, bound, binding)
• Open and closed code fragments
• Fundamental construct def id=E in E end.
• Language with definitions: CALCI.
• Interpreter using substitution
• Interpreter using environments

3

Naming Syntax

• Literals
– Denote fixed values in every context of occurrence

– Java: true, false, “foo”, float

– OCAML: true, false, []

– C: 1, 1.0, 0xFF, “hello”, int

• Identifiers
– Denote values that depend of the context of occurrence

– In programming languages, identifiers are names for defined constants, variables,
functions, methods, classes, modules, types, etc…

– Java: x2, y, Count, System.out

– C: printf

4

Binding and Scope

• The association between an identifier and the value it denotes is called a
binding.

• A binding between an identifier to the value associated is always
established in a well-defined syntactical context (some zone of the
program text) and is created by a program construct called a declaration

• The syntactical context (zone of the program text) in which the binding
is established is called the scope of the binding / declaration.

5

Binding and Scope

• The identifier x denotes (the address of) a memory cell

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j+y;
 z += x;
 }
 return z;
}

6

Binding and Scope

• The identifier x denotes (the address of) a memory cell

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j+y;
 z += x;
 }
 return z;
}

scope of the binding

7

Binding and Scope

• The identifier j denotes (the address of) a memory cell

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j+y;
 z += x;
 }
 return z;
}

8

Binding and Scope

• The identifier j denotes (the address of) a memory cell

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j+y;
 z += x;
 }
 return z;
}

scope of the binding

9

Parts of a Scope

• The binding of an identifier X to its denotation (value, memory address,
etc) always involve the following ingredients:
• A (single!) binding occurrence of the identifier X

in general, it corresponds to the part of the program text that initialises the
binding, where the binding becomes active

• The scope of the binding
This is the part (zone of the program text) in which the binding introduced by
the binding occurrence is active

• Several bound occurrences
All occurrences of X, distinct from the binding occurrence, that lie inside the
scope

10

Binding and Bound Occurrences

• Occurrences of name x

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j+y;
 z += x;
 }
 return z;
}

Binding occurrences

11

Binding and Bound Occurrences

• Occurrences of name x

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j+y;
 z += x;
 }
 return z;
}

bound occurrences

12

Bound Occurrences

• For each bound occurrence there is one and only one binding occurrence
(de one occurring in the declaration)

int f(int x)
{
 int z = x+K;
 for(int j=0; j<10; j++){
 int x=j+y;
 z += x;
 }
 return z;
}

13

Bound Occurrences

• For each bound occurrence there is one and only one binding occurrence
(de one occurring in the declaration)

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j+y;
 z += x;
 }
 return z;
}

14

Bound Occurrences

• For each bound occurrence there is one and only one binding occurrence
(de one occurring in the declaration)

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j+y;
 z += x;
 }
 return z;
}

15

Bound Occurrences

• For each bound occurrence there is one and only one binding occurrence
(de one occurring in the declaration)

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j+y;
 z += x;
 }
 return z;
}

16

Bound Occurrences

• For each bound occurrence there is one and only one binding occurrence
(de one occurring in the declaration)

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j+y;
 z += x;
 }
 return z;
}

17

Free occurrences

• Any occurrence of an identifier that is not binding nor bound is said free

• Neste exemplo, apenas y tem uma ocorrência livre

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j+y;
 z += x;
 }
 return z;
}

18

Open and Closed fragments

• A program fragment is said to be open if it contains free occurrences of
identifiers

• Otherwise, a program fragment is said to be closed that is, if it does not
contain free occurrences of identifiers

• Open fragments (examples):

void f(int x)
{ int i;
 for(int i=0;i<TEN;i++) x+=i;
 printf(“%d\n”,x);
}

let x=1 in (f x)

C

OCaml

19

Open and Closed fragments

• A program fragment is said to be open if it contains free occurrences of
identifiers

• Otherwise, a program fragment is said to be closed that is, if it does
mot contain free occurrences of identifiere

• Open fragments (examples):

void f(int x)
{ int i;
 for(int i=0;i<TEN;i++) x+=i;
 printf(“%d\n”,x);
}

let x=1 in (f x)

C

OCaml

free occurrence

free occurrence

20

Semantics of open fragments

• The meaning of a program fragment can only be computed if the value of
evert free identifier is known.

• The definition of a compositional semantics for languages with declared
identifiers has to consider open fragments.
For instance, the C block

is closed but contains open fragments (e.g., x+2).

{ int x = 2 ; x = x+2 }

• In general a complete program (closed fragment) contains open fragments
(inside declarations).

21

Environment

• A closed program necessarily provides bindings all free ocorrentes that
inside it, (they must appear in the scope of declarations!).

Given any fragment E inside a program P, we call environment of E in P
to the set of all bindings in which scope E occurs.

22

Environment (Quiz)

• What is the environment of subexpression “x+1”?

• { f → “fun?”, x → “var?” , z → “var?” }

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j;
 z+=x;
 }
 return z;
}

23

Environment (Quiz)

• What is the environment of subexpression “x+1”?

• { f → “fun?”, x → “var?” , z → “var?” }

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j;
 z+=x;
 }
 return z;
}

x -> par(0)

24

Environment (Quiz)

• What is the environment of subexpression “z+=x”?

• { f → “fun?”, z → “var?’’ , j → “var?’’, x → “var?’’ }

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j;
 z+=x;
 }
 return z;
}

25

Environment (Quiz)

• What is the environment of subexpression “z+=x”?

• { f → “fun?”, z → “var?’’ , j → “var?’’, x → “var?’’ }

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j;
 z+=x;
 }
 return z;
}

x -> par(0)
z -> loc(0)

26

Environment (Quiz)

• What is the environment of subexpression “return z”?

• { f → “fun?”, x → “var?”, z → “var?” }

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j;
 z+=x;
 }
 return z;
}

27

Environment (Quiz)

• What is the environment of subexpression “return z”?

• { f → “fun?”, x → “var?”, z → “var?” }

int f(int x)
{
 int z = x+1;
 for(int j=0; j<10; j++){
 int x=j;
 z+=x;
 }
 return z;
}

z -> loc(0)

28

The language CALCI

• CALCI extends our basic expression language CALC with general
declarations def:

In a def expression the first occurrence of Id is binding, with scope
Exp2

• A CALCI program is a closed expression of CALCI.

Example:

def Id = Exp1 in Exp2 end

def x=2 in def y=x+2 in (x+y) end end

29

The language CALCI (abstract syntax)

• CALCI AST constructors: num, add, mul, div, sub, id, def

num: Integer → CALCI

id: String → CALCI

add: CALCI × CALCI → CALCI

mul: CALCI × CALCI → CALCI

div: CALCI × CALCI → CALCI

sub: CALCI × CALCI → CALCI

def: String × CALCI × CALCI → CALCI

30

The language CALCI (concrete syntax)

• CALCI AST constructors: num, add, mul, div, sub, id, def

def x = 2 in

 (def x = x+2

 in

 x + x

 end) + x

end

31

The language CALCI (concrete syntax)

• AST CALCI com os construtores: num, add, mul, div, sub, id, def

def x = 2 in

 def y = def z = x+2 in z+z end

 in

 y + def y = 2+x in y end

 end

end

32

Semantics of CALCI (first definition)

The semantics of CALCI may be defined by giving a computable function I
which assigns a definite meaning to each program (fragment)

 I : CALC → Integer

CALC = set of all programs (closed)
DENOT = set of all meanings (denotations)

33

CALC Interpreter (evaluation map)

• Algorithm eval(E) that computes the denotation (integer
value) of any CALCI expression:

eval : CALC → Integer

Fundamentally, the meaning of a program with names is always obtained
by replacing each name with the value assigned to it in its definition.

eval(num(n)) ≜ n

eval(add(E1,E2)) ≜ eval(E1) + eval(E2)

eval(mul(E1,E2)) ≜ eval(E1) * eval(E2)

 …

eval(def(s, E1, E2)) ≜ { V = eval(E1);
 G = substv(s, E2,V); eval(G); }

34

The substitution function

substv(s, E, V)

Computes the expression (AST) that results from replacing in program
(AST) E all free occurrences of identifier s by value V.

Examples (what does substv do?)

 subst(s, s+s+2, 4) = 4+4+2

 subst(y, def x=y in def y=2 in x+y, 2) =
 def x=2 in def y=2 in x+y

35

Definition of Substv function (on ASTs)

substv(s, num(n), V) ≜ num(n);

substv(s, id(s), V) ≜ V;

substv(s, add(E1, E2),F) ≜ add(substv(s, E1, V), substv(s, E2 , V));

…

substv(s, def(s’, E1, E2), V) ≜ if s = s’
 { G = substv(s, E1, V);
 def(s, G, E2); }
 else
 { G = substv(s, E1, V);
 def(s’, G, substv(s, E2, V)); }

36

CALC Interpreter (evaluation map)

• Algorithm eval(E) that computes the denotation (integer
value) of any CALCI expression:

eval : CALC → Integer

• Note: we don’t need to define the case eval(id(s)). Why ?

eval(num(n)) ≜ n

eval(add(E1,E2)) ≜ eval(E1) + eval(E2)

eval(mul(E1,E2)) ≜ eval(E1) * eval(E2)

 …

eval(def(s, E1, E2)) ≜ { V = eval(E1);
 G = substv(s, E2,V); eval(G); }

37

Semantics of CALCI (better definition)

• The substitution-based semantics of CALCI is very simple and intuitive
from the perspective of specification because it is very simple, and
conforms to the essential meaning of names.

eval : CALCI → Integer

• However, it is not efficient, requires runtime manipulation of ASTs and
does not scale well for compilation.

• Using a notion of runtime environment (or spaggetti stack) the effect of
explicit syntactical substitution can be performed in a lazy way.

38

Semantics of CALCI (better definition)

• Algorithm eval() that computes the denotation (integer
value) of any open CALCI expression:

eval : CALCI × ENV → Integer
CALCI = open programs

ENV = environments

Integer = meanings (denotations)

39

The Environment as an ADT

• In practice, it is convenient to implement environments using a
mutable stack-like data structure called a “spaghetti stack”.

• NOTE: In block structures languages (eg., in all “decent” modern
languages) the addition and remotion of biddings between
identifiers and values follows a strict stack LIFO discipline.

• An environment stores all bindings relative to the current scope
and all involving scopes in frames.

• From any environment state one may create a new “child” frame,
corresponding to a new nested scope.

• Each frame links to the ancestor frame using a reference.

40

The Environment as an ADT

• Environment operations:

– Pushes into the environment a new frame, where new bindings will be stored.

– A given identifier can only be bound once in a given frame, but may be bound in
different frames (to possibly different values).

– returns the father environment (pops off top frame).

– Adds a new binding for identifier id to the value val in the top frame of the
environment (if id is not bound there yet).

– Returns the value associated to id in the environment, as defined by the innermost
binding (the binding in the topmost frame that binds id).

– In practice, Find searches for id from top to bottom following the stack frame
chain, from “most recent” up, so that the appropriate scoping is respected.

void assoc(String id, Value val)

Value Find(String id)

Environ BeginScope()

Environ EndScope()

41

Environment in action

env = new Environment(); outer scopes

inner scope
top of environment

42

Environment in action

env = new Environment();

env.Assoc(“x”, 2);
“x” ➔ 2

outer scopes

inner scope
top of environment

43

Environment in action

env = new Environment();

env.Assoc(“x”, 2);

val = env.Find(“x”); // returns 2

val = env.Find(“y”); // raises “Not declared”

“x” ➔ 2

outer scopes

inner scope
top of environment

44

Environment in action

env = new Environment();

env.Assoc(“x”, 2);

val = env.Find(“x”); // returns 2

val = env.Find(“y”); // raises “Not declared”

env = env.BeginScope();

“x” ➔ 2

outer scopes

inner scope
top of environment

45

Environment in action

env = new Environment();

env.Assoc(“x”, 2);

val = env.Find(“x”); // returns 2

val = env.Find(“y”); // raises “Not declared”

env = env.BeginScope();

env.Assoc(“y”, 3);

“x” ➔ 2

“y” ➔ 3

outer scopes

inner scope
top of environment

46

Environment in action

env = new Environment();

env.Assoc(“x”, 2);

val = env.Find(“x”); // returns 2

val = env.Find(“y”); // raises “Not declared”

env = env.BeginScope();

env.Assoc(“y”, 3);

env.Assoc(“x”, 4);

“x” ➔ 2

“y” ➔ 3

outer scopes

inner scope
top of environment

“x” ➔ 4

47

Environment in action

env = new Environment();

env.Assoc(“x”, 2);

val = env.Find(“x”); // returns 2

val = env.Find(“y”); // raises “Not declared”

env = env.BeginScope();

env.Assoc(“y”, 3);

env.Assoc(“x”, 4);

val = env.Find(“y”); // returns 3

val = env.Find(“x”); // returns 4

“x” ➔ 2

“y” ➔ 3 “x” ➔ 4

outer scopes

inner scope
top of environment

48

Environment in action

env = new Environment();

env.Assoc(“x”, 2);

val = env.Find(“x”); // returns 2

val = env.Find(“y”); // raises “Not declared”

env = env.BeginScope();

env.Assoc(“y”, 3);

env.Assoc(“x”, 4);

env.Assoc(“y”, 0); // raises “Declared twice

val = env.Find(“y”); // returne 3

val = env.Find(“x”); // returns 4

env=env.EndScope()

val = env.Find(“x”) // returns 2

“x” ➔ 2

outer scopes

inner scope
top of environment

49

CALC Interpreter (environment based)

• Algorithm eval() that computes the denotation (integer
value) of any open CALCI expression:

eval : CALCI × ENV → Integer

• Note: Case of id(s) implemented by lookup of the value of
s in the current environment

eval(num(n) , env) ≜ n

eval(id(s) , env) ≜ env.Find(s)

eval(add(E1,E2) , env) ≜ eval(E1, env) + eval(E2, env)

…

eval(def(s, E1, E2), env) ≜ [v1 = eval(E1, env);
 env = env.BeginScope();
 env = env.Assoc(s, v1);
 val = eval(E2, env);
 env = env.EndScope();
 return val]

def	x	=	1	in	
		def	y	=	x+x	in	x	+	y	end	end;;	

def	x	=	2	
							y	=	x+2	in	
def	z	=	3	in	
		def	y	=	x+1	in	
				x	+	y	+	z	end	end	end;;	

def	x	=	2	in	
		def	y	=	def	x	=	x+1	in	x+x	end	
		in	x	*	y	end	end;;	

Sample execution (environment actions)

null			x	->	2	|	y	->	4

e

def	x	=	1	in	
		def	y	=	x+x	in	x	+	y	end	end;;	

def	x	=	2	
							y	=	x+2	in	
def	z	=	3	in	
		def	y	=	x+1	in	
				x	+	y	+	z	end	end	end;;	

def	x	=	2	in	
		def	y	=	def	x	=	x+1	in	x+x	end	
		in	x	*	y	end	end;;	

Sample execution (environment actions)

null			x	->	2	|	y	->	4

										z	->	3

e

def	x	=	1	in	
		def	y	=	x+x	in	x	+	y	end	end;;	

def	x	=	2	
							y	=	x+2	in	
def	z	=	3	in	
		def	y	=	x+1	in	
				x	+	y	+	z	end	end	end;;	

def	x	=	2	in	
		def	y	=	def	x	=	x+1	in	x+x	end	
		in	x	*	y	end	end;;	

Sample execution (environment actions)

null			x	->	2	|	y	->	4

										z	->	3

e										y	->	3

e

def	x	=	1	in	
		def	y	=	x+x	in	x	+	y	end	end;;	

def	x	=	2	
							y	=	x+2	in	
def	z	=	3	in	
		def	y	=	x+1	in	
				x	+	y	+	z	end	end	end;;	

def	x	=	2	in	
		def	y	=	def	x	=	x+1	in	x+x	end	
		in	x	*	y	end	end;;	

Sample execution (environment actions)

null			x	->	2	|	y	->	4

										z	->	3

e										y	->	3

e

def	x	=	1	in	
		def	y	=	x+x	in	x	+	y	end	end;;	

def	x	=	2	
							y	=	x+2	in	
def	z	=	3	in	
		def	y	=	x+1	in	
				x	+	y	+	z	end	end	end;;	

def	x	=	2	in	
		def	y	=	def	x	=	x+1	in	x+x	end	
		in	x	*	y	end	end;;	

Sample execution (environment actions)

null			x	->	2	|	y	->	4

										z	->	3

e										y	->	3

e

def	x	=	1	in	
		def	y	=	x+x	in	x	+	y	end	end;;	

def	x	=	2	
							y	=	x+2	in	
def	z	=	3	in	
		def	y	=	x+1	in	
				x	+	y	+	z	end	end	end;;	

def	x	=	2	in	
		def	y	=	def	x	=	x+1	in	x+x	end	
		in	x	*	y	end	end;;	

Sample execution (environment actions)

null			x	->	2	|	y	->	4

										z	->	3

e

def	x	=	1	in	
		def	y	=	x+x	in	x	+	y	end	end;;	

def	x	=	2	
							y	=	x+2	in	
def	z	=	3	in	
		def	y	=	x+1	in	
				x	+	y	+	z	end	end	end;;	

def	x	=	2	in	
		def	y	=	def	x	=	x+1	in	x+x	end	
		in	x	*	y	end	end;;	

Sample execution (environment actions)

null			x	->	2	|	y	->	4

e

def	x	=	1	in	
		def	y	=	x+x	in	x	+	y	end	end;;	

def	x	=	2	
							y	=	x+2	in	
def	z	=	3	in	
		def	y	=	x+1	in	
				x	+	y	+	z	end	end	end;;	

def	x	=	2	in	
		def	y	=	def	x	=	x+1	in	x+x	end	
		in	x	*	y	end	end;;	

Sample execution (environment actions)

def	x	=	1	in	
		def	y	=	x+x	in	x	+	y	end	end;;	

def	x	=	2	
							y	=	x+2	in	
def	z	=	3	in	
		def	y	=	x+1	in	
				x	+	y	+	z	end	end	end;;	

def	x	=	2	in	
		def	y	=	def	x	=	x+1	in	x+x	end	
		in	x	*	y	end	end;;	

Sample execution (environment actions)

59

Mestrado Integrado em Engenharia Informática
Departamento de Informática
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

Interpretação e Compilação de
Linguagens (de Programação)

21/22
Luís Caires (http://ctp.di.fct.unl.pt/~lcaires/)

