
Software Reuse

1

Tiago
Realce



Topics covered

2

THE REUSE LANDSCAPE SOFTWARE PRODUCT LINES 
AND MORE… 



Software reuse

3

In most engineering disciplines, systems are designed by 
composing existing components that have been used in 
other systems.

Software engineering has been more focused on original 
development, but it is now recognised that to achieve 
better software, more quickly and at lower cost, we need a 
design process that is based on systematic software reuse.

There has been a  major switch to reuse-based 
development over the years.

Tiago
Realce

Tiago
Realce



Reuse-based software engineering

4

• Complete systems/applications, may be reused.
System/App 

reuse

• Components of an application from sub-systems to 
single classes may be reused.  

Component 
reuse

• Small-scale software components that implement a 
single well-defined class or function may be reused.

Class and 
function reuse

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Benefits of software reuse

Benefit Explanation

Accelerated development Bringing a system to market as early as possible is
often more important than overall development costs.
Reusing software can speed up system production
because both development and validation time may be
reduced.

Effective use of specialists Instead of doing the same work over and over again,
application specialists can develop reusable software
that encapsulates their knowledge.

Increased dependability Reused software, which has been tried and tested in
working systems, should be more dependable than
new software. Its design and implementation faults
should have been found and fixed.

5

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Benefits of software reuse

Benefit Explanation

Lower development costs • Development costs are proportional to the size of the
software being developed.

• Reusing software means that fewer lines of code
have to be written.

Reduced process risk • The cost of existing software is already known,
whereas the costs of development are always a
matter of judgment.

• This is an important factor for project management
because it reduces the margin of error in project cost
estimation.

• This is particularly true when relatively large software
components such as subsystems are reused.

Standards compliance • Some standards, such as user interface standards,
can be implemented as a set of reusable
components. For example, if menus in a user
interface are implemented using reusable
components, all applications present the same menu
formats to users.

• The use of standard user interfaces improves
dependability because users make fewer mistakes
when presented with a familiar interface.

6

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Problems with reuse

Problem Explanation

Creating, maintaining, 
and using a component 
library

Populating a reusable component library and ensuring the
software developers can use this library can be expensive.
Development processes have to be adapted to ensure that
the library is used.

Finding, understanding, 
and adapting reusable 
components

Software components have to be discovered in a library,
understood and, sometimes, adapted to work in a new
environment. Engineers must be reasonably confident of
finding a component in the library before they include a
component search as part of their normal development
process.

Increased maintenance 
costs

If the source code of a reused software system or
component is not available then maintenance costs may be
higher because the reused elements of the system may
become increasingly incompatible with system changes.

7

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Problems with reuse

Problem Explanation

Lack of tool/process 
support

• Some software tools do not support development
with reuse. It may be difficult to integrate these
tools with a component library system.

• The software process assumed by these
tools/process may not take reuse into account.

• This is less problematic for object-oriented
development tools.

Not-invented-here 
syndrome

• Some software engineers prefer to rewrite
components because they believe they can
improve on them.

• This is partly to do with trust and partly to do with
the fact that writing original software is seen as
more challenging than reusing other people’s
software.

8

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



The reuse landscape

9



The reuse landscape

10

Although reuse is often simply thought of as the 
reuse of system components, there are many 
different approaches to reuse that may be used.

Reuse is possible at a range of levels from simple 
functions to complete application systems.

The reuse landscape covers the range of possible 
reuse techniques.

Tiago
Realce



The reuse landscape

11



Approaches that support software reuse

Approach Description

Application frameworks Collections of abstract and concrete classes are adapted and
extended to create application systems.

Application system 
integration

Two or more application systems are integrated to provide
extended functionality

Architectural patterns Standard software architectures that support common types of
application system are used as the basis of applications.

Aspect-oriented software 
development

Shared components are woven into an application at different
places when the program is compiled.

Component-based software 
engineering

Systems are developed by integrating components (collections of
objects) that conform to component-model standards.

12

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Approaches that support software reuse

Approach Description

Configurable application 
systems

Domain-specific systems are designed so that they can be configured
to the needs of specific system customers.

Design patterns Generic abstractions that occur across applications are represented
as design patterns showing abstract and concrete objects and
interactions.

ERP (Enterprise Resource 
Planning)  systems

Large-scale systems that encapsulate generic business functionality
and rules are configured for an organization. ERP is a category of
business-management software—typically a suite of integrated
applications—that an organization can use to collect, store, manage
and interpret data from many business activities. ERP is a business
process management software that manages and integrates a
company's finance, supply chain, operations, reporting,
manufacturing and human resources activities.

Legacy system wrapping Legacy systems are ‘wrapped’ by defining a set of interfaces and
providing access to these legacy systems through these interfaces.

Model-driven engineering Software is represented as domain models and implementation
independent models and code is generated from these models.

13

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Approaches that support software reuse
Approach Description

Program generators A generator system embeds knowledge of a type of application and
is used to generate systems in that domain from a user-supplied
system model. In practice, generators are typically compilers for
domain-specific languages (DSLs). A domain-specific
language is a special-purpose programming language for a
particular software domain.

Program libraries Class and function libraries that implement commonly used
abstractions are available for reuse.

Service-oriented systems Systems are developed by linking shared services, which may be
externally provided. In SOA (Service-oriented architecture),
services use protocols that describe how they pass and parse
messages using description metadata. This metadata describes
both the functional characteristics of the service and quality-of-
service characteristics. SOA aims to allow users to combine large
chunks of functionality to form applications which are built purely
from existing services and combining them in an ad hoc manner.

Software product lines An application type is generalized around a common architecture
so that it can be adapted for different customers.

Systems of systems A SoS brings together a set of systems for a task that none of the
systems can accomplish on its own. Each constituent system keeps
its own management, goals, and resources while coordinating
within the SoS and adapting to meet SoS goals. E.g. Air traffic

14

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Reuse planning factors

15

THE DEVELOPMENT 
SCHEDULE FOR THE 

SOFTWARE.

THE EXPECTED 
SOFTWARE 
LIFETIME.

THE BACKGROUND, SKILLS AND 
EXPERIENCE OF THE DEVELOPMENT 

TEAM.

THE CRITICALITY OF 
THE SOFTWARE 
AND ITS NFRS.

THE APPLICATION 
DOMAIN.

THE EXECUTION 
PLATFORM FOR THE 

SOFTWARE.



Software Product Lines

16

Tiago
Realce



SPL: Definition

17

A software product line is a set of 
software-intensive systems that 
share a common, managed set of 
features

satisfying the specific needs of a 
particular market segment or mission 
and 
are developed from a common set of 
core assets in a prescribed way. 

Software product line practice is the systematic use of core assets to 
assemble, instantiate, or generate the multiple products that 
constitute a software product line. 

Software product line practice involves strategic, large-grained reuse. 

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Core assets

18

Core assets are those reusable artifacts and resources that form the basis for 
the software product line. 

Core assets often include, but are not limited to, the architecture, reusable
software components, domain models, requirements statements, 
documentation, specifications, performance models, schedules, budgets, 
test plans, test cases, work plans, and process descriptions. 

Tiago
Realce



Benefits

19

large-scale 
productivity gains 

decreased time to 
market 

increased product 
quality 

decreased product 
risk 

increased market 
agility 

increased customer 
satisfaction 

more efficient use 
of human resources 

ability to effect 
mass customization 

ability to maintain 
market presence 

ability to sustain 
unprecedented 

growth 

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



20



Domain

21

A domain is a specialized body of knowledge, an 
area of expertise, or a collection of related 
functionality. 

For example, the telecommunications domain is a 
set of telecommunications functionalities

The product family is that set of products we call
the product line. 

Tiago
Realce

Tiago
Realce



How is production made more economical?

22

Each product is formed by 

• taking applicable components from the base of common assets, 
• tailoring them as necessary through preplanned variation mechanisms such as 

parameterization or inheritance, 
• adding any new components that may be necessary, 
• assembling the collection according to the rules of a product-line-wide architecture. 

Building a new product (system) becomes more a matter of 
assembly or generation than one of creation; 

• the predominant activity is integration rather than programming. 

For each software product line, there is a predefined guide or plan 
that specifies the exact product-building approach. 

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Other concepts

23

The software assets in the core asset base are sometimes 
called a platform. 

What we call core asset development is sometimes referred
to as domain engineering.

What we call product development is sometimes referred to 
as application engineering. 

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



SPL processes

24



25

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



SPL activities

26



Requirements engineering for product lines 

27

Requirements elicitation focuses on:

the scope, explicitly capturing 
the anticipated variation by 
the application of domain 

analysis techniques, 

the incorporation of existing 
domain analysis models, 

capturing the variations that 
are expected to occur over 

the lifetime of the PL

This means that the community of stakeholders is probably larger than for single-
system requirements elicitation 

it may well include domain experts, market experts, and others. 

Requirements elicitation for a product line must capture anticipated variations 
explicitly over the foreseeable lifetime of the product line. 

Tiago
Realce

Tiago
Realce

Tiago
Realce
porque há várias áreas diferentes que poderão precisar do produto

Tiago
Realce

Tiago
Realce



RE for SPL

28

Requirements analysis for a product line involves finding 
commonalities and identifying variations. 

Requirements analysis includes a commonality and variability 
analysis on the elicited product line requirements to identify the 
opportunities for large-grained reuse within the product line. 

Two such techniques are Feature-Oriented Domain Analysis (….) 
and use cases

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Domain analysis techniques

29

These 
techniques can 
be used:

• to expand the scope of the requirements elicitation, 

• to identify and plan for anticipated changes, 

• to determine fundamental commonalities and 
variations in the products of the SPL

• to support the creation of robust architectures.

Feature modeling facilitates the identification and analysis of the 
product line's commonality and variability and provides a natural 
vehicle for requirements specification. 

Other techniques: Use case modeling

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Feature modeling

30

This technique can be used to complement object and use 
case modeling and to organize the results of the commonality 
and variability analysis in preparation for reuse. 

Features are user-visible aspects or characteristics of a 
system that are organized into a tree of And/Or nodes to 
identify the commonalities and variabilities within the 
system. 

The commonalities and variabilities within those features are 
then exploited to create a set of reference models (that is, 
software architectures and components) that can be used to 
implement the products of that family. 

Tiago
Realce

Tiago
Realce

Tiago
Realce



Features and feature model

31

A feature is a system property that is relevant to some 
stakeholder and is used to capture commonalities or
discriminate among products in a product line. 

A feature model consists of one or more feature 
diagrams, which organize features into hierarchies.

Tiago
Realce

Tiago
Realce



Feature diagram of a car 

32

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Feature-Oriented Domain Analysis

33

Feature diagram. The 
diagram depicts a 

hierarchical decomposition 
of features with mandatory, 

alternative and optional 
relationships.

Feature definitions.  
Description of all 

features  

Composition rules.
These rules indicate 

which feature 
combinations are valid 

and which are not.

Rationale for features.  
The rationale for 
choosing or not 

choosing a particular 
feature, indicating the 

trade-offs.



34

Tiago
Realce



35



36



37



Feature model for order 
processing

38



UC Modeling with the PLUS approach [H.Gomaa]

39

Use case modeling
<<kernel>>, <<optional>>, 
<<alternative>>

Feature modeling Static modeling
<<kernel>>, <<optional>>, 
<<alternative>> in UML 
class diagrams

Tiago
Realce



PLUS: UC modeling

40

Kernel UC UC that are required by all members of the
PL

Optional UC They are required by some, but not all
the UC in the PL

Alternative UC
Different versions of the UC are 
required by different PL members
They are usually mutually exclusive

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



PLUS Example: Use Cases

<<kernel>>
Cook Food

<<optional>>
Cook with
Turntable

<<optional>>
Cook with 
Adjustable 

Power Level

<<optional>>
Cook Food with

Recipe
Adapted from [Gomaa05]

Chef Timer

41



PLUS : Static Modeling

Microwave Oven

<<kernel>>
Clock

<<kernel>>
Weight 
Sensor

<<optional>>
Turntable

<<kernel>>
Display

<<variant>>
Multi-Line
Display

<<default>>
One-Line
Display

<<variant>>
Analog
Weight 
Sensor

<<default>>
Boolean
Weight 
Sensor

Adapted from [Gomaa05]

<<optional>>
Beeper

{Mutually exclusive}{Mutually exclusive}

42



FeaturePlugin

 Feature Modeling Plug-In for Eclipse

 The tool supports

 cardinality-based feature modeling 

 specialization of feature diagrams

 configuration based on feature diagrams

 http://www.swen.uwaterloo.ca/~kczarnec/

43



root symbol

The group symbol indicates 
group cardinality
1– k, where k is the group size. 
Thus, our shop can support
any non-empty subset of the 
three payment types.

group symbol indicates 
group cardinality of 1– 1

A feature can have an 
attribute, its type is 
indicated in parenthesis

obligatory

optional Grouped features

44



45



Aspect-Oriented Software 
Development (AOSD)

Distribution

Security

Data
Management

AOSD tools, techniques
and
methodology

Distribution

Security

Data
Management

46



A Definition of AOSD

AOSD: systematic identification, 
modularisation, representation and 
composition of crosscutting concerns [1]

[1] Rashid, A., Moreira, A., Araújo, J. “Modularisation and  Composition of Aspectual Requirements”, 
Proceedings of 2nd International Conference on Aspect-Oriented Software Development, ACM, 2003.

47

Tiago
Realce



The Problem of Crosscutting 
Concerns

Broadly-scoped concerns
Distribution, security, real-time 

constraints, etc.
Crosscutting in nature
Severely constrain quality attributes 

and separation of concerns

48

Tiago
Realce



[logging in org.apache.tomcat]

Crosscutting Concerns Affect Modularization

Bad modularization

Good modularization

[XML parsing in org.apache.tomcat]

49



Resulting Problems

Scattering
 The specification of one 

property is not encapsulated
in a single requirements unit, 
e.g., a viewpoint, a use case.

Tangling
Each requirements unit contains 
descriptions of several properties
or different functionalities

50

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Potential Benefits of AOSD

 Improved ability to reason about problem domain and 
corresponding solution

 Reduction in application code size, development costs 
and maintenance time

 Improved code reuse

 Requirements, architecture and design-level reuse

 Improved ability to engineer product lines

 Context-sensitive application adaptation

 Improved modelling methods

51

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Crosscutting: The Tracing 
Concern

class A {
// some attributes
void m1( ) {

System.out.println(“Entering 
A.m1( )”);
// method code
System.out.println(“Leaving 
A.m1( )”);

}

String m2( ) {
System.out.println(“Entering 
A.m2( )”);
// method code
System.out.println(“Leaving 
A.m2( )”);
// return a string

}

class B {
// some attributes
void m2( ) {

System.out.println(“Entering B.m2( 
)”);

// method code
System.out.println(“Leaving B.m2( 

)”);
}

int m3( ) {
System.out.println(“Entering B.m3( 

)”);
// method code
System.out.println(“Leaving B.m3( 

)”);
// return an integer

}
52



Wouldn’t it be Nice if …

class A {
// some attributes
void m1( ) {

// method code
}

String m2( ) {
// method code
// return a string

}

class B {
// some attributes
void m2( ) {

// method code
}

int m3( ) {
// method code
// return an integer

}

aspect Tracing {

when someone calls these methods

before the call {System.out.println(“Entering ” +  methodSignature);}

after the call {System.out.println(“Leaving ” +  methodSignature);}
} 53



Tangling and Scattering: the 
Bank Example

Account CustomerLoan

Data Classes

ATM PC TerminalWeb

User Interface

PersistencePrimary Functionality Security

54



Wouldn’t it be Nice if …

Account CustomerLoan

Data Classes

ATM PC TerminalWeb

User Interface

aspect 
Persistence

aspect 
Security

55



Main Value of Aspect-Orientation

 Abstraction: abstract away from the details of how that 
crosscutting concern, or aspect, might be scattered and 
tangled with the functionality of other modules in the 
system 

Modularization:  keep crosscutting concerns separated 
regardless of how they affect or influence various other 
modules in the system, so then we can reason about 
each module in isolation – Modular Reasoning

 Composition: the various modules need to relate to 
each other in a systematic and coherent fashion so that 
one may reason about the global or emergent properties 
of the system – Compositional Reasoning

56

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce



Application wrapping

57


