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Strictness of FOL

To reason from P (a) to Q(a), need either

further facts about a itself

universals, e.g. ∀x(P (x) ⊃ Q(x))
something that applies to all instances
all or nothing!

But most of what we learn about the world is in terms of generics

e.g., encyclopedia entries for ferris wheels, wildflowers, violins, turtles.

Properties are not strict for all instances, because of

genetic / manufacturing varieties
early ferris wheels

cases in exceptional circumstances
dried wildflowers

borderline cases
toy violins

imagined cases
flying turtles

etc.
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Generics vs. universals

3 Violins have four strings.

vs.

7 All violins have four strings.

vs.

? All violins that are not E1 or E2 or ... have four strings

(exceptions usually cannot be enumerated)

Goal: be able to say a P is a Q in general, but not necessarily

It is reasonable to conclude Q(a) given P (a), unless there is a good reason not to.

Here: qualitative version (no numbers)
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Varieties of defaults (I)

General statements

prototypical: The prototypical P is a Q.
Owls hunt at night.

normal: Under typical circumstances, P ’s are Q’s.
People work close to where they live.

statistical: Most P ’s are Q’s.
The people in the waiting room are growing impatient.

Lack of information to the contrary

group confidence: All known P ’s are Q’s.
Natural languages are easy for children to learn.

familiarity: If a P was not a Q, you would know it.
an older brother
very unusual individual, situation or event
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Varieties of defaults (II)

Conventional

conversational: Unless I tell you otherwise, a P is a Q
“There is a gas station two blocks east”
the default: the gas station is open.

representational: Unless otherwise indicated, a P is a Q
the speed limit in a city

Persistence

inertia: A P is a Q if it used to be a Q.
colours of objects
locations of parked cars (for a while!)

Here: we will use “Birds fly” as a typical default.
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Closed-world assumption

Reiter’s observation

There are usually many more negative facts than positive facts!

Example

Airline flight guide provides

DirectConnect(cleveland,toronto) DirectConnect(toronto,northBay)
DirectConnect(toronto,winnipeg) ...

but not: ¬DirectConnect(cleveland,northBay)

Conversational default, called Closed World Assumption (CWA)

Only positive facts will be given, relative to some vocabulary

But note: KB 6|= negative facts (would have to answer: “I don’t know”)

Proposal: a new version of entailment:

KB |=c α iff KB ∪Negs |= α

where Negs = {¬p | p atomic and KB 6|= p}
a common pattern KB′ = KB ∪∆

November 10, 2020 7 / 39



Properties of CWA

Closed World Assumption (CWA)

KB |=c α iff KB ∪Negs |= α

Gives: KB |=c positive facts and negative facts

CWA is an assumption about complete knowledge

Never any unknowns, relative to vocabulary
For every α (without quantifiers), KB |=c α or KB |=c ¬α

Why? Inductive argument:
immediately true for atomic sentences
push ¬ in, e.g. KB |= ¬¬α iff KB |= α
KB |= (α ∧ β) iff KB |= α and KB |= β
Say KB 6|=c (α ∨ β). Then KB 6|=c α and KB 6|=c β
So by induction, KB |=c ¬α and KB |=c ¬β. Thus, KB |=c ¬(α ∨ β).

In general, a KB has incomplete knowledge.

Let KB be (p ∨ q).
Then KB |= (p ∨ q), but KB 6|= p, KB 6|= ¬p, KB 6|= q, KB 6|= ¬q

With CWA, if KB |=c (α ∨ β), then KB |=c α or KB |=c β
similar argument to above
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Query evaluation

Properties of entailment

With CWA, we can reduce queries (without quantifiers) to the atomic case:

KB |=c (α ∧ β) iff KB |=c α and KB |=c β

KB |=c (α ∨ β) iff KB |=c α or KB |=c β

KB |=c ¬(α ∧ β) iff KB |=c ¬α or KB |=c ¬β
KB |=c ¬(α ∨ β) iff KB |=c ¬α and KB |=c ¬β
KB |=c ¬¬α iff KB |=c α

reduces any query about KB |=c α to a set of queries KB |=c ρ about the literals ρ in α

If KB ∪Negs is consistent, we get KB |=c ¬α iff KB 6|=c α

reduces to: KB |=c p, where p is atomic

If atoms stored as a table, deciding if KB |=c α is like DB-retrieval:

reduce query to set of atomic queries

solve atomic queries by table lookup

Different from ordinary logic reasoning (e.g. no reasoning by cases)
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Consistency of CWA

Just because a KB is consistent, does not mean that KB ∪Negs is also consistent.

Non-problematic cases

If KB is a set of atoms, then KB ∪Negs is always consistent

Also works if KB has conjunctions and if KB has only negative disjunctions
If KB contains ¬(p ∨ q). Add both ¬p,¬q.

Problem

When KB |= (α ∨ β), but KB 6|= α and KB 6|= β

e.g. KB = (p ∨ q) Negs = {¬p,¬q} KB ∪Negs is inconsistent.

Solution: Generalised Closed World Assumption (GCWA)

Only apply CWA to atoms that are “uncontroversial”.

Negs = {¬p | If KB |= (p ∨ q1 ∨ · · · ∨ qn) then KB |= (q1 ∨ · · · ∨ qn)}

When KB is consistent, get:

KB ∪Negs consistent

everything derivable is also derivable by CWA
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Quantifiers and equality

Problem

So far, results do not extend to well-formed formulas with quantifiers

can have KB 6|=c ∀x.α and KB 6|=c ¬∀x.α
e.g. just because for every t, we have KB |=c ¬DirectConnect(myHome, t)

does not mean that KB |=c ∀x[¬ DirectConnect(myHome, x)]

Solution

We may want to treat KB as providing complete information about what individuals exist
Define: KB |=cd α iff KB ∪Negs ∪Dc |= α

where Dc is domain closure: ∀x[x = c1 ∨ · · · ∨ x = cn],

and ci are all the constants appearing in KB (assumed finite)

Get: KB |=cd ∃x.α iff KB |=cd α[x/c], for some c appearing in the KB
KB |=cd ∀x.α iff KB |=cd α[x/c], for all c appearing in the KB

We have KB |=cd α or KB |=cd ¬α, even with quantifiers

Then add: Un is unique names: (ci 6= cj), for i 6= j

Get: KB |=cdu (c = d) iff c and d are the same constant

→ full recursive query evaluation
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Non-monotonicity

Ordinary entailment is monotonic

If KB |= α, then KB∗ |= α, for any KB ⊆ KB∗

CWA entailment is not monotonic

Can have KB |=c α, KB ⊆ KB′, but KB′ 6|=c α

e.g. {p} |=c ¬q, but {p, q} 6|=c ¬q

Suggests study of non-monotonic reasoning

start with explicit beliefs

generate implicit beliefs non-monotonically, taking defaults into account

implicit beliefs may not be uniquely determined (vs. monotonic case)

Will consider two approaches:

minimal entailment: interpretations that minimize abnormality

default logic: KB as facts + default rules of inference
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Minimizing abnormality

CWA makes the extension of all predicates as small as possible
by adding negated literals

Generalize: do this only for selected predicates
Ab predicates used to talk about typical cases

Example

Bird(chilly),¬Flies(chilly),

Bird(tweety), (chilly 6= tweety),

∀x[Bird(x) ∧ ¬Ab(x) ⊃ Flies(x)] ←− All birds that are normal fly

Would like to conclude by default Flies(tweety), but KB 6|= Flies(tweety)

because there is an interpretation I where I[tweety] ∈ I[Ab]

Solution: consider only interpretations where I[Ab] is as small as possible, relative to
KB

this is sometimes called “circumscription” since we circumscribe the Ab predicate.
for example, require that I[chilly] ∈ I[Ab]

Generalizes to many Abi predicates
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Minimal entailment

Definition

Given two interpretations over the same domain, I1 and I2

I1 ≤ I2 iff I1[Ab] ⊆ I2[Ab], for every Ab predicate

I1 < I2 iff I1 ≤ I2 but not I2 ≤ I1

read: I1 is more normal than I2

Definition (Minimal Entailment)

Define a new version of entailment, |=≤ as follows:
KB |=≤ α iff for every I, if I |= KB and no I∗ < I s.t I∗ |= KB, then I |= α

With minimal entailment, α must be true in all interpretations satisfying KB that
are minimal in abnormalities
Get: KB |=≤ Flies(tweety)

because if interpretation satisfies KB and is minimal, only I[chilly] will be in I[Ab]
Note: Minimization need not produce a unique interpretation:

Bird(a), Bird(b), [¬Flies(a) ∨ ¬Flies(b)] yields two minimal interpretations
KB 6|=≤ Flies(a),KB 6|=≤ Flies(b), but KB |=≤ Flies(a) ∨ Flies(b)

Different from the CWA: no inconsistency!
But stronger than GCWA: conclude a or b flies
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Fixed and variable predicates

Example

Let’s extend the previous example with

∀x[Penguin(x) ⊃ Bird(x) ∧ ¬Flies(x)]

Get: KB |= ∀x[Penguin(x) ⊃ Ab(x)]
So minimizing Ab also minimizes penguins: KB |=≤ ∀x¬Penguin(x)

Definition (McCarthy’s definition)

Let P and Q be sets of predicates. I1 ≤ I2 iff they are over the same domain and

1 I1[P ] ⊆ I2[P ], for every P ∈ P Ab predicates

2 I1[Q] = I2[Q], for every Q ∈ Q fixed predicates

so only predicates apart from P and Q are allowed to vary

|=≤ becomes parameterized by what is minimized and what is allowed to vary.
Previous example: minimize Ab and fix Penguin, and allow only Flies to vary.

Problems:
need to decide what to allow to vary
cannot conclude ¬Flies(tweety) by default!

only get default (¬Penguin(tweety) ⊃ Flies(tweety))

November 10, 2020 16 / 39



Outline

1 Non-monotonic Reasoning
Closed-World Assumption
Minimal entailment
Default Logic

November 10, 2020 17 / 39



Motivation

We want to state something like ”typically birds fly”

... and we want to reason with such statements

Add non-logical inference rule:

bird (x) : can fly (x)

can fly (x)

with the intended meaning:
If x is a bird and if it is consistent to assume that x can fly, then conclude that x
can fly.

Exceptions can be represented using simple logical implications:

∀x : penguin (x) ⊃ ¬can fly (x)

∀x : emu (x) ⊃ ¬can fly (x)

∀x : kiwi (x) ⊃ ¬can fly (x)
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Formal Framework

FOL with classical logical consequence relation |= and deductive closure Cn such
that Cn (E) = {A | E |= A}

Definition (Default)

A Default d is an expression
A : B1, ..., Bn

C

where A, Bi and C are formulas in first-order logic.

A : Prerequisite must be true before rule can be applied

Bi : Consistency Condition the negation must not be true

C : Consequence will be concluded

A default rule is called closed if it does not contain free variables.

We denote A, {B1, ..., Bn} and C, by pre (d), just (d) and cons (d), respectively.
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Formal Framework

Definition ((Closed) Default Theory)

A (closed) default theory is a pair (D,W ), where D is a countable set of (closed)
defaults and W is a countable set of sentences in first-order logic.
We interpret non-closed defaults as schemata representing all of their ground instances.
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Extensions

Default theories extend the theories given by W using the default rules

D  Extensions.

Example

W = {a,¬b ∨ ¬c}
D =

{
a:b
b

a:c
c

}
One possible extension should contain b, another one c. Having them together is
impossible.

Intuitively: An extension is a belief context resulting from W and D.

In general, a default theory can have more than one extension.
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Multiple Extensions

What do we do if we have more than one extension?

Credulous Reasoning If ϕ holds in one extension, we accept ϕ as a credulous default
conclusion.

Skeptical Reasoning If ϕ holds in all extensions, we accept ϕ as a skeptical default
conclusion.

Choice Reasoning We compute one arbitrary extension and stick to it.
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Extensions - Informally

Desirable properties of an extension E of (D,W ):

Contains all facts W i.e. W ⊆ E.

Is deductively closed i.e. Cn (E) = E.

All applicable default rules are applied:

If 1
A : B1,...,Bn

C
∈ D

2 A ∈ E
3 ¬Bi /∈ E

Then C ∈ E.

Some condition of groundedness: each formula in an extension needs sufficient
reasons to be there.

Question Would minimality wrt. the previous requirements be enough?
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Groundedness

Desirable properties of an extension E of (D,W ):

Contains all facts W i.e. W ⊆ E.

Is deductively closed i.e. Cn (E) = E.

All applicable default rules are applied:

If 1
A : B1,...,Bn

C
∈ D

2 A ∈ E
3 ¬Bi /∈ E

Then C ∈ E.

Example

Consider
D =

{
:a
b

}
W = ∅

Cn ({¬a}) is a minimal set satisfying the previous properties but the theory (D,W ) gives
no support for ¬a.
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Extensions

Reiter’s proposal

Rests on the observation that, given a set S of formulas to use to test for consistency
of justifications, there is a unique least theory, say Γ (S), containing W , closed under
classical provability and also under defaults (in a certain sense determined by S).

For theory S to be grounded in (D,W ), S must be precisely what (D,W ) implies,
given that S is used to test the consistency of justifications.

Definition (Default Extension)

Let (D,W ) be a default theory. The operator Γ assigns to every set S of formulas the
smallest set of formulas such that:

1 W ⊆ Γ (S).

2 Cn (Γ (S)) = Γ (S).

3 If A : B1,...,Bn
C

∈ D and Γ (S) |= A,S 6|= ¬Bi, 1 ≤ i ≤ n, then C ∈ Γ (S).

A set E of formulas is an extension of (D,W ) iff E = Γ (E).
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How to use this definition?

The definition does not tell us how to construct an extension

However, it tells us how to check whether a set is an extension

1 Guess a set S
2 Now construct a minimal set Γ (S) by starting with W
3 Add conclusions from default rules D when necessary
4 If, in the end, when no more conclusions can be added, S = Γ (S), then S must be an

extension of (D,W )
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Examples

D =
{

a:b
b
, b:a

a

}
W = {a ∨ b}

D =
{

a:b
¬b

}
W = ∅

D =
{

a:b
¬b

}
W = {a}

D =
{

:a
a
, :b

b
, :c

c

}
W = {b ⊃ ¬a ∧ ¬c}

D =
{

:c
¬d ,

:d
¬e ,

:e
¬f

}
W = ∅

D =
{

:c
¬d ,

:d
¬c

}
W = ∅

D =
{

a:b
c
, a:d

e

}
W = {a, (¬b ∨ ¬d)}
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Questions

Can we say something about the existence of extensions?

Is it possible to characterise the set of extensions more intuitively?

How do the different extensions relate to each other?

Can one extension be a subset of another one?
Are extensions pairwise incompatible (i.e. jointly inconsistent)?

Is it possible that an extension is inconsistent?
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Quasi-Inductive Characterisation of Extensions

A more intuitive characterisation of extensions:

Theorem

Let (D,W ) be a default theory and E a set of formulas. Let:

E0 = W

Ek+1 = Cn (Ek) ∪
{
C | A : B1, ..., Bn

C
∈ D,Ek |= A,E 6|= ¬Bi, 1 ≤ i ≤ n

}

Then, Γ (E) =
⋃∞

k=0Ek.

Moreover, a set E of formulas is an extension of (D,W ) iff

E =
⋃∞

k=0
Ek

Question Why is this characterisation non-constructive?
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Another Important Result

Definition

Let E be a set of formulas. A default d is generating for E if E |= pre (d) and, for every
Bi ∈ just (d), E 6|= ¬Bi. If D is a set of defaults, we write GD (D,E) for the set of
defaults in D that are generating for E.

Theorem

Let E be an extension of a default theory (D,W ). Then

E = Cn (W ∪ {cons (d) | d ∈ GD (D,E)})

This result turns out to be fundamental for algorithms to compute extensions.
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Some Consequences

Corollary

Let (D,W ) be a default theory.

1 If W is inconsistent, then (D,W ) has a single extension which consists of all
formulas in the language.

2 If W is consistent and every default in D has at least one justification, then every
extension of (D,W ) is consistent.
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Some Consequences

Theorem

If E and F are extensions of (D,W ) such that E ⊆ F then E = F .

Proof sketch.

E =
⋃∞

k=0Ek and F =
⋃∞

k=0 Fk. It suffices to show that Fk ⊆ Ek.
Induction:

Trivially E0 = F0.

Assume C ∈ Fk+1.

C ∈ Cn (Fk) implies C ∈ Cn (Ek) (because Fk ⊆ Ek) i.e., C ∈ Ei+1.

Otherwise A : B1,...,Bn
C

∈ D,Fk |= A,F 6|= ¬Bi, 1 ≤ i ≤ n. However, then we have

Ek |= A (because Fk ⊆ Ek) and E 6|= ¬Bi, 1 ≤ i ≤ n (because E ⊆ F ), i.e.,
C ∈ Ei+1.
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Normal Default Theories

Definition

A default is normal if it has the form A : B
B

Theorem

Let (D,W ) be a normal default theory.

1 (D,W ) has at least one extension.

2 if E and F are extensions of (D,W ) and E 6= F , then E ∪ F is inconsistent.

3 if E is an extension of (D,W ), then for every set D′ of normal defaults, the normal
default theory (D ∪D′,W ) has an extension E′ such that E ⊆ E′.

The last property is often called semi-monotonicity of normal default logic. It asserts that
adding normal defaults to a normal default theory does not destroy existing extensions
but possibly only augments them.
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Normal Default Theories

Theorem

Let (D,W ) be a normal default theory.

2 if E and F are extensions of (D,W ) and E 6= F , then E ∪ F is inconsistent.

Proof sketch.

Let E =
⋃∞

k=0Ek and F =
⋃∞

k=0 Fk with

E0 = W

Ek+1 = Cn (Ek) ∪
{
B | A : B

B
∈ D,Ek |= A,E 6|= ¬Bi, 1 ≤ i ≤ n

}
for k ≥ 0

and the same for Fk. Since E 6= F , there must exist a smallest k such that Ek 6= Fk.
This means that there exists A : B

B
∈ D with Ek = Fk |= A but B ∈ Ek+1 and

B /∈ Fk+1. This is only possible if ¬B ∈ F (so that F |= ¬B). This means that B ∈ E
and ¬B ∈ F , i.e., E ∪ F is inconsistent.

This property is often called orthogonality of normal default logic.
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Goal-Driven Reasoning

Question Can we have top-down goal-driven reasoning?

Example

Consider the default theory

D =
{
d1 = p:q

r
, d2 = r:q

s
, d3 = :

¬q

}
W = {p}

and suppose we are interested in testing whether s is supported (for now we take this to
be equivalent to existence of an extension that contains s) by the default theory.
An argument could be:

1 s is the consequent of d2 so let’s try to derive its prerequisite r.

2 r is the consequent of d1 so let’s try to derive its prerequisite p.

3 p is included in W so we are done.

We did not pay attention to the consistency, but this should not be a problem because
there are no conflicts among W , d1 and d2.
So, we could be tempted to answer the question positively.
However, the only extension is Cn ({p,¬q}) which does not include s.
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Default Proofs in Normal Default Theories

Fortunately, the previous problem cannot arise in normal default theories.

Definition (Default Proofs)

A default proof of B in a normal default theory (D,W ) is a finite sequence of defaults(
di = Ai : Bi

Bi

)
i=1,...,n

such that:

W ∪ {B1, ..., Bn} |= B

W ∪ {B1, ..., Bn} is consistent

W ∪ {B1, ..., Bk} |= Ak+1, for 0 ≤ k ≤ n− 1

Theorem

A formula B has a default proof in a normal default theory (D,W ) iff there exists an
extension E of (D,W ) such that B ∈ E.
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Default Proofs in Normal Default Theories

Example

Consider the default theory (D,W ) with W = {q ∧ r ⊃ p} and
D = {d1, d2, d3, d4, d5, d6} with

d1 = :d
d

d2 = d:¬c∧b
¬c∧b d3 = d:c

c
d4 = :a

a
d5 = a∧b:q

q
d6 = ¬c:r

r

We want to know whether p is included in some extension of (D,W ).
One default proof is d1, d2, d4, d6, d5.
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Default Proofs in Normal Default Theories

Example

Consider the default theory (D,W ) with W = ∅ and D = {d1, d2, d3} with

d1 = q:p
p

d2 = ¬p:q
q

d3 = :¬p
¬p

Question Why is d3, d2, d1 not a default proof for p?

Answer Because W ∪ cons (d3) ∪ cons (d2) ∪ cons (d1) = W ∪ {p, q,¬p} is
inconsistent.
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Limitations of Normal Default Theories

Example

Suppose we are given the information: Bill is a high school dropout. Typically, high
school dropouts are adults. Typically, adults are employed.
These facts are naturally represented by the default theory (D,W ) with
W = {dropout (bill)} and

D =

{
dropout (X) : adult (X)

adult (X)
,
adult (X) : employed (X)

employed (X)

}
which has the single extension Cn ({dropout (bill) , adult (bill) , employed (bill)}).
It is counterintuitive to assume that Bill is employed! Whereas the second default seems
accurate on its own, we want to prevent its application in case the adult X is a dropout
i.e.

adult (X) : employed (X) ∧ ¬dropout (X)

employed (X)

Question? Why not simply add ¬dropout (X) to the prerequisite of the default to
keep it normal?
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