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Data never sleeps

https://www.domo.com/learn/data-never-sleeps-8
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New challenges in information management

One key challenge in complex systems today is information management:

The volume of information is enormous.

Data increases with incredible velocity.

The variety of information has increased:
structured  semi-structured  unstructured
Information increasingly distributed and heterogeneous, but nevertheless needs to be
accessed in a uniform way.
Information human-processable vs. machine-processable

The underlying data may be of low quality, e.g., incomplete, inconsistent, not crisp –
assessing veracity.

Traditional data management systems not sufficient anymore to fulfill today’s information
management requirements.
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An example: Siemens Energy Services

Runs service centers for power plants, each responsible for remote monitoring and
diagnosis of many thousands of gas/steam turbines and associated components. When
informed about potential problems, diagnosis engineers access a variety of raw and
processed data.

several TB of time-stamped sensor data

several GB of event data

data grows at 30GB per day (sensor data rate 1Hz-1kHz)

over 50 service centers worldwide

1,000 service requests per center per year

80 % of the time per request used on data gathering
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Addressing information management challenges

Several efforts come from the database area:

New kinds of databases are studied, to manage semi-structured (XML), and
probabilistic data; also graph databases.

Information integration one of the major challenges for the future of IT.
E.g., the market for information integration software has been growing at a steady rate
of +9% since 2007
in 2012 the overall market value of such software was $ 4 billion.
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The role of Knowledge Representation in AI

Management of complex kinds of information traditionally the concern of Knowledge
Representation in AI:

Research in AI and KR for new insights, solutions, techniques, and technologies
(focussed on variability and veracity).

However, what has been done in KR needs to be adapted and extended to address the
new challenges coming from today’s requirements for information management.
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Description Logics

Description Logics [Baader et al., 2003] an important area of KR, studied for the last 30
years; provide the foundations for structured representation of information:

By grounding the used formalisms in logic, the information is provided with a formal
semantics (i.e., a meaning).

The logic-based formalization allows one to provide automated support for tasks
related to data management, by means of logic-based inference.

Computational aspects are of concern, so that tools can provide effective support for
automated reasoning.
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Ontologies

Description logics provide the formal foundations for ontology languages.

Definition (Ontology)

An Ontology is a representation scheme that describes a formal conceptualization of a
domain of interest.

The specification of an ontology usually comprises two distinct levels:

Intensional level: specifies a set of conceptual elements and of constraints/axioms
describing the conceptual structures of the domain.

Extensional level: specifies a set of instances of the conceptual elements described at
the intensional level.
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Conceptual schemas in information systems

Intensional information has traditionally played an important role in information systems.
Design phase of the information system:

1 From the requirements, a conceptual schema of the domain of interest is produced.

2 The conceptual schema is used to produce the logical data schema.

3 The data are stored according to the logical schema, and queried through it.
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Conceptual schemas used at design-time
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Ontologies in information systems

The role of ontologies in information systems goes beyond that of conceptual schemas.
Ontologies affect the whole life-cycle of the information system:

Ontologies, with the associated reasoning capabilities and inference tools, can
provide support at design time.

The use of ontologies can significantly simplify maintenance of the information
system’s data assets.

The ontology is used also to support the interaction with the information system,
i.e., at run-time.

 Reasoning to take into account the constraints coming from the ontology has to be
done at run-time.
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Ontologies used at run-time
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Ontologies at the core of information systems

The usage of all system resources (data and services) is done through the domain
conceptualization.
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Ontology-mediated access to data

Desiderata – achieve logical transparency in access to data:

Hide to the user where and how data are stored.

Present to the user a conceptual view of the data.

Use a semantically rich formalism for the conceptual view.

This setting is similar to the one of Data Integration. The difference is that here the
ontology provides a rich conceptual description of the data managed by the system.
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Ontologies at the core of cooperation

The cooperation between systems is done at the level of the conceptualization.
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Issues in ontology-based information management

1 Choice of the formalisms to adopt

2 Efficiency and scalability

3 Tool support
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Formalisms to adopt

1 Which is the right ontology language?
many proposals have been made
differ in expressive power and in complexity of inference

2 Which languages should we use for querying?
requirements for querying are different from those for modeling

3 How do we connect the ontology to available information sources?
mismatch between information in an ontology and data in a data source

In the first part of this course:

We present and discuss variants of ontology languages, and study their logical and
computational properties.
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What is a logic?

The main objective of a logic: express by means of a formal language knowledge
about certain phenomena or a certain portion of the world.

The language of a logic is formal, since it is equipped with:
a formal syntax: it tells one how to write statements in the logic;
a formal semantics: it assigns the meaning to these statements.

Given the formal semantics, one can reason over given knowledge, and show which
knowledge is a logical consequence of the given one.

A logic often provides a precise set of deterministic rules, called inference rules, the
basic reasoning steps (correct according to the semantics of the logic).

By concatenating applications of simple inference rules, one can construct logically
correct reasoning chains, which allow one to transform the initial knowledge into
some (desired) conclusion.
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Real world, language, and mathematical structure

Often we want to describe and reason about real-world phenomena:
A complete description of the real world is clearly impossible.
Typically interest in a portion of the world, e.g., a particular physical phenomenon, a
social aspect, or modeling rationality of people, ...

We use sentences of a language to describe objects of the real world, their
properties, and facts that hold.

The language can be:
informal (natural lang., graphical lang., icons, . . . )
formal (logical lang., programming lang., mathematical lang., . . . )

also mixed languages, i.e., languages with parts that are formal, and others that are
informal (e.g., UML class diagrams)

For a more rigorous description, we provide a mathematical model:
Is an abstraction of the portion of the real world we are interested in.
Represents real world entities in the form of mathematical objects, such as sets,
relations, functions, . . .
Is not commonly used in everyday communication, but is commonly adopted in
science, e.g., to show that a certain argumentation is correct
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Language, real world, and mathematical models: Example

Language

In any right triangle, the area of the square
whose side is the hypotenuse (the side opposite
the right angle) is equal to the sum of the areas
of the squares whose sides are the two legs (the
two sides that meet at a right angle).

Real world Math. model

Facts about euclidean geometry can be expressed in natural language;

can refer to one or more real world situations (e.g., composition of the forces in free
climbing);

in general, all such different situations can be abstracted in the mathematical
structure which is the euclidean geometry.
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Language, real world, and mathematical models: Ex. 2

Language

In triangle ABC, if B̂AC is right, then

AB
2

+AC
2

= BC
2

Real world Mathematical
model

The previous example using a language that is “more formal”;

mixes informal statements (e.g., “if... then...” or “is right”) with formal notation;

E.g.,B̂AC is an unambiguous and compact way to denote an angle.
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Language, real world, and mathematical models: Ex. 3

Language

x− 2y + 3
x+ y = 0

Real world Mathematical model

Language purely formal, i.e., the language of arithmetic.

Abstract language used to represent many situations in the real world (in the
primary school, many examples about apples, pears, and how much they cost, which
are used by teachers to explain to kids the intuitive meaning of the basic operations
on numbers).

The mathematical model here – the structure of natural numbers.
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Connections between language, world, and math. model
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Connections between language, world, and math. model

Intuitive interpretation (or informal semantics)

When you propose a new language (or when you have to learn a new language), it is important
to associate to any element of the language an interpretation in the real world. This is called the
intuitive interpretation (or informal semantics).

Formal interpretation (or formal semantics)

Is a function that allows one to transform the elements of the language (i.e., symbols, words,
complex sentences,...) into one or more elements of the mathematical structure – formalization
of the intuitive interpretation.

Abstraction

Links the real world with its mathematical and abstract representation in a mathematical
structure.
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Logic

Logic is a special case of the framework we have just seen, where the following important
components are defined:

The language is a logical language.

The formal interpretation allows one to define a notion of truth.

It is possible to define a notion of logical consequence between formulas.
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Formal language

We are given a non-empty set Σ of symbols called alphabet.

A formal language (over Σ) is a subset L of Σ∗, i.e., a set of finite strings of
symbols in Σ.

The elements of L are called well-formed phrases/formulas.

Formal languages can be specified by means of a grammar, i.e., a set of formation
rules that allow one to build complex well-formed phrases starting from simpler ones.
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Logical language

A language of a logic has the following characteristics:

Alphabet: typically contains basic symbols that are used to indicate the basic
(atomic) components of the (part of the) world the logic is supposed to describe.
E.g.: individuals, functions, operators, truth-values, propositions,...

Grammar: defines two types of complex elements:
Formulas: denote propositions, i.e., objects that can assume some truth value (e.g.,
true, false, true in certain situations, true with probability of 3%, true/false in a period
of time,...).
Terms: denote objects of the world (e.g., cats, dogs, time points, quantities,...).
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Alphabet

The alphabet of a logical language is composed of two classes of symbols:

Logical constants, whose formal interpretation is constant and fixed by the logic
(e.g., ∧, ∀,=, . . . ).

Non-logical symbols, whose formal interpretation is not fixed by the logic, and must
be defined by the “user”.

We can make an analogy with (imperative) programming languages:

Logical constants correspond to reserved words (whose meaning is fixed by the
interpreter/compiler).

Non-logical symbols correspond to the identifiers that are introduced by the
programmer for defining functions, variables, procedures, classes, attributes,
methods,... (Their meaning is fixed by the programmer.)
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Alphabet: Logical constants - Example

The logical constants depend on the logic we are considering:

Propositional logic: ∧ (conjunction), ∨ (disjunction), ¬(negation), ⊃ (implication),
≡ (equivalence), ⊥ (falsity).
These are usually called propositional connectives.

Predicate logic: in addition to the propositional connectives, we have quantifiers:
universal quantifier ∀, standing for “every object is such that ...”
existential quantifier ∃, standing for “there is some object that ...”

Modal logic: in addition to the propositional connectives, we have modal operators:
� standing for “it is necessarily true that...”
�, standing for “it is possibly true that ...”
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Alphabet: Non-logical symbols - Example

Propositional logic: non-logical symbols are called propositional variables, and
represent (i.e., have intuitive interpretation) propositions. The proposition
associated to each propositional variable is not fixed by the logic.

Predicate logic: there are four families of non-logical symbols:
Variable symbols, which represent any object.
Constant symbols, which represent specific objects.
Function symbols, which represent transformations on objects.
Predicate symbols, which represent relations between objects.

Modal logic: non-logical symbols are the same as in propositional logic, i.e.,
propositional variables.
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Example of grammar: Language of propositional logic

Grammar of propositional logic

Allows one to define the unique class of phrases, called formulas (or well formed
formulas), which denote propositions.

Formula → P (P is a propositional variable)
| (Formula ∧ Formula)
| (Formula ∨ Formula)
| (Formula→ Formula)
| (¬Formula)

Example (Well-formed formulas)

(P ∧ (Q→ R)) ((P → (Q→ R)) ∨ P )
There is a sequence of applications of grammar rules
generating them.
Exercise: list the rules in each case.

Example (Not well-formed
formulas)

P (Q→ R)
(P → ∨P )
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Example of grammar: Language of first-order logic

Grammar of first-order logic

Term → x (x is a variable symbol)
| c (c is a constant symbol)
| f(Term, . . . , T erm) (f is a function symbol)

Formula → P (Term, . . . , T erm) (P is a predicate symbol)
| (Formula ∧ Formula)
| (Formula ∨ Formula)
| (Formula→ Formula)
| ¬Formula
| ∀x(Formula) (x is a variable symbol)
| ∃x(Formula) (x is a variable symbol)

Exercise

Give examples of terms and formulas, and of phrases that are neither of the two.
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Example of grammar: Language of description logic

Grammar of the description logic ALC

Concept → A (A is a concept symbol)
| Concept t Concept
| Concept u Concept
| ¬Concept
| ∃Role.Concept
| ∀Role.Concept

Role → R (R is a role symbol)
Individual → a (a is an individual symbol)
Formula → Concept v Concept

| Concept(Individual)
| Role(Individual; Individual)

Example (Concepts and formulas of the DL ALC)

Concepts: A uB, A t ∃R.C, ∀S.(C t ∀R.D) u ¬A
Formulas: A v B, A v ∃R.B, A(a), R(a, b), ∃R.C(a)
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Intuitive interpretation of a logical language

While, non-logical symbols do not have a fixed formal interpretation, they usually have a
fixed intuitive interpretation. Consider for instance:

Type Symbol Intuitive interpretation

propositional variable rain it is raining
constant symbol MobyDick the whale of a novel by Melville
function symbol color(x) the color of the object x

predicate symbol Friends(x, y) x and y are friends

Intuitive interpretation of the non-logical symbols does not affect the logic itself.

Changing the intuitive interpretation does not affect the properties that will be
proved in the logic.

Replacing these logical symbols with less evocative ones, like r, M , c(x), F (x, y)
will not affect the logic.
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Interpretation of complex formulas

The intuitive interpretation of complex formulas is done by combining the intuitive
interpretations of the components of the formulas.

Example

Consider the propositional formula:

(raining ∨ snowing)→ ¬go to the beach

If the intuitive interpretations of the symbols are:

symbol intuitive meaning

raining it is raining
snowing it is snowing
go to the beach we go to the beach
∨ either ... or ...
→ if ... then ...
¬ it is not the case that ...

then the above formula intuitively represent the proposition:

if (it is raining or it is snowing), then it is not the case that (we go to the beach)
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Formal model

Class of models: The models in which a logic is formally interpreted are the members
of a class of algebraic structures, each of which is an abstract representation of the
relevant aspects of the (portion of the) world we want to formalize with this logic.

Models represent only the components and aspects of the world which are relevant
to a certain analysis, and abstract away from irrelevant facts.
Example: if we are interested in the average temperature of each day, we can
represent time with the natural numbers and use a function that associates to each
natural number a floating point number (the average temperature of the day
corresponding to the point).

Applicability of a model: Since the real world is complex, in the construction of the
formal model, we usually do simplifying assumptions that bound the usability of the
logic to the cases in which these assumptions are verified.
Example: if we take integers as formal model of time, then this model is not
applicable to represent continuous change.

Each model represents a single possible (or impossible) state of the world. The class
of models of a logic will represent all the (im)possible states of the world.
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Formal interpretation

Given a structure S and a logical language L, the formal interpretation in S of L is a
function that associates an element of S to any non-logical symbol of the alphabet.

The formal interpretation in the algebraic structure is the parallel counterpart (or
better, the formalization) of the intuitive interpretation in the real world.

The formal interpretation is specified only for the non-logical symbols.

The formal interpretation of the logical symbols is fixed by the logic.

The formal interpretation of a complex expression e, obtained as a combination of
the sub-expressions e1, . . . , en, is uniquely determined as a function of the formal
interpretation of the sub-components e1, . . . , en.
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Truth in a structure: Models

The goal of logic is the formalization of what is true/false in a particular world. The
particular world is formalized by a structure, also called an interpretation.

The main objective of the formal interpretation is that it allows to define when a
formula is true in an interpretation.

Every logic therefore defines the satisfiability relation (denoted by |=) between
interpretations and formulas.

If I is an interpretation and ϕ a formula, then

I |= ϕ

stands for the fact that I satisfies ϕ, or equivalently that ϕ is true in I.

An interpretation M such that M |= ϕ is called a model of ϕ.
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Formal interpretation - Example

Example

Consider again the propositional formula:

(raining ∨ snowing)→ ¬go to the beach

In propositional logic:

We only need to interpret propositional variables

map them to true or false

represented as those mapped to true

e.g., {raining} and {go to the beach} are models of the given formula

{snowing, go to the beach} is not
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(Un)satisfiability and validity

On the basis of truth in an interpretation (|=) the following notions are defined in any
logic:

ϕ is satisfiable if it has model, i.e., if there is a structure M such that M |= ϕ

ϕ is unsatisfiable if it is not satisfiable, i.e., it has no models.

ϕ is valid, denoted |= ϕ, if is true in all interpretations.
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Logical consequence (or implication)

The notion of logical consequence (or implication) is defined on the basis of the
notion of truth in an interpretation.

Intuitively, a formula ϕ is a logical consequence of a set of formulas (sometimes
called assumptions) Γ (denoted Γ |= ϕ) if such a formula is true under this set of
assumptions.

Formally, Γ |= ϕ holds when:

For all interpretations I, if I |= Γ, then I |= ϕ.

In words: ϕ is true in all the possible situations in which all the formulas in Γ are
true.

Notice that the two relations, “truth in a model” and “logical consequence” are
denoted by the same symbol |= (this should remind you that they are tightly
connected).
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Difference between |= and implication (→)

At first glance, |= looks like implication (usually denoted by → or ⊃). In most of the
cases, they represent the same relation between formulas.
Similarity

For instance, in propositional logic (but not only) the fact that ϕ is a logical
consequence of the singleton set {ψ}, i.e., {ψ} |= ϕ, can be encoded in the formula
ψ → ϕ.

Similarly, the fact that ϕ is a logical consequence of the set of formulas {ϕ1, . . . , ϕn}
i.e.,{ϕ1, . . . , ϕn} |= ϕ can be encoded by the formula ϕ1 ∧ · · · ∧ ϕn → ϕ

Difference

When Γ = {γ1, γ2, . . . } is an infinite set of formulas, the fact that ϕ is a logical
consequence of Γ cannot be represented with a formula γ1 ∧ γ2 ∧ · · · → ϕ because
this would be infinite, and in logic all the formulas are finite. (Actually there are
logics, called infinitary logics, where formulas can have infinite size.)

September 24, 2020 51 / 78



Logical consequence, validity and (un)satisfiability

Exercise

Show that if Γ = ∅, then Γ |= ϕ⇐⇒ ϕ is valid.

Solution

(=⇒) Since Γ is empty, every interpretation I satisfies all the formulas in Γ. Therefore, if
Γ |= ϕ, then every interpretation I must satisfy ϕ, hence ϕ is valid.
(⇐=) If ϕ is valid, then every I is such that I |= ϕ. Hence, whatever Γ is (in particular,
when Γ = ∅), every model of Γ is also a model of ϕ, and so Γ |= ϕ.

Exercise

Show that if ϕ is unsatisfiable then {ϕ} |= ψ for every formula ψ .

Solution

If ϕ is unsatisfiable then it has no model, which implies that each interpretation that
satisfies ϕ (namely, none) satisfies also ψ, independently from ψ.
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Properties of logical consequence

Exercise

Show that the following properties hold for the logical consequence relation defined
above:

Reflexivity: Γ ∪ {ϕ} |= ϕ
Monotonicity: Γ |= ϕ implies that Γ ∪ Σ |= ϕ

Cut: Γ |= ϕ and Σ ∪ {ϕ} |= ψ implies that Γ ∪ Σ |= ψ

Solution

Reflexivity: If I satisfies all the formulas in Γ ∪ {ϕ} then it satisfies also ϕ, and
therefore Γ ∪ {ϕ} |= ϕ.

Monotonicity: Let I be an interpretation that satisfies all the formulas in Γ∪Σ. Then
it satisfies all the formulas in Γ, and if Γ |= ϕ, then I |= ϕ. Therefore,
we can conclude that Γ ∪ Σ |= ϕ.

Cut: Let I be an interpretation that satisfies all the formulas in Γ ∪ Σ.
Then it satisfies all the formulas in Γ, and if Γ |= ϕ, then I |= ϕ.
This implies that I satisfies all the formulas in Σ ∪ {ϕ}. Then, since
Σ ∪ {ϕ} |= ψ , we have that I |= ψ. Therefore we can conclude that
Γ ∪ Σ |= ψ.
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Checking logical consequence

Problem

Does there exist an algorithm that checks if a formula ϕ is a logical consequence of a set
of formulas Γ?

Solution 1: If Γ is finite and the set of models of the logic is finite, then it is possible to
directly apply the definition by checking for every interpretation I, that if I |= Γ then,
I |= ϕ.
Solution 2: If Γ is infinite or the set of models is infinite, then Solution 1 is not applicable
as it would run forever.
An alternative solution could be to generate, starting from Γ, all its logical consequences
by applying a set of rules.
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Checking logical consequence

Propositional logic: The method based on truth tables can be used to check logical
consequence by enumerating all the interpretations of Γ and ϕ and checking if every
time all the formulas in Γ are true then ϕ is also true. This is possible because,
when Γ is finite then there are a finite number of interpretations.

First-order logic: A first-order language in general has an infinite number of
interpretations. Therefore, to check logical consequence, it is not possible to apply a
method that enumerates all the possible interpretations, as in truth tables.

Modal logic: presents the same problem as first-order logic. In general for a set of
formulas Γ, there is an infinite number of interpretations, which implies that a
method that enumerates all the interpretations is not effective.
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Checking logical consequence - Deductive methods

An alternative method for determining if a formula is a logical consequence of a set
of formulas is based on inference rules.

An inference rule is a rewriting rule that takes a set of formulas and transforms it
into another set of formulas.

The following are examples of inference rules.

ϕ ψ

ϕ ∧ ψ
ϕ ψ

ϕ→ ψ

∀x.ϕ(x)

ϕ(c)

∃x.ϕ(x)

ϕ(d)

Differently from truth tables, which apply a brute force exhaustive analysis not
interpretable by humans, the deductive method simulates human argumentation and
provides also an understandable explanation (i.e., a deduction) of the reason why a
formula is a logical consequence of a set of formulas.
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Inference rules to check logical consequence - Example

Let Γ = {p→ q,¬p→ r, q ∨ r → s}.
The following is a deduction (an explanation of) the fact that s is a logical consequence
of Γ, i.e., that Γ |= s, which uses the following inference rules:

ϕ→ ψ ¬ϕ→ ϑ

ψ ∨ ϑ (∗)
ϕ ϕ→ ψ

ψ
(∗∗)

Example of deduction

(1) p→ q Belongs to Γ.
(2) ¬p→ r Belongs to Γ.
(3) q ∨ r By applying (∗) to (1) and (2).
(4) q ∨ r → s Belongs to Γ.
(5) s By applying (∗∗) to (3) and (4).
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Hilbert-style inference methods

In a Hilbert-style deduction system, a formal deduction is a finite sequence of formulas

ϕ1

ϕ2

ϕ3

...
ϕn

where each ϕi

is either an axiom, or

it is derived from previous formulas ϕj1 , . . . , ϕjk with j1, . . . , jk < i, by applying the
inference rule

ϕj1 , . . . , ϕjk

ϕi
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Hilbert axioms for classical propositional logic

Axioms

A1 ϕ→ (ψ → ϕ)
A2 (ϕ→ (ψ → θ))→ ((ϕ→ ψ)→ (ϕ→ θ))
A3 (¬ψ → ¬ϕ)→ ((¬ψ → ϕ)→ ψ)

Inference rule(s)

ϕ ϕ→ ψ

ψ
(MP)

Example (Proof of A→ A)

1. A1 : A→ ((A→ A)→ A)
2. A2 : (A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))
3. MP (1, 2) : (A→ (A→ A))→ (A→ A)
4. A1 : (A→ (A→ A))
5. MP (4, 3) : A→ A
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Refutation

Reasoning by refutation is based on the principle of “Reductio ad absurdum”.

Reductio ad absurdum

In order to show that a proposition ϕ is true, we assume that it is false (i.e., that ¬ϕ
holds) and try to infer a contradictory statement, such as A ∧ ¬A (usually denoted by ⊥,
i.e., the false statement).

Reasoning by refutation is one of the most important principles for building automated
decision procedures. This is mainly due to the fact that, proving a formula ϕ corresponds
to the reduction of ¬ϕ to ⊥.
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Propositional resolution

Propositional resolution is the most simple example of reasoning via refutation. The
procedure can be described as follows:

Definition (Propositional resolution)

INPUT: a propositional formula ϕ
OUTPUT: |= ϕ or 6|= ϕ

1 Convert ¬ϕ to conjunctive normal form, i.e., to a set C of formulas (called clauses)
of the form

p1 ∨ · · · ∨ pk ∨ ¬pk+1 ∨ · · · ∨ ¬pn
also represented as [p1 . . . , pk,¬pk+1, . . . ,¬pn] that is logically equivalent to ϕ.

2 Apply exhaustively the following inference rule

c ∨ p ¬p ∨ c′

c ∨ c′
(Resolution)

and add c ∨ c′ to C

3 if C contains the empty clause, then return |= ϕ, otherwise return 6|= ϕ
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Inference based on satisfiability checking

In order to show that |= ϕ (i.e., that ϕ is valid) we search for a model of ¬ϕ, i.e., we
show that ¬ϕ is satisfiable.
If we are not able to find such a model, then we can conclude that there is no model of
¬ϕ, i.e., that all the models satisfy ϕ, which is: that ϕ is valid.
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Inference based on satisfiability checking

There are two basic methods of searching for a model for ϕ:

SAT-based decision procedures

This method incrementally builds a model.

At every stage it defines a “partial model” µi and does an early/lazy check if ϕ can
be true in some extension of µi.

At each point the algorithm has to decide how to extend µi to µi+1, until it
constructs a full model for ϕ.

Tableaux-based decision procedures

This method builds the model of ϕ via a “top-down” approach.

I.e., ϕ is decomposed in its sub-formulas ϕ1, . . . , ϕn and the algorithm recursively
builds n models M1, . . . ,Mn for them.

The model M of ϕ is obtained by a suitable combination of M1, . . . ,Mn
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SAT-based decision procedure - Example

We illustrate a SAT-based decision procedure on a propositional logic example.

To find a model for (p ∨ q) ∧ ¬p, we proceed as follows:

partial model lazy evaluation result of lazy evaluation

µ0 = {p = true} (true ∨ q) ∧ ¬true false (backtrack)

µ1 = {p = false} (false ∨ q) ∧ ¬false q (continue)

µ2 = {p = false, (false ∨ true) ∧ ¬false true (success!)
q = true}
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Soundness and Completeness

Let R be an inference method, and let ‘`R denote the corresponding inference relation.

Definition (Soundness of an inference method)

An inference method R is sound if

`R ϕ =⇒ |= ϕ
Γ `R ϕ =⇒ Γ |= ϕ (strongly sound)

Definition (Completeness of an inference method)

An inference method R is complete if

|= ϕ =⇒ `R ϕ
Γ |= ϕ =⇒ Γ `R ϕ (strongly complete)
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Towards resolution in first-order logic

Clausal form as before, but atom is P (t1, t2, . . . , tn), where ti may contain variables

Interpretation as before, but variables are understood universally

Example: {[P (x),¬R(a, f(b, x))], [Q(x, y)]}
interpreted as

∀x∀y{[R(a, f(b, x)) ⊃ P (x)] ∧Q(x, y)}

Substitutions: θ = {ν1/t1, ν2/t2, . . . , νn/tn}
Notation: If ρ is a literal and θ is a substitution, then ρθ is the result of applying
substitution θ to ρ (and similarly, cθ where c is a clause)

Example: θ = {x/a, y/g(x, b, z)}
P (x, z, f(x, y))θ = P (a, z, f(a, g(x, b, z)))

A literal is ground if it contains no variables.
A literal ρ is an instance of ρ′, if for some θ, ρ = ρ′θ
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Generalizing CNF

Resolution will generalize to handling variables
But, to convert well-formed formulas to CNF, we need additional steps:

1 eliminate ⊃ and ≡
2 push ¬ inward using also ¬∀x.α⇒ ∃x.¬α etc.

3 standardize variables: each quantifier gets its own variable
e.g. ∃x[P (x)] ∧Q(x)⇒ ∃z[P (z)] ∧Q(x) where z is a new variable

4 eliminate all existentials (discussed later)
5 move universals to the front using (∀xα) ∧ β ⇒ ∀x(α ∧ β)

where β does not use x (due to step 3)

6 distribute ∧ over ∨

Get universally quantified conjunction of disjunctions of literals

then drop all the quantifiers...
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First-order resolution

Main idea: a literal (with variables) stands for all its instances; so allow all such inferences

Given [P (x, a),¬Q(x)] and [¬P (b, y),¬R(b, f(y))], we want to infer
[¬Q(b),¬R(b, f(a))] among others

since [P (x, a),¬Q(x)] has [P (b, a),¬Q(b)] and [¬P (b, y),¬R(b, f(y))] has
[¬P (b, a),¬R(b, f(a))]

Resolution:

Given clauses {ρ1} ∪ C1 and {ρ2} ∪ C2

Rename variables, so that they are distinct in the two clauses.

For any θ such that ρ1θ = ρ2θ, infer (C1 ∪ C2)θ.

We say that ρ1 unifies with ρ2 and that θ is a unifier of the two literals

Resolution derivation: as before
Theorem: S → [] iff S |= [] iff S is unsatisfiable

Note: There are pathological examples where a slightly more general definition of
Resolution is required. We ignore them for now...
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Example 3

?
KB |= HardWorker(sue)

KB

∀x (GradStudent(x) ⊃ Student(x))
∀x (Student(x) ⊃ HardWorker(x))
GradStudent(sue)

Label each step with the unifier

Point to relevant literals in clauses
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The 3 block example

KB = {On(a, b), On(b, c), Green(a),¬Green(c)}
already in CNF

Query = ∃x∃y[On(x, y) ∧Green(x) ∧ ¬Green(y)]

↙

Note: Need to use On(x, y) twice, for 2 cases
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Arithmetic

KB: Plus(zero, x, x)
Plus(x, y, z) ⊃ Plus(succ(x), y, succ(z))

Q: ∃uP lus(2, 3, u)

For readability, we use

0 for zero,

1 for succ(zero),

2 for succ(succ(zero))

etc.

Can find the answer in the derivation

u/succ(succ(3))

that is: u/5
Can also derive Plus(2, 3, 5)
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Answer predicates

In first-order logic, we have the possibility of deriving ∃xP (x) without being able to
derive P (t) for any t.

e.g. the three-blocks problem
∃x∃y[On(x, y) ∧Green(x) ∧ ¬Green(y)]
but cannot derive which block is which

Solution: answer-extraction process

replace query ∃xP (x) by ∃x[P (x) ∧ ¬A(x)]
where A is a new predicate symbol called the answer predicate

instead of deriving [], derive any clause containing just the answer predicate

can always convert to and from a derivation of []

KB : Student(john)
Student(jane)
Happy(john)

Q :
∃x[Student(x) ∧Happy(x)]
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Disjunctive answers

KB :

Student(john)

Student(jane)

Happy(john) ∨
Happy(jane)

Query :

∃x[Student(x) ∧
Happy(x)]

Note:

can have variables in answer

need to watch for Skolem symbols... (next)
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Skolemization

So far, converting well-formed formulas to CNF ignored existentials

e.g. ∃x∀y∃zP (x, y, z)

Idea: names for individuals claimed to exist, called Skolem constant and function symbols

there exists an x, call it a

for each y, there is a z, call it f(y)
get ∀yP (a, y, f(y))

replace ∀x1(. . .∀x2(. . .∀xn(. . .∃y[. . . y . . . ] . . . ) . . . ) . . . ) by
∀x1(. . .∀x2(. . .∀xn(. . . [. . . f(x1, x2, . . . , xn) . . . ] . . . ) . . . ) . . . )

f is a new function symbol that appears nowhere else

Skolemization does not preserve equivalence

e.g. 6|= ∃xP (x) ≡ P (a)

But it does preserve satisfiability

α is satisfiable iff α′ is satisfiable (where α′ is the result of Skolemization) sufficient
for resolution!
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Variable dependence

Show that ∃x∀yR(x, y) |= ∀y∃xR(x, y)

show {∃x∀yR(x, y),¬∀y∃xR(x, y)} unsatisfiable
∃x∀yR(x, y)⇒ ∀yR(a, y)
¬∀y∃xR(x, y)⇒ ∃y∀x¬R(x, y)⇒ ∀x¬R(x, b)

then {[R(a, y)], [¬R(x, b)]} → [] with {x/a, y/b}.
Show that ∀y∃xR(x, y) 6|= ∃x∀yR(x, y)

show {∀x∃xR(x, y),¬∃x∀yR(x, y)} unsatisfiable
∀y∃xR(x, y)⇒ ∀yR(f(y), y)
¬∃x∀yR(x, y)⇒ ∀x∃y¬R(x, y)⇒ ∀x¬R(x, g(x))

then get {[R(f(y), y)], [¬R(x, g(x)]}
where the two literals do not unify

Note: important to get dependence of variables correct

R(f(y), y) vs. R(a, y) above
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A problem

KB :

LessThan(succ(x), y) ⊃
LessThan(x, y)

Query :

LessThan(0, 0)

Should fail since KB 6|= Q

Infinite branch of resolvents cannot use a simple depth-first procedure to search for []
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Undecidability

Is there a way to detect when this happens?
No! first-order logic is very powerful

can be used as a full programming language

as there is no way to detect in general when a program is looping

There can be no procedure that does this:

process Clauses

If Clauses are unsatisfiable
then return YES
else return NO

However: Resolution is (refutation-)complete

some branch will contain [], for unsatisfiable clauses

So breadth-first search guaranteed to find []

search may not terminate on satisfiable clauses
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