
SOFTWARE
ENGINEERING

Design Patterns

The KAOS approach (cont.)

Tiago
Realce

Design patterns

Chapter 7 Design and Implementation 2

Design patterns

■ A design pattern is a way of

reusing abstract knowledge

about a problem and its solution.

■ A pattern is a description of the

problem and the essence of its

solution.

■ It should be sufficiently abstract

to be reused in different settings.

■ Pattern descriptions usually make

use of object-oriented

characteristics such as

inheritance and polymorphism.

3

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Patterns

■ Patterns and Pattern

Languages are ways to describe

best practices, good designs,

and capture experience in a

way that it is possible for others

to reuse this experience.

4

Pattern
elements

5

Name A meaningful pattern identifier.

Problem description.

Solution description.
Not a concrete design but a template
for a design solution that can be
instantiated in different ways.

Consequences The results and trade-offs of applying
the pattern.

The Observer pattern

■ Name

– Observer.

■ Description

– Separates the display of object state from the object itself.

■ Problem description

– Used when multiple displays of state are needed.

■ Solution description

– See slide with UML description.

■ Consequences

– Optimisations to enhance display performance are
impractical.

6

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Multiple displays using the
Observer pattern

7

The Observer pattern (1)

Pattern

name

Observer

Description Separates the display of the state of an object from the object itself and

allows alternative displays to be provided. When the object state

changes, all displays are automatically notified and updated to reflect the

change.

Problem

description

In many situations, you have to provide multiple displays of state

information, such as a graphical display and a tabular display. Not all of

these may be known when the information is specified. All alternative

presentations should support interaction and, when the state is changed,

all displays must be updated.

This pattern may be used in all situations where more than one

display format for state information is required and where it is not

necessary for the object that maintains the state information to know

about the specific display formats used.

8

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

The Observer pattern (2)

Pattern name Observer

Solution

description

This involves two abstract objects, Subject and Observer, and two concrete

objects, ConcreteSubject and ConcreteObject, which inherit the attributes of the

related abstract objects. The abstract objects include general operations that are

applicable in all situations. The state to be displayed is maintained in

ConcreteSubject, which inherits operations from Subject allowing it to add and

remove Observers (each observer corresponds to a display) and to issue a

notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and

implements the Update() interface of Observer that allows these copies to be kept

in step. The ConcreteObserver automatically displays the state and reflects

changes whenever the state is updated.

Consequences The subject only knows the abstract Observer and does not know details of the

concrete class. Therefore there is minimal coupling between these objects.

Because of this lack of knowledge, optimizations that enhance display

performance are impractical. Changes to the subject may cause a set of linked

updates to observers to be generated, some of which may not be necessary.

9

Tiago
Realce

Tiago
Realce
não é concreteObject, é concreteObserver

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

A UML model of the Observer
pattern

10

Subject Observer

Attach (Observer)

Detach (Observer)

Notify ()

Update ()

ConcreteSubject

GetState ()

subjectState

ConcreteObserver

Update ()

observerState

observerState =
 sub ject -> GetState ()

return subjectState

for all o in observers
 o -> Update ()

Façade pattern

■ The facade pattern is typically used when

– a simple interface is required to access a complex system,

– a system is very complex or difficult to understand,

– an entry point is needed to each level of layered software, or

– the abstractions and implementations of a subsystem are tightly coupled.

04/04/2022 Chapter 6 Architectural Design 11

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Composite pattern

■ What problems can the Composite design pattern solve?

– A part-whole hierarchy should be represented so that

clients can treat part and whole objects uniformly.

– A part-whole hierarchy should be represented as tree

structure.

04/04/2022 12

Tiago
Realce

Tiago
Realce

Goal Model and Patterns

■ Reqs can be obtained through interviews or docs. Or

with the help of patterns

■ Requirements patterns

– An efficient way is to reuse patterns

■ KAOS consists of modelling generic patterns of reqs.

– They are progressively built

13

Generic Goal Pattern

14

Refinement

Non-functional requirements

RE'2013 15

Performance

16

Example: TV+Phone Package

Concurrency

17

Thread safe: Implementation is guaranteed to be free of race conditions (when an application depends on the

sequence or timing of processes or threads for it to operate properly)when accessed by multiple threads

simultaneously.

Availability

18
Architecture

designer

Generic Pattern: Expectations and
Domain Properties

19

Expectation

Domain properties

Tiago
Realce

Application of the pattern to the elevator
system

20

Tiago
Realce

Generic NFR Goal for a Safe System

21

HOW ?
WHY ?

Tiago
Realce

22

System protected against fire

23

System protected against fire

24

Emergency stop available

25

System protected against
power shortage

26

Concrete model for NFR Safety: Elevator
System protected against power failure

27

Efficient elevator system

28

Tiago
Realce

29

No move in overweight
conditions

30

Tiago
Realce

■ Do not confuse ...

– goal ...

– operation ...

Goal  service from functional model (e.g. use case)

– Services operationalize functional, leaf goals in refinement graph

• a goal is often operationalized through multiple operations

• an operation often operationalizes multiple goals

– Soft goals are often not operationalized in functional model but used to

select among alternatives

Building goal models: bad smells

DoorsOpen
OnlyIf TrainStopped

CopyBorrowed
IfAvailable

Open
DoorsBorrowCopy

N

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

■ Semantic difference

– Behavioral goals constrain entire sequences of state transitions

– Operations constrain single state transitions

■ Tip: use past participle for goal name

(state to be reached/maintained, quantity to be reduced/increased, ...)

use infinitive for operation name

(action to reach/maintain that state)

Behavioral goals vs. operationsN

BorrowCopy

Requested

Unavailable …… … Requested
Available

… Borrowed

Achieve [CopyBorrowedIfAvailable]

Requested

Available
Borrowed

Tiago
Realce

Tiago
Realce

Tiago
Realce

■ Do not confuse ...

– OR-refinement ...

– AND-refinement by case ...

cf. case analysis:

(Case1 or Case2)  X equiv (Case1  X) and (Case2  X)

OR-refinement introduces alternative systems to reach parent goal

AND-refinement by cases introduces complementary, conjoined subgoals

within same system

Building goal models: bad smells (2)

Extensive
Coverage

Effective
BookSupply E-bookAccess

physLib E-Lib

BookRequestSatisfied

CopyBorrowed
If Available

CopyDueSoon
If Not Available

N

Tiago
Realce

Tiago
Realce

Tiago
Realce

■ Avoid ambiguities in goal specification & interpretation ...

– a precise & complete goal definition is essential

– grounded on shared system phenomena, and agreed upon by all

stakeholders

BookRequestSatisfied

CopyDueSoon
WhenNotAvailable

Def A book without any

copy available for loan

shall have a copy available

within 15 days for the

requesting borrower

WorstCaseStopping
DistanceMaintained

Def A train shall never get

so close to a train in front

so that if the train stops

suddenly (e.g., derailment)

the next train would hit it

Building goal models: bad smells N

Tiago
Realce

Responsibilities of an agent

35

Tiago
Realce

Responsibilities of elevator controller

36

Tiago
Realce

Conflicting goals

 When it is not possible to completely satisfy two
goals simultaneously
 Performance goals may conflict with safety goals
 Information goals may conflict with security and privacy

goals

 Dealing with conflicts (or more generally, with
obstacles) allows
 to build a more complete requirements document and
 To build a more robust system

 Obstacles prevent goals from being achieved
 Defensive approach

38

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Conflict management

When conflicts are detected:

Negotiation to conflict
resolution

Select alternatives or

Re-evaluate the priorities or

Revise requirements

39

Tiago
Realce

Tiago
Realce

Conflict Identification: Generic goal
for economic aspects of a system

40

41

Capturing potential conflicts
among goals

Avoid [TrainCollisions]

SafeTransportation

FastJourney DoorsClosed
BetweenStations

SignalPromptly
SetToGo

SpeedBelow

BlockLimit

Avoid [TrainsOn

 SameBlock]

SignalSafely
KeptToStop

… … …Evacuation

WhenAlarm

DoorsOpenWhen

Alarm&Stopped

RapidTransportation

 potential conflict

FastRunToNextBlock

If GoSignal

TrainStoppedAtBlockEntry

If StopSignal

Remember the elevator system …

43

Alternatives

44

Adding Qualitative goals

■ What happen if we add:

– Robust and reliable elevator system

– Cheap elevator system

– Efficient elevator system

■ Which conflicts are identified here?

45

Tiago
Realce

Tiago
Realce

Analysis of the button based interface
with NF goals

46

Elevator called with selected alternatives

47

What are obstacles ?

 Motivation: goals in refinement graph are often too ideal, likely

to be violated under abnormal conditions

(unintentional or intentional agent behaviors)

 Obstacle = condition on system for violation of

corresponding assertion (generally a goal)

• {O, Dom } |= not G obstruction

e.g. G: TrainStoppedAtBlockSignal If StopSignal

Dom: If TrainStopsAtStopSignal then DriverResponsive

O: DriverUnresponsive

 For behavioral goal: existential property capturing

unadmissible behavior (negative scenario)

Tiago
Realce

Tiago
Realce

Obstacle categories for heuristic

identification
Correspond to goal categories & their refinement ...

■ Hazard obstacles obstruct Safety goals

■ Threat obstacles obstruct Security goals

– Disclosure, Corruption, DenialOfService, ...

■ Inaccuracy obstacles obstruct Accuracy goals

■ Misinformation obstacles obstruct Information goals

– NonInformation, WrongInformation, TooLateInformation, ...

■ Dissatisfaction obstacles obstruct Satisfaction goals

– NonSatisfaction, PartialSatisfaction, TooLateSatisfaction, ...

■ Unusability obstacles obstruct Usability goals

■ ...
Usability Convenience

Goal

Functional goal Non-functional goal

Quality of service Compliance Architectural Development

Confidentiality Integrity Availability

DistributionInstallationSafety Security PerformanceReliability MaintainabilityCost

Time Space

Deadline Variability

Software

interoperability

Interface

User

interaction

Device

interaction

Satisfaction Information Stim-Response

Accuracy

Cost

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Risk analysis can be anchored on goal models

Obstructions propagate bottom-up

in goal AND-refinement trees
■ Cf. De Morgan’s law: not (G1 and G2) equivalent to not G1 or not G2

=> Severity of consequences of an obstacle can be assessed

in terms of higher-level goals obstructed

G

propagated

obstruction

G1 G2 not G1 not G2

 not G

Tiago
Realce

Tiago
Realce

Annotating obstacle diagrams

Obstacle DriverUnresponsive

Def Situation of a train driver failing to react to a command

and take appropriate action according to that command

[FormalSpec ... in temporal logic for analysis, not in this chapter ...]

[Category Hazard]

[Likelihood likely]

[Criticality catastrophic]

DriverUnresponsive

precise definition

features

annotation

Obstacle analysis for

increased system robustness

■ Anticipate obstacles ...

 more realistic goals,

new goals as countermeasures to abnormal conditions

 more complete, realistic goal model

■ Obstacle analysis:

For selected goals in the goal model ...

– identify as many obstacles to it as possible;

– assess their likelihood & severity;

– resolve them according to likelihood & severity

=> new goals as countermeasures in the goal model

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Obstacle analysis and goal model

elaboration are intertwined
Goal model
elaboration

data dependency

Obstacle
identification

Obstacle
assessment

Obstacle
resolution

■ Goal-obstacle analysis loop terminates when remaining obstacles can be

tolerated

– unlikely or acceptable consequences

■ Which goals to consider in the goal model?

– leafgoals (requirements or expectations): easier to refine what is wanted

than what is not wanted (+ up-propagation in goal model)

– based on annotated Priority & Category (Hazard, Security, ...)

Tiago
Realce

Tiago
Realce

Tiago
Realce

Obstacles

55

Obstacles

56

Obstruction Link

Resolution Link

Robust and reliable elevator
system

57

Exercise

■ Mobilise Ambulance at incident in time

■ Obstacle: Mobilise Ambulance NOT at incident in time

58

Obstacle diagrams as AND/OR refinement trees (2)

MobilizedAmbulance

AtIncidentInTime

MobilizedAmbulance Not
AtIncidentInTime

AmbulanceLost AmbulanceStopped TrafficDeviation

…

AmbulanceCrew
NotInFamiliarArea

 AND-refinement

In-carGPS
NotWorking

…

Objects

61

Operation Model (simplified)

■ This model describes all teh behaviors that
agents need to fulfill their reqs.

■ Behaviors are expressed in terms of operations
performed by the agents

■ Operations work on objects defined in the
object model

■ Operations are used to operationalize or fulfill
reqs

62

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Responsibility-
Operationalization-performance

63

Tiago
Realce

Tiago
Realce

Tiago
Realce

Operationalization Reschedule

64

A goal-oriented method for building multi-view models

Build a preliminary goal model
illustrated by scenarios

Modeling the
system-as-is Derive a preliminary

object model

Update the goal model with new

goals illustrated by scenarios

Modeling the
system-to-be Derive the updated

object model

Analyze obstacles,
threats, and conflicts

Analyze responsibilities
and build the agent model

Make choices among
alternative options

Operationalize goals
 in the operation model

Build and analyze the
behavior model

data dependency

backtracking

Tiago
Realce

Goal-oriented model building in action

1. Domain analysis:

refine/abstract
goals

SafeTransportation

NoTrainSameBlock

Tiago
Realce

Tiago
Realce

Goal-oriented model building in action

Train Block
0:1

On

1. Domain analysis:

refine/abstract goals

SafeTransportation

2. Domain analysis:
derive/structure
objects

NoTrainSameBlock

Tiago
Realce

Goal-oriented model building in action

Train Block
0:1

On

1. Domain analysis:

refine/abstract goals

SafeTransportation

2. Domain analysis:
derive/structure
objects

3. analysis:

enriched goals
(alternatives)

SafeComdNoTrainSameBlock

Tiago
Realce

Goal-oriented model building in action

Train Block
0:1

On

SafeTransportation

CommandDriving

4. analysis:

enriched objects
from new goals

SafeComdNoTrainSameBlock

1. Domain analysis:

refine/abstract goals

2. Domain analysis:
derive/structure
objects

3. analysis:

enriched goals
(alternatives)

Tiago
Realce

Goal-oriented model building in action

Train Block
0:1

On
SafeAcceler

SafeTransportation

CommandDriving
5. Responsibility analysis:

agent OR-assignment

SafeComdNoTrainSameBlock

1. Domain analysis:

refine/abstract goals

2. Domain analysis:
derive/structure
objects

3. analysis:

enriched goals
(alternatives)

4. analysis:

enriched objects
from new goals

Tiago
Realce

Load analysis

for goal elicitation

Goal-oriented model building in action

Train Block
0:1

On
SafeAcceler

SafeTransportation

CommandDriving

1-5. Obstacle & conflict
analysis

SafeComdNoTrainSameBlock

5. Responsibility analysis:
agent OR-assignment

4. analysis:

enriched objects
from new goals

3. analysis:

enriched goals
(alternatives)

2. Domain analysis:
derive/structure
objects

1. Domain analysis:

refine/abstract goals

Tiago
Realce

Goal-oriented model building in action

Train Block
0:1

On
SafeAcceler

SafeTransportation

CommandDriving

6. Operationalization
& behavior analysis

Send
Command

OnBoardController

:OBC

SafeComdNoTrainSameBlock

1-5. Obstacle & conflict
analysis

5. Responsibility analysis:
agent OR-assignment

4. analysis:

enriched objects
from new goals

3. analysis:

enriched goals
(alternatives)

2. Domain analysis:
derive/structure
objects

1. Domain analysis:

refine/abstract goals

Tiago
Realce

Goals and UML

83

Bibliography

 Lamsweerde, Axel van; “Goal-Oriented Requirements
Engineering: A Guided Tour”; Université Catholique de
Louvain; Louvain-la-Neuve; Belgium; 2001

 “A KAOS Tutorial”; Objectiver; 2003

 Lamsweerde, Axel van; “Goal-Oriented Requirements
Engineering: From System Objectives to UML Models to
Precise Software Specification”; Université Catholique
de Louvain; Louvain-la-Neuve; Belgium; May 2003

 Lamsweerde, Axel van; “Requirements Engineering - -
from system goals to UML models to software
specifications”; Wiley, 2009

84

