
Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 2 / 136

Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 47 / 136

Modeling and Interpreting

Problem

Logic Program

Solution(s)

Answer sets
?

-

6

Modeling Interpretation

Computation

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 48 / 136

Problems as Logic Programs

For solving a problem class P for a problem instance I, encode
1 the problem instance I as a set of facts C(I) and
2 the problem class P as a set of rules C(P),

such that the solutions to P for I can be (polynomially) extracted from the
answer sets of C(P) [C(I).

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 49 / 136

3-colorability of graphs

Problem
Problem instance A graph (V ,E).
Problem class Assign each vertex in V one of 3 colors such that no two

vertexes in V connected by an edge in E have the same color.

Solution
C(I) vertex(1) vertex(2) vertex(3)

edge(1,2) edge(2,3) edge(3,1)

C(P) colored(V,r) not colored(V,b), not colored(V,g),vertex(V)
colored(V,b) not colored(V,r), not colored(V,g),vertex(V)
colored(V,g) not colored(V,r), not colored(V,b),vertex(V)

 edge(V,U), colored(V,C), colored(U,C),
color(C)

AS’s { colored(1,r), colored(2,b), colored(3,g),
othercolor(1,g), . . . , vertex(1),. . . , edge(1,2), . . . }, . . .

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 50 / 136

n-colorability of graphs (with n = 3)

Problem
Problem instance A graph (V ,E).
Problem class Assign each vertex in V one of n colors such that no two

vertexes in V connected by an edge in E have the same color.

Solution
C(I) vertex(1) vertex(2) vertex(3)

edge(1,2) edge(2,3) edge(3,1)

C(P) color(r) color(b) color(g)
colored(V,C) not othercolor(V,C),vertex(V), color(C).

othercolor(V,C) colored(V,C’), C6=C’,
vertex(V), color(C), color(C’).

 edge(V,U), colored(V,C), colored(U,C),
color(C).

AS’s { colored(1,r), colored(2,b), colored(3,g), . . . },. . .

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 51 / 136

Basic Methodology

ASP Basic Methodology
Generate and Test (or: Guess and Check) approach.

Generator Generate potential candidate answer sets
(typically through non-deterministic constructs)

Tester Eliminate non-valid Candidates
(typically through integrity constraints)

In a Nutshell...

Logic Program = Data + Generator + Tester [+Optimizer]

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 52 / 136

Satisfiability

Problem
Problem instance A propositional formula �.
Problem class Is there an assignment of propositional variables to true and

false such that a given formula � is true.

Solution
Consider formula (a _ ¬b) ^ (¬a _ b):

Generator Tester Answer set
a not a0

a0 not a

b not b0

b0 not b

 not a, b
 a, not b

A1 = {a,b}
A2 = {a0,b0}

Sneak Preview: Generator with a choice rule: {a,b}

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 53 / 136

Hamiltonian Path

Problem
Problem instance A directed graph (V ,E) and a starting vertex v 2 V.
Problem class Find a path in (V ,E) starting at v and visiting all other vertices

in V exactly once.

Solution

C(I) vertex/1 arc/2 start/1
C(P) inPath(X,Y) arc(X,Y), not outPath(X,Y)

outPath(X,Y) arc(X,Y), not inPath(X,Y)
 inPath(X,Y), inPath(X,Z), Y6=Z
 inPath(X,Y), inPath(Z,Y), X6=Z

reached(X) start(X)
reached(X) reached(Y),inPath(Y,X)

 vertex(X),not reached(X)
 inPath(Y,X), start(X)

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 54 / 136

Planning in the Blocksworld

Example (Scenario)

1
2

3
4

5
6

6
5
4

3
2
1

Initial situation Goal situation

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 55 / 136

Planning in the Blocksworld

Example (Initial Situation)
#const grippers=2.
#const lasttime=3.

block(1..6).

% DEFINE
on(1,2,0).
on(2,table,0).
on(3,4,0).
on(4,table,0).
on(5,6,0).
on(6,table,0).

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 56 / 136

Planning in the Blocksworld

Example (Goal Situation)
% TEST
:- not on(3,2,lasttime).
:- not on(2,1,lasttime).
:- not on(1,table,lasttime).
:- not on(6,5,lasttime).
:- not on(5,4,lasttime).
:- not on(4,table,lasttime).

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 57 / 136

Planning in the Blocksworld

Example (Generate)
time(0..lasttime).

location(B) :- block(B).
location(table).

% GENERATE
{ move(B,L,T) : block(B), location(L) } grippers :-

time(T), T<lasttime.

#show move/3.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 58 / 136

Planning in the Blocksworld

Example (Define)
% effect of moving a block
on(B,L,T+1) :- move(B,L,T),

block(B), location(L),
time(T), T<lasttime.

% inertia
on(B,L,T+1) :- on(B,L,T), not neg_on(B,L,T+1),

location(L), block(B),
time(T), T<lasttime.

% uniqueness of location
neg_on(B,L1,T) :- on(B,L,T), L!=L1,

block(B), location(L), location(L1),
time(T).

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 59 / 136

Planning in the Blocksworld

Example (Test)
% neg_on is the negation of on
:- on(B,L,T), neg_on(B,L,T),

block(B), location(L), time(T).

% two blocks cannot be on top of the same block
:- 2 { on(B1,B,T) : block(B1) },

block(B), time(T).

% a block can’t be moved unless it is clear
:- move(B,L,T), on(B1,B,T),

block(B), block(B1), location(L), time(T), T<lasttime.

% a block can’t be moved onto a block that is being moved
:- move(B,B1,T), move(B1,L,T),

block(B), block(B1), location(L), time(T), T<lasttime.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 60 / 136

Planning in the Blocksworld

Example (The Plan)
clingo blocks.lp 0
clingo version 5.4.0
Reading from blocks.lp
Solving...
Answer: 1
move(1,table,0) move(3,table,0) move(2,1,1) move(5,4,1) move(3,2,2)
move(6,5,2)
SATISFIABLE

Models : 1
Calls : 1
Time : 0.008s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.008s

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 61 / 136

Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 62 / 136

Disjunctive Logic Programs: Syntax

Definition (Disjunctive Rule)
A disjunctive rule, r , is an ordered pair of the form

A1 ; . . . ;Am Am+1, . . . ,An, not An+1, . . . , not Ao,

where o � n � m � 0, and each Ai (0  i  o) is an atom.

Definition (Disjunctive Logic Program)
A disjunctive logic program is a finite set of disjunctive rules.

Notation

head(r) = {A1, . . . ,Am}
body(r) = {Am+1, . . . ,An, not An+1, . . . , not Ao}

body+(r) = {Am+1, . . . ,An}
body�(r) = {An+1, . . . ,Ao}

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 63 / 136

Disjunctive Logic Programs: Semantics

Definition (Positive Disjunctive Logic Programs)

A program is called positive if body�(r) = ; for all its rules.

Definition (Closure)
A set X of atoms is closed under a positive program ⇧ iff for any r 2 ⇧,
head(r) \ X 6= ; whenever body+(r) ✓ X .

X corresponds to a model of ⇧ (seen as a formula).

Definition (min✓(⇧))

The set of all ✓-minimal sets of atoms being closed under a positive program
⇧ is denoted by min✓(⇧).

min✓(⇧) corresponds to the ✓-minimal models of ⇧ (seen as a formula).

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 64 / 136

Disjunctive Logic Programs: Semantics

Definition (Reduct of a Disjunctive Logic Program)

The reduct, ⇧X , of a disjunctive program ⇧ relative to a set X of atoms is
defined by

⇧X = {head(r) body+(r) | r 2 ⇧ and body�(r) \ X = ;}.

Definition (Answer Set of a Disjunctive Logic Program)

A set X of atoms is an answer set of a disjunctive program ⇧ if X 2 min✓(⇧X).

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 65 / 136

Positive Disjunctive Logic Programs: Example

Example

⇧ =

⇢
a
b ; c a

�

The sets {a, b}, {a, c}, and {a, b, c} are closed under ⇧.
We have min✓(⇧) = { {a, b}, {a, c} }.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 66 / 136

3-colorability of graphs revisited

Problem
Problem instance A graph (V ,E).
Problem class Assign each vertex in V one of 3 colors such that no two

vertexes in V connected by an edge in E have the same color.

Solution
C(I) vertex(1) vertex(2) vertex(3)

edge(1,2) edge(2,3) edge(3,1)

C(P) colored(V,r); colored(V,b); colored(V,g) vertex(V)
 edge(V,U), colored(V,C), colored(U,C)

AS’s { colored(1,r), colored(2,b), colored(3,g), . . . }, . . .

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 67 / 136

Disjunctive Logic Programs: Examples

Example
⇧1 = {a ; b ; c } has answer sets {a}, {b}, and {c}.
⇧2 = {a ; b ; c , a} has answer sets {b} and {c}.
⇧3 = {a ; b ; c , a , b c , c b} has answer set {b, c}.
⇧4 = {a ; b c , b not a, not c , a ; c not b} has answer sets {a}
and {b}.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 68 / 136

Some properties

Property
A disjunctive logic program may have zero, one, or multiple stable models

Property
If X is a stable model of a disjunctive logic program ⇧, then X is a model of ⇧
(seen as a formula)

Property
If X and Y are stable models of a disjunctive logic program ⇧, then X 6⇢ Y

Property
If A 2 X for some stable model X of a disjunctive logic program ⇧, then there
is a rule r 2 ⇧ such that body+(r) ✓ X, body�(r) \ X = ;, and
head(r) \ X = {A}

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 69 / 136

Disjunctive Logic Programs: Example with variables

Example

⇧ =

⇢
a(1, 2)
b(X) ; c(Y) a(X ,Y), not c(Y)

�

ground(⇧) =

8
>>>><

>>>>:

a(1, 2)
b(1) ; c(1) a(1, 1), not c(1)
b(1) ; c(2) a(1, 2), not c(2)
b(2) ; c(1) a(2, 1), not c(1)
b(2) ; c(2) a(2, 2), not c(2)

9
>>>>=

>>>>;

For every answer set X of ⇧, we have
a(1, 2) 2 X and
{a(1, 1), a(2, 1), a(2, 2)} \ X = ;.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 70 / 136

Disjunctive Logic Programs: Example with variables

Example

ground(⇧)X =

8
>>>><

>>>>:

a(1, 2)
b(1) ; c(1) a(1, 1)
b(1) ; c(2) a(1, 2)
b(2) ; c(1) a(2, 1)
b(2) ; c(2) a(2, 2)

9
>>>>=

>>>>;

Consider X = {a(1, 2), b(1)}.
We get min✓(ground(⇧)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }.
X is an answer set of ⇧ because X 2 min✓(ground(⇧)X).

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 71 / 136

Disjunctive Logic Programs: Example with variables

Example

ground(⇧)X =

8
>>>><

>>>>:

a(1, 2)
b(1) ; c(1) a(1, 1)

b(2) ; c(1) a(2, 1)

9
>>>>=

>>>>;

Consider X = {a(1, 2), c(2)}.
We get min✓(ground(⇧)X) = { {a(1, 2)} }.
X is no answer set of ⇧ because X 62 min✓(ground(⇧)X).

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 72 / 136

Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 73 / 136

Nested Logic Programs: Syntax

Definition (Formulas)
Formulas are formed from propositional atoms, > and ?, using
negation-as-failure (not), conjunction (,), and disjunction (;).

Definition (Nested Rules)
A nested rule, r , is an ordered pair of the form

F G

where F and G are formulas.

Definition (Nested Logic Program)
A nested program is a finite set of rules.

Notation
head(r) = F and body(r) = G.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 74 / 136

Nested Logic Programs: Semantics

Definition (Satisfaction relation)
The satisfaction relation X |= F between a set of atoms and a formula F is
defined recursively as follows:

X |= F if F 2 X for an atom F ,
X |= >,
X 6|= ?,
X |= (F ,G) if X |= F and X |= G,
X |= (F ;G) if X |= F or X |= G,
X |= not F if X 6|= F .

A set X of atoms satisfies a nested program ⇧, written X |= ⇧, iff for any
r 2 ⇧, X |= head(r) whenever X |= body(r).

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 75 / 136

Nested Logic Programs: Semantics

Definition (min✓(⇧))

The set of all ✓-minimal sets of atoms satisfying program ⇧ is denoted by
min✓(⇧).

Definition (Reduct of a Formula)

The reduct, F X , of a formula F relative to a set X of atoms is defined
recursively as follows:

F X = F if F is an atom or > or ?,
(F ,G)X = (F X ,GX),
(F ;G)X = (F X ;GX),

(not F)X =

⇢
? if X |= F
> otherwise

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 76 / 136

Nested Logic Programs: Semantics

Definition (Reduct of a Nested Logic Program)

The reduct, ⇧X , of a nested program ⇧ relative to a set X of atoms is defined
by

⇧X = {head(r)X body(r)X | r 2 ⇧}.

Definition (Answer Set of a Nested Logic Program)

A set X of atoms is an answer set of a nested program ⇧ iff X 2 min✓(⇧X).

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 77 / 136

Nested Logic Programs: Examples

Example
⇧1 = {(p ; not p) >}

For X = ;, we get
⇧;

1 = {(p ;>) >}
min✓(⇧;

1) = {;}. 4

For X = {p}, we get
⇧{p}

1 = {(p ;?) >}
min✓(⇧{p}

1) = {{p}}. 4

⇧2 = {p not not p}
For X = ;, we get ⇧;

2 = {p ?} and min✓(⇧
;
2) = {;}. 4

For X = {p}, we get ⇧{p}
2 = {p >} and min✓(⇧

{p}
2) = {{p}}. 4

In general (Intuitionistic Logics HT (Heyting, 1930) and G3 (Gödel, 1932))
F G, not not H is equivalent to F ; not H G
F ; not not G H is equivalent to F H, not G
not not not F is equivalent to not F

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 78 / 136

Hamiltonian Paths: Generator Revisited

Example
Normal logic programs

inPath(X ,Y) arc(X ,Y), not outPath(X ,Y)

outPath(X ,Y) arc(X ,Y), not inPath(X ,Y)

Disjunctive logic programs

inPath(X ,Y) ; outPath(X ,Y) arc(X ,Y)

Nested logic programs

inPath(X ,Y) ; not inPath(X ,Y) arc(X ,Y)

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 79 / 136

Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 80 / 136

Propositional Theories: Syntax

Definition (Formulas)
Formulas are formed from atoms and ? using conjunction (^), disjunction (_),
and implication (!).

Notation

> = (? ! ?)
⇠F = (F ! ?) (or: not F)

Definition (Propositional Theory)
A propositional theory is a finite set of formulas.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 81 / 136

Propositional Theories: Semantics

Definition (Satisfaction relation)
The satisfaction relation X |= F between a set X of atoms and a (set of)
formula(s) F is defined as in propositional logic.

Definition (Reduct of a formula)

The reduct, F X , of a formula F relative to a set X of atoms is defined
recursively as follows:

F X = ? if X 6|= F
F X = F if F 2 X
F X = (GX � HX) if X |= F and F = (G � H) for � 2 {^,_,!}

Â If F = ⇠G = (G! ?),
then F X = (? ! ?) = >, if X 6|= G, and F X = ?, otherwise.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 82 / 136

Propositional Theories: Semantics

Definition (Reduct of a Propositional Theory)

The reduct, FX , of a propositional theory F relative to a set X of atoms is
defined as

FX = {F X | F 2 F}.

Definition (Satisfaction of a Propositional Theory)
A set X of atoms satisfies a propositional theory F , written X |= F , iff X |= F
for each F 2 F .

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 83 / 136

Propositional Theories: Semantics

Definition (min✓(F))

The set of all ✓-minimal sets of atoms satisfying a propositional theory F is
denoted by min✓(F).

Definition (Answer Set of a Propositional Theory)

A set X of atoms is an answer set of a propositional theory F if X 2 min✓(FX).

Proposition
If X is an answer set of F , then X |= F .

In general, this does not imply X 2 min✓(F)!

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 84 / 136

Propositional Theories: Two examples

Example
F1 = {p _ (p ! (q ^ r))}

For X = {p, q, r}, we get
F

{p,q,r}
1 = {p _ (p ! (q ^ r))} and min✓(F

{p,q,r}
1) = {;}. 8

For X = ;, we get
F

;
1 = {? _ (? ! ?)} and min✓(F

;
1) = {;}. 4

F2 = {p _ (⇠p ! (q ^ r))}
For X = ;, we get
F

;
2 = {?} and min✓(F

;
2) = ;. 8

For X = {p}, we get
F

{p}
2 = {p _ (? ! ?)} and min✓(F

{p}
2) = {;}. 8

For X = {q, r}, we get
F

{q,r}
2 = {? _ (> ! (q ^ r))} and min✓(F

{q,r}
2) = {{q, r}}. 4

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 85 / 136

Propositional Theories: Relationship with Logic
Programs

Definition (Translation of a nested rule)
The translation, ⌧ [(F G)], of a (nested) rule (F G) is defined recursively
as follows:

⌧ [(F G)] = (⌧ [G]! ⌧ [F]),
⌧ [?] = ?,
⌧ [>] = >,
⌧ [F] = F if F is an atom,
⌧ [not F] = ⇠⌧ [F],
⌧ [(F ,G)] = (⌧ [F] ^ ⌧ [G]),
⌧ [(F ;G)] = (⌧ [F] _ ⌧ [G]).

Definition (Translation of a nested logic program)
The translation of a logic program ⇧ is ⌧ [⇧] = {⌧ [r] | r 2 ⇧}.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 86 / 136

Propositional Theories: Relationship with Logic
Programs

Theorem (Embedding of nested logic programs)
Given a logic program ⇧ and a set X of atoms, X is an answer set of ⇧ iff X is
an answer set of ⌧ [⇧].

Example
The normal logic program ⇧ = {p not q, q not p}
corresponds to ⌧ [⇧] = {⇠q ! p, ⇠p ! q}.

Answer sets: {p} and {q}

The disjunctive logic program ⇧ = {p ; q }
corresponds to ⌧ [⇧] = {> ! p _ q}.

Answer sets: {p} and {q}

The nested logic program ⇧ = {p not not p}
corresponds to ⌧ [⇧] = {⇠⇠p ! p}.

Â Answer sets: ; and {p}

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 87 / 136

Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 88 / 136

Computational Complexity

Computational Complexity
Let A be an atom and X be a set of atoms.

For a positive normal logic program ⇧:
Deciding whether X is the answer set of ⇧ is P-complete.
Deciding whether A is in the answer set of ⇧ is P-complete.

For a normal logic program ⇧:
Deciding whether X is an answer set of ⇧ is P-complete.
Deciding whether A is in an answer set of ⇧ is NP-complete.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 89 / 136

Computational Complexity

Computational Complexity
For a positive disjunctive logic program ⇧:

Deciding whether X is an answer set of ⇧ is co-NP-complete.
Deciding whether A is in an answer set of ⇧ is NPNP-complete.

For a disjunctive logic program ⇧:
Deciding whether X is an answer set of ⇧ is co-NP-complete.
Deciding whether A is in an answer set of ⇧ is NPNP-complete.

For a nested logic program ⇧:
Deciding whether X is an answer set of ⇧ is co-NP-complete.
Deciding whether A is in an answer set of ⇧ is NPNP-complete.

For a propositional theory F :
Deciding whether X is an answer set of F is co-NP-complete.
Deciding whether A is in an answer set of F is NPNP-complete.

M.Knorr (DI/FCT/UNL) Answer Set Programming November 24, 2020 90 / 136

	Answer Set Programming
	Introduction
	Normal Logic Programs
	Modeling
	Disjunctive Logic Programs
	Nested Logic Programs
	Propositional Theories
	Computational Complexity

	Extensions
	Strong Negation
	Choice Rules
	Cardinality Constraints
	Cardinality Rules
	Weight Constraints (and more)
	Aggregates

	Bibliography

