LOGIC PROGRAMMING

Properties of SMs
N

1 Stable models are minimal models

1 Stable models are supported

Importance of Stable Models

Stable Models were an important contribution:
Introduced the notion of default negation (versus
negation as failure)

Allowed important connections to NMR. Started the
area of LP&NMR

Allowed for a better understanding of the use of LPs in
Knowledge Representation

It is considered as semantics of LPs by o
significant part of the community.

However...

Relevance

A on B if B occurs in the body of
some rule with head A. A on B if A directly
depends on B or there is a C such that A directly
depends on C and C depends on B.

A semantics Sem is iff for every program P,
AeSem(P) iff AcSem(Rel,(P))

where Rel, (P) contains all rules of P whose head is A or
some B on which A depends.

This property is required to allow for the usual top-
down execution of logic programs.

Cumulativity

A semantics Sem is iff for every program
P, if AeSem(P) and BeSem(P) then BeSem(PU{A})

i.e. all derived atoms can be added as facts without
changing the program’s meaning.

This property is very important for implementations.

Without it, tabling methods cannot be used.

Problems with Stable Models

The stable models semantics

E.g. program {a<— not a} has no stable models.

The stable models semantics is
. Let P be
a<—not b. b<—not a. c<—not a. c<—not c.
whose unique stable model is {b,c}.
: b is not true in PU{c}.
PU{c} has 2 stable models: {b,c} and {a,c}, so only c is true.

: b is not true in Rel (P).
the rules in Rel (P) are a<—not b. and b<—not a.
Rel,(P) has 2 stable models: {b} and {a}, so b and a are not true.

Problems with Stable Models

The computation of Stable Models is NP-Complete
(for normal logic programs)

The stable models semantics (
) is non-supported.
Let P be a<—notb b<—not a. c<—a. c<b.

P has two stable models: {a,c} and {b,c}, so c is true in P,
even though there is no rule whose body is true in P
(neither a nor b are true in P).

ASP vs. Prolog-like programming

ASP is adequate for:
NP-complete problems

situations where the whole program is relevant for the
problem at hand

But if the problem is polynomial, why use such a

complex system?

If only part of the program is relevant for the
desired query, why compute the entire model?

ASP vs. Prolog like programming

For such problems, top-down, goal-driven
mechanisms seem more adequate

This type of mechanisms is used by Prolog

Solutions come in variable substitutions rather than in
complete models

The system is activated by queries

No global analysis is made

only the relevant part of the program is visited

Problems with Prolog

Declarative semantics of Prolog is the completion

All the problems of completion are inherited by Prolog

According to SLDNF, termination is not guaranteed

even for Datalog programs (i.e. programs with finite
ground version)

A proper semantics is still needed

Well-Founded Semantics

Defined in [GRS90], generalizes SMs to 3-valued
models (true /undefined /false).

Note that

there are programs with no fixpoints of 17,

but all programs have fixpoints of ;2
recall that I';(1)= least(P/I)

P={a< not a}
['o({a})={} and I'p({})={a} so there are no Stable Models
But Ip*({a})={a} and I:*({})={}

Partial Stable Models

A three-valued interpretation T U not F is a
if:

T=L4(T)

Tc Ip(T)

F=H,—T5(T)
The 2nd condition guarantees that no atom is both true and false:
TUF = @
P={a< not a}

has a unique PSM: {}
P={a<—not b. b<—not a. c<—not a. c<—not c.}

Has three PSMs: {}, {a, not b} and {c, b, not a}
The last one ({c, b, not a}) corresponds to the unique SM.

Well-Founded Model

Let P be a program. The
of P is the Partial Stable Model (w.r.t.

knowledge ordering i.e. C).

Given a program P, consider the following
transfinite sequence:

To = {}
|+1 _ F 2(T)
Ts=Ug<slo

...and let T be its least fixpoint.

| =T U not (H,—15(T)) is the Well-Founded Model
of P.

Well-Founded Semantics

Let | = T U not F be the Well-Founded Model of P.
Then, according to the well-founded semantics:

Ais true in P iff A € |
A is false in P iff not A € | (i.e. if A € F)
A is undefined in P otherwise (i.e. A ¢ | and not A ¢),

Properties of the Well-Founded
Semantics

Every program is assigned a meaning
For each SM, there is a PSM extending it
If WFM is total, it coincides with the single SM

It is sound w.r.t. the SM semantics

If P has stable models and A is true (resp. false) in the
WFM, it is also true (resp. false) in all SMs

WFM coincides with the least model in definite
programs

Properties of the Well-Founded
Semantics

The WFM is supported
WES is cumulative and relevant

lts computation is polynomial

on the number of instantiated rules of P

There are top-down proof-procedures, and sound
implementations

Stable Models Problems Revisited

The previously mentioned problems of the Stable

Models are not necessarily problematic
Relevance is not desired when analyzing global
problems

If the SMs correspond to the solutions of a problem,
programs without SMs simply correspond to problems
without solutions.

Some problems are in NP. So using an NP language is
not a problem.

In case of NP problems, the efficiency gains from
cumulativity are not really an issue.

Stable Models vs. Well-Founded
Model

Yield different forms of programming and of
representing knowledge, for usage with different
purposes

Well-Founded Model:

Closer to that of Prolog
Local reasoning (and relevance) are important
When efficiency is an issue even at the cost of expressivity

Stable Models

For dealing with NP-complete problems
Global reasoning

Different form of programming, not close to that of Prolog
Solutions are models, rather than answer /substitutions

Adding Strong Negation

In Normal LPs all the negative information is implicit.

Though that is desired in some cases (e.g. the database with flight
connections), sometimes an explicit form of negation, is needed for
Knowledge Representation.

For example, we may want to say that penguins do not fly using the rule:

But if we also have a rule:

We do not have any logical relation between and
We would like to have — (strong negation) to be able to write:

...and deal with it in a way that and are related (and
inconsistent).

Adding Strong Negation

Also, in rule bodies one form of negation does not seem to
be enough...

For example, it is fine to define innocence in terms of guilt
as follows:

But what if we want to define guilt in terms of innocence?
The following rule does not seem appropriate:

We should require that someone is (really) not innocent,
instead of not innocent by default. The rule should be
something like:

Adding Strong Negation
—

0 The difference between not p and —p is essential
whenever information about p cannot be assumed.

Open vs. Closed World Assumption

Adding Strong Negation to Stable
Models

Historically, the addition of Strong Negation to the
Stable Model Semantics coincided with the change
in name from Stable Models to Answer Sets.
The simpler way to extend the Stable Models
semantics is to:
Extend the Herbrand base H, with the set {—A | AeH;}
Extend every program with the ICs, for every AeH,

«— —A, A.
Treat —A and A as if they are both unrelated

Adding Strong Negation to the
Well-Founded Semantics

Generalizing the WFS the same way is not
appropriate. Consider for example the program:

Using the same method, the WFS would be

{ }. Despite the fact that we are
explicitely stating that kissinger is not a pacifist, we
cannot conclude that he is a hawk!

Coherence needs to be imposed, i.e., =LeT=LeF
For L= A orL=—A and —A=A

WFSX

The version of P, P, is obtained by adding
not —L to every rule of P with head L.
So, becomes

A three-valued interpretation T U not F is a Partial
Stable Model of P:

=TT p(T)

Tc I (T)

F=Hp—1'5(T)
Let P be a program. The WFSX model of P is the least
Partial Stable Model (w.r.t. knowledge ordering i.e. O).

WEFSX Example

P: Assume we have another person b.

pacifist(X)<—not hawk(X). To = {}

hawk(X)<—not pacifist(X). Te(To) = {=p(k),p(k)h(k),p(b)h(b)}
pacifistll) T, =T Lo(To) = {—p(k)}

Ps:

[5(T1) = {=p(k)h(k),p(b)h(b)}
To= [pl(Ty) = {=p(k)h(k)}
[5(T5) = {=p(k)h(k),p(b)h(b)}
T3= [pl(T5) = {=p(k)h(k)}
T, =T,

pacifist(X)<—not hawk(X), not —pacifist(X).
hawk(X)<—not pacifist(X), not — hawk(X).
pacifist(k)<— not pacifist(k).

The well-founded model is:

{—pacifist(k), hawk(k), not pacifist(k), not —hawk(k), not —pacifist(b), not —hawk(b)}

Properties of WFSX

Complies with the coherence principle
Coincides with WFS for normal programs

If WFSX is total, it coincides with the unique answer
set

t is sound w.r.t. answer sets

t is supported, cumulative, and relevant

ts computation is polynomial

t has sound implementations

Inconsistent Programs

Some programs have no WFSX model.

Three alternatives:

: everything follows from contradiction
like in First-Order Logic
provides no information in the presence of contradiction
: remove contradiction by revising P
computationally expensive
: isolate contradiction
efficient

allows to reason about the non-contradictory part

WEFSXp

A three-valued interpretation T U not F is a Paraconsistent
Partial Stable Model of P (the condition TC I (T) is
dropped):

T=1%1%(T)

F=H,—1'5(T)
Let P be a program. The WFSXp model of P is the
east Paraconsistent Partial Stable Model (w.r.t.

knowledge ordering i.e. O).

WFSXp Example

P: TO = {}
c<—not b. I'p (To) = {—a, a, b, c, d}
b<—a. T, =I5 (To) = {—a, a, b, d}
d<—not e. Lo (Ty) = {d}
a<—. T,= Tplp(Ty) = {—a, a, b, ¢, d}
—0<—.
[(T,) = {d}
Ps:

T3=Ipl%(T5) = {—aq, q, b, ¢, d}
T; =T,

c<—not b, not —c.

b<—a, not —b.

d<—not e, not —d. The well-founded model is

a<—not —a. {—aq, a, b, ¢, d, not a, not —a, not b,

—a<—not a. not —b, not ¢, not —¢, not —d, not e}

House M.D.

A patient arrives with: sudden epigastric pain; abdominal
tenderness; signs of peritoneal irritation

The rules for diagnosing are:

if he has sudden epigastric pain, abdominal tenderness, and signs of

peritoneal irritation, then he has perforation of a peptic ulcer or an
acute pancreatitis

the former requires major surgery, the latter therapeutic treatment

if he has high amylase levels, then a perforation of a peptic ulcer
can be exonerated

if he has Jobert’s manifestation, then pancreatitis can be exonerated

In both situations, the patient should not be nourished, but should
take H2 antagonists

House M.D.
N

perforation <— pain, abd-tender, per-irrit, not high-amylase

pancreat <— pain, abd-tender, per-irrit, not jobert

—nourish <— perforation h2-ant <— perforation
—nourish <— pancreat h2-ant <— pancreat
surgery <— perforation anesthesia <— surgery

—isurgery <— pancreat
pain. per-irrit. —high-amylase.
abd-tender. —jobert.

1 The WFSXp model is:

{pain, not —pain, abd-tender, not —abd-tender, per-irrit, not —per-irrit, —high-am,
not high-am, —jobert, not jobert, perforation, not —perforation, pancreat, not
—pancreat, —nourish, not nourish, h2-ant, not —h2-ant, surgery, —surgery, not
surgery, not —surgery, anesthesia, not anesthesia, not —anesthesia}

House M.D.

The WFSXp model is:
{

}

The symptoms are derived and non-contradictory

Both perforation and pancreatitis are concluded

He should not be fed (—nourish), but should take H2 antagonists
The information about surgery is contradictory

Anesthesia, though not explicitly contradictory (Tanesthesia does
not belong to WFM) relies on contradiction (both anesthesia and not
anesthesia belong to WFM)

Representing Knowledge with WFSX

A methodology for KR

WFSXp provides mechanisms for representing usual
KR problems:

logic language

non-monotonic mechanisms for defaults

forms of explicitly representing negation

paraconsistency handling

ways of dealing with undefinedness

In what follows, we propose a methodology for KR
using WF3SXp

Representation method (1)
N

Definite rules If A, then B:

OB <A
m penguins are birds: bird(X) <— penguin(X)

Default rules Normally, if A, then B:
71 B < A, rule_name, not 7B

rule_name < not rule_name
m birds normally fly: fly(X) < bird(X), bf(X), not —fly(X)
bf(X) < not ~bf(X)

Representation method (2)

-
Exception to default rules Under conditions COND, do not

apply the rule named rule_name:

—irule_name <— COND
m Penguins are an exception to the birds-fly rule =bf(X) «
penguin(X)
Preference rules Under conditions COND, prefer rule
RULE* (named rule_pref) to RULE: named rule_unpref)

—rule_unpref <— COND, rule_pref

B for penguins, prefer the penguins-do-not-fly to the birds-fly
rule: —bH(X) < penguin(X), pdf(X)

Representation method (3)

N
Hypothetical rules “If A, then B~ may or not apply:

71 B < A, rule_name, not 7B
rule_name < not rule_name

—rule_name < not rule_name

B quakers might be pacifists:
pacifist(X) < quaker(X), gp(X), not —pacifist(X)
qp(X) < not ~qp(X)
—qp(X) < not qp(X)

For a quaker, there is a PSM with pacifist, another with not pacifist. In
the WFM pacifist is undefined

Taxonomy example

The taxonomy

Mammals are animals Normally animals don’t fly

Bats are mammals Normally bats fly

Birds are animals Normally birds fly

Penguins are birds Normally penguins don’t fly

Dead animals are animals Normally dead animals don'’t fly
The preferences The elements

Dead bats don’t fly though bats do Pluto is a mammal

Dead birds don’t fly though birds do Joe is a penguin
Dracula is an exception to the above Tweety is a bird

In general, more specific information Dracula is a dead bat
is preferred

The taxonomy

}Iﬂ

penguin

1

joe

flies

animal \
\

—

tweety

mammal

pluto

N

— Definite rules

dead animal
A

bat

dracula

Taxonomy representation

Taxonomy

animal(X) <= mammal(X)
mammal(X) <— bat(X)
animal(X) < bird(X)
bird(X) <— penguin(X)
deadAn(X) < dead(X)

Default rules

—flies(X) <— animal(X), adf(X), not flies(X)
adf(X) < not 7adf(X)

flies(X) <= bat(X), btf(X), not ~flies(X)
btf(X) <— not btf(X)

flies(X) < bird(X), bf(X), not 7flies(X)
bf(X) <— not 7bf(X)

—flies(X) <— penguin(X), pdf(X), not flies(X)
pdf(X) <— not pdf(X)

—flies(X) <— deadAn(X), ddf(X), not flies(X)
ddf(X) < not ddf(X)

Explicit preferences

—btf(X) «— deadAn(X), bat(X), r1(X)

r1(X) <= not 7r1(X)

—btf(X) <— deadAn(X), bird(X), r2(X)

r2(X) <— not 7r2(X)
—r2(dracula)
“r1(dracula)

Implicit preferences

T1adf(X) < bat(X), btf(X)
—1adf(X) < bird(X), bf(X)
—bf(X) <— penguin(X), pdf(X)

Facts
mammal(pluto).
bird(tweety).

penguin(joe). bat(dracula).

deadAn(dracula).

Taxonomy semantics

-
deadAn
bat
penguin
mammal
bird
animal

>
@)
~

-
o
—t

3l<
—t

v
v
v
v
v
v
v
v

N NI EANAN I
1 RSASASNANASASNAS AN
AN ENAENANANANENENE ANAS

|

