
Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 91 / 136



Classical Negation: Syntax

Generalisation
Extend the language of Logic Programs to allow classical negation ¬ (for
atoms only!), besides default negation not (or ⇠).

Definition (Language)

Given an alphabet A of atoms, let A = {¬A | A 2 A}.
We assume A \A = ;.
The atoms A and ¬A are complementary.

¬A is the classical negation of A, and vice versa.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 92 / 136



Classical Negation: Semantics

Definition (Consistency)

A set X of atoms (over A [A) is consistent if X \ {A | ¬A 2 X} = ;, and
inconsistent, otherwise.

Definition (Answer Set)

A set X of atoms is an answer set of a logic program ⇧ over A [A if X is an
answer set of ⇧ [ {B  A,¬A | A 2 A,B 2 (A [A)}

Proposition

For a logic program ⇧ over A [A, exactly one of the following two cases
applies:

1 All answer sets of ⇧ are consistent or
2 X = A [A is the only answer set of ⇧.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 93 / 136



Classical Negation: Examples

Example
⇧1 = {cross  not train}

Answer set: {cross}
⇧2 = {cross  ¬train}

Answer set: ;
⇧3 = {cross  ¬train, ¬train }

Answer set: {cross,¬train}
⇧4 = {cross  ¬train, ¬train , ¬cross  }

Answer set: {cross,¬cross, train,¬train}
⇧5 = {cross  ¬train, ¬train not train, ¬cross  }

No answer set

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 94 / 136



Classical Negation: Translation

Definition ((Possibly inconsistent) answer sets)
For determining the (possibly inconsistent) answer sets of a logic program ⇧
over A [A in the standard way, translate ⇧ into ⇧0 as follows:

⇧0 = ⇧ [ {B  A,¬A ¬B  A,¬A | A 2 A,B 2 A,A 6= B}

Definition (Consistent answer sets)

In order to determine the answer sets of a logic program ⇧ over A [A in the
standard way, translate ⇧ (or F) into ⇧00 (or F 00) as follows:

⇧00 = ⇧ [ { A,¬A | A 2 A}

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 95 / 136



Example

Example
⇧ = {p  , ¬p  , q  not r}
⇧0 = ⇧ [ {A (B,¬B), ¬A (B,¬B) | A,B 2 {p, q, r}}
Answer set: {p,¬p, q,¬q, r ,¬r}
⇧ = {p ; q  , r  p, ¬r  p }
⇧0 = ⇧ [ {A (B,¬B), ¬A (B,¬B) | A,B 2 {p, q, r}}
Answer set: {q}
⇧ = {p ; not p  >, ¬p ; not q  >, q ; not q  >}
⇧0 = ⇧ [ {A (B,¬B), ¬A (B,¬B) | A,B 2 {p, q}}
Answer sets: ;, {p}, {¬p, q}, and {p,¬p, q,¬q}

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 96 / 136



Language Extensions

The expressiveness of a language can be enhanced by introducing new
constructs.
To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the new
constructs, e.g., classical negation.
This translation might also be used for implementing the language
extension. When is this feasible?

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 97 / 136



Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 98 / 136



Choice Rules

Idea
Choices over subsets.

Syntax

{A1, . . . ,Am} Am+1, . . . ,An, not An+1, . . . , not Ao,

Informal meaning
If the body is satisfied in an answer set, then any subset of {A1, . . . ,Am} can
be included in the answer set.

Example
The program ⇧ = { {a} b, b  } has two answer sets: {b} and {a, b}.

Implementation
lparse/gringo/i-dlv + smodels/cmodels/nomore/clasp/wasp

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 99 / 136



Choice Rules: Embedding in normal logic programs

Definition (Embedding of Choice Rules in normal logic programs)
A choice rule of form

{A1, . . . ,Am} Am+1, . . . ,An, not An+1, . . . , not Ao

can be translated into 2m + 1 rules

A Am+1, . . . ,An, not An+1, . . . , not Ao.

A1  A, not A1. . . . Am  A, not Am.

A1  not A1. . . . Am  not Am

by introducing new atoms A,A1, . . . ,Am.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 100 / 136



Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 101 / 136



Cardinality constraints

Syntax
A (positive) cardinality constraint is of the form l {A1, . . . ,Am} u

Informal meaning
A cardinality constraint is satisfied in an answer set X , if the number of atoms
from {A1, . . . ,Am} satisfied in X is between l and u (inclusive).
More formally, if l  |{A1, . . . ,Am} \ X |  u.

Conditions
l {A1 : B1, . . . ,Am : Bm} u where B1, . . . ,Bm are used for restricting
instantiations of variables occurring in A1, . . . ,Am.

Example
2 {hd(a),. . . ,hd(m)} 4

Implementation
lparse/gringo/i-dlv + smodels/cmodels/nomore/clasp/wasp

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 102 / 136



n-colorability revisited (with n = 3)

Example (n-colorability (with n = 3))

C(I) vertex(1)  edge(1,2)  
vertex(2)  edge(2,3)  
vertex(3)  edge(3,1)  

C(P) color(r)  color(b)  color(g)  
1 {colored(V,C) : color(C)} 1  vertex(V)

 edge(V,U),color(C),
colored(V,C),colored(U,C)

Answer set { colored(1,r), colored(2,b), colored(3,g), . . . }

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 103 / 136



Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 104 / 136



Cardinality rules

Idea
Control cardinality of subsets.

Syntax

A0  l {A1, . . . ,Am, not Am+1, . . . , not An}

Informal meaning
If at least l elements of the “body” are true in an answer set, then add A0 to
the answer set. l is a lower bound on the “body”

Example
The program ⇧ = { a 1{b, c}, b  } has one answer set: {a, b}.

Implementation
lparse/gringo/i-dlv + smodels/cmodels/nomore/clasp/wasp

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 105 / 136



Cardinality Rules: Embedding in normal logic
programs

Definition (Embedding of Cardinality Rules in normal logic programs)
Replace each cardinality rule

A0  l {A1, . . . ,Am} by A0  cc(1, l)

where atom cc(i , j) represents the fact that at least j of the atoms in
{Ai , . . . ,Am}, that is, of the atoms that have an index equal or greater than i ,
are in a particular answer set.
The definition of cc(i , j) is given by the rules

cc(i , j + 1)  cc(i + 1, j),Ai
cc(i , j)  cc(i + 1, j)

cc(m + 1, 0)  

What about space complexity? The problem is that if the set {A1, ...,Am} is
big, then for this quadratic translation the resulting set of rules is rather large,
requiring O(ml) new atoms to be introduced. Moreover, the size of the
translation grows towards O(m2) with the value of l .

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 106 / 136



Normal Rules: Embedding in Cardinality Rules

Definition (Normal Rules: Embedding in Cardinality Rules)
A normal rule

A0  A1, . . . ,Am, not Am+1, . . . , not An,

can be represented by the cardinality rule

A0  n + m {A1, . . . ,Am, not Am+1, . . . , not An}.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 107 / 136



Cardinality Rules with upper bounds

Definition (Embedding of Cardinality Rules with upper bounds in normal logic
programs)
A rule of the form

A0  l {A1, . . . ,Am, not Am+1, . . . , not An} u

stands for

A0  B, not C
B  l {A1, . . . ,Am, not Am+1, . . . , not An}
C  u + 1 {A1, . . . ,Am, not Am+1, . . . , not An}

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 108 / 136



Cardinality Constraints as heads

Definition (Embedding of Cardinality Constraints as heads in normal logic
programs)
A rule of the form

l {A1, . . . ,Am} u  Am+1, . . . ,An, not An+1, . . . , not Ao,

stands for

B  Am+1, . . . ,An, not An+1, . . . , not Ao

{A1, . . . ,Am}  B
C  l {A1, . . . ,Am} u
 B, not C

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 109 / 136



Full-fledged Cardinality Rules

Definition (Embedding of Cardinality Rules in normal logic programs)
A rule of the form

l0 S0 u0  l1 S1 u1, . . . , ln Sn un

stands for 0  i  n

Bi  li Si

Ci  ui + 1 Si

A  B1, . . . ,Bn, not C1, . . . , not Cn

 A, not B0

 A,C0

S0 \A  A

where A is the underlying alphabet.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 110 / 136



Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 111 / 136



Weight constraints

Syntax

l [A1 = w1, . . . ,Am = wm, not Am+1 = wm+1, . . . , not An = wn] u

Informal meaning
A weight constraint is satisfied in an answer set X , if

l 
⇣P

1im,Ai2X wi +
P

m<in,Ai 62X wi

⌘
 u .

Generalization of cardinality constraints.

Example
10 [course(1)=3,course(2)=6,. . . ,course(10)=9] 20

Implementation
lparse/gringo/i-dlv + smodels/cmodels/nomore/clasp/wasp

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 112 / 136



Optimization statements

Idea
Compute optimal answer sets by minimizing or maximizing a weighted sum of
given atoms, respectively.

Syntax

minimize [A1 = w1, . . . ,Am = wm, not Am+1 = wm+1, . . . , not An = wn]

maximize [A1 = w1, . . . ,Am = wm, not Am+1 = wm+1, . . . , not An = wn]

Several optimization statements are interpreted lexicographically.

Example
maximize [course(1)=3,course(2)=6,. . . ,course(10)=9]
minimize [road(X,Y) : length(X,Y,L) = L]

Implementation
lparse/gringo/i-dlv + smodels/cmodels/nomore/clasp/wasp

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 113 / 136



Weak integrity constraints

Syntax

:⇠ A1, . . . ,Am, not Am+1, . . . , not An [w : l]

Informal meaning
1 minimize the sum of weights of violated constraints in the highest level;
2 minimize the sum of weights of violated constraints in the next lower level;
3 etc

Implementation
dlv (i-dlv + wasp)

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 114 / 136



Conditional literals in gringo

We often want to encode the contents of a (multi-)set rather than
enumerating each of the elements.
To support this, lparse and gringo allow for conditional literals.

Syntax
A0 : A1 : . . . : Am : not Am+1 : . . . : not An

Informal meaning
List all ground instances of A0 such that corresponding
instances of A1, . . . ,Am, not Am+1, . . . , not An are true.

Example
gringo instantiates the program:

p(1). p(2). p(3). q(2).
{r(X) : p(X) : not q(X)}.

to:
p(1). p(2). p(3). q(2).
{r(1), r(3)}.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 115 / 136



Domain predicates in gringo

The predicates of literals on the right-hand side of a colon (:) must be
defined from facts without any negative recursion.
Such domain predicates are fully evaluated by gringo.

Example

p(1). p(2).
q(X) :- p(X), not p(X+1).
q(X) :- p(X), q(X+1).
r(X) :- p(X), not r(X+1).

p/1 and q/1 are domain predicates because none of them
negatively depends on itself.
r/1 is not a domain predicate because it is defined in
terms of not r(X+1).

See gringo documentations for further details.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 116 / 136



Outline

1 Answer Set Programming
Introduction
Normal Logic Programs
Modeling
Disjunctive Logic Programs
Nested Logic Programs
Propositional Theories
Computational Complexity

2 Extensions
Strong Negation
Choice Rules
Cardinality Constraints
Cardinality Rules
Weight Constraints (and more)
Aggregates

3 Bibliography

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 117 / 136



Aggregates: Motivation

Aggregates provide a general way to obtain a single value from a
collection of input values given as a set, a bag, or a list.
Popular aggregate (functions):

Average
Count
Maximum
Minimum
Sum

Cardinality and Weight constraints rely on Count and Sum aggregates.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 118 / 136



Aggregates: Syntax

Definition (Aggregate)
An aggregate has the form:

F hA1 = w1, . . . ,Am = wm, not Am+1 = wm+1, . . . , not An = wni � k

where
F stands for a function mapping multi-sets of Z to Z [ {+1,�1},
� stands for a relation between Z [ {+1,�1} and Z,
k is an integer,
Ai are atoms, and
wi are integers

for 1  i  n.

Example
sum hcourse(1) = 3, course(2) = 6, . . . , course(10) = 9i  60

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 119 / 136



Aggregates: Semantics

Definition (Semantics of Aggregates)
A (positive) aggregate F hA1 = w1, . . . ,An = wni � k can be represented
by the formula:

^

I✓{1,...,n},Fhwi |i2Ii6�k

0

@
^

i2I

Ai !
_

i2I

Ai

1

A

where I = {1, . . . , n} \ I and 6� is the complement of �.
Then, F hA1 = w1, . . . ,An = wni � k is true in X iff the above formula is
true in X .

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 120 / 136



Aggregates: An example

Example
Consider sumhp = 1, q = 1i 6= 1

i.e, A1 = p, A2 = q and w1 = 1, w2 = 1
I hwi | i 2 Ii sumhwi | i 2 Ii sumhwi | i 2 Ii = 1
; hi 0 false

{1} h1i 1 true
{2} h1i 1 true

{1, 2} h1, 1i 2 false

We get (p ! q) ^ (q ! p)
Analogously, we obtain (p _ q) ^ ¬(p ^ q) for sumhp = 1, q = 1i = 1.

Recall

^

I✓{1,...,n},Fhwi |i2Ii6�k

0

@
^

i2I

Ai !
_

i2I

Ai

1

A

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 121 / 136



Aggregates: Monotonicity

Monotone aggregates
For instance,

body+(r)
sumhp = 1, q = 1i > 1 amounts to q ^ p

We get a simpler characterization:
V

I✓{1,...,n},Fhwi |i2Ii6�k
W

i2I Ai

Anti-monotone aggregates
For instance,

body�(r)
sumhp = 1, q = 1i < 1 amounts to ¬p ^ ¬q

We get a simpler characterization:
V

I✓{1,...,n},Fhwi |i2Ii6�k ¬
V

i2I Ai

Non-monotone aggregates
For instance, sumhp = 1, q = 1i 6= 1 is non-monotone.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 122 / 136



Bibliography I

C. Baral.
Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

S. Brass and J. Dix.
Semantics of (disjunctive) logic programs based on partial evaluation.
Journal of Logic Programming, 40(1):1–46, 1999.

P. Cabalar and P. Ferraris.
Propositional theories are strongly equivalent to logic programs.
Theory and Practice of Logic Programming, 7(6):745–759, 2007.

K. Clark.
Negation as failure.
In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 123 / 136



Bibliography II

E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
In Proceedings of the Twelfth Annual IEEE Conference on Computational
Complexity (CCC’97), pages 82–101. IEEE Computer Society Press,
1997.
E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
ACM Computing Surveys, 33(3):374–425, 2001.

T. Eiter and G. Gottlob.
On the computational cost of disjunctive logic programming: Propositional
case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323, 1995.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 124 / 136



Bibliography III

T. Eiter, M. Fink, H. Tompits, and S. Woltran.
Simplifying logic programs under uniform and strong equivalence.
In V. Lifschitz and I. Niemelä, editors, Proceedings of the Seventh
International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’04), volume 2923 of Lecture Notes in Artificial
Intelligence, pages 87–99. Springer-Verlag, 2004.

Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.
Recursive aggregates in disjunctive logic programs: Semantics and
complexity.
In José Júlio Alferes and João Alexandre Leite, editors, JELIA, volume
3229 of Lecture Notes in Computer Science, pages 200–212. Springer,
2004.
P. Ferraris and V. Lifschitz.
Mathematical foundations of answer set programming.
In S. Artëmov, H. Barringer, A. d’Avila Garcez, L. Lamb, and J. Woods,
editors, We Will Show Them! Essays in Honour of Dov Gabbay, Volume
One, pages 615–664. College Publications, 2005.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 125 / 136



Bibliography IV

Paolo Ferraris and Vladimir Lifschitz.
Mathematical foundations of answer set programming.
In Sergei N. Artëmov, Howard Barringer, Artur S. d’Avila Garcez, Luís C.
Lamb, and John Woods, editors, We Will Show Them! (1), pages
615–664. College Publications, 2005.

Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz.
A new perspective on stable models.
In Manuela M. Veloso, editor, IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India,
January 6-12, 2007, pages 372–379, 2007.

Paolo Ferraris.
Answer sets for propositional theories.
In Chitta Baral, Gianluigi Greco, Nicola Leone, and Giorgio Terracina,
editors, LPNMR, volume 3662 of Lecture Notes in Computer Science,
pages 119–131. Springer, 2005.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 126 / 136



Bibliography V

H Gaifman and E. Shapiro.
Fully abstract compositional semantics for logic programs.
In Proceedings of the Sixteenth Annual ACM Symposium on Principles of
Programming Languages (POPL’89), pages 134–142, 1989.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo.
Available at http://potassco.sourceforge.net.

Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf.
The well-founded semantics for general logic programs.
J. ACM, 38(3):620–650, 1991.

M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth
International Conference and Symposium of Logic Programming
(ICLP’88), pages 1070–1080. The MIT Press, 1988.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 127 / 136



Bibliography VI

M. Gelfond and V. Lifschitz.
Logic programs with classical negation.
In Proceedings of the International Conference on Logic Programming,
pages 579–597, 1990.

M. Gelfond and V. Lifschitz.
Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9:365–385, 1991.

H. Kautz and B. Selman.
Planning as satisfiability.
In B. Neumann, editor, Proceedings of the Tenth European Conference
on Artificial Intelligence (ECAI’92), pages 359–363. John Wiley & sons,
1992.
R. Kowalski.
Logic for data description.
In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
77–103. Plenum Press, 1978.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 128 / 136



Bibliography VII

Joohyung Lee, Vladimir Lifschitz, and Ravi Palla.
A reductive semantics for counting and choice in answer set
programming.
In Dieter Fox and Carla P. Gomes, editors, AAAI, pages 472–479. AAAI
Press, 2008.

Joohyung Lee.
A model-theoretic counterpart of loop formulas.
In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI, pages
503–508. Professional Book Center, 2005.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello.
The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 129 / 136



Bibliography VIII

V. Lifschitz and H. Turner.
Splitting a logic program.
In Proceedings of the Eleventh International Conference on Logic
Programming, pages 23–37. MIT Press, 1994.

V. Lifschitz, L. Tang, and H. Turner.
Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence, 25(3-4):369–389, 1999.

V. Lifschitz, D. Pearce, and A. Valverde.
Strongly equivalent logic programs.
ACM Transactions on Computational Logic, 2(4):526–541, 2001.

Vladimir Lifschitz, David Pearce, and Agustín Valverde.
Strongly equivalent logic programs.
ACM Trans. Comput. Log., 2(4):526–541, 2001.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 130 / 136



Bibliography IX

V. Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

Vladimir Lifschitz.
Twelve definitions of a stable model.
In Maria Garcia de la Banda and Enrico Pontelli, editors, ICLP, volume
5366 of Lecture Notes in Computer Science, pages 37–51. Springer,
2008.
Fangzhen Lin and Yuting Zhao.
Assat: computing answer sets of a logic program by sat solvers.
Artif. Intell., 157(1-2):115–137, 2004.

Fangzhen Lin and Yi Zhou.
From answer set logic programming to circumscription via logic of gk.
In Manuela M. Veloso, editor, IJCAI, pages 441–446, 2007.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 131 / 136



Bibliography X

J. Lloyd.
Foundations of Logic Programming.
Symbolic Computation. Springer-Verlag, 2nd edition, 1987.

J. McCarthy and P. J. Hayes.
Some philosophical problems from the standpoint of artificial intelligence.
pages 26–45, 1987.

John McCarthy.
Circumscription - a form of non-monotonic reasoning.
Artif. Intell., 13(1-2):27–39, 1980.

Drew V. McDermott and Jon Doyle.
Non-monotonic logic i.
Artif. Intell., 13(1-2):41–72, 1980.

Drew V. McDermott.
Nonmonotonic logic ii: Nonmonotonic modal theories.
J. ACM, 29(1):33–57, 1982.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 132 / 136



Bibliography XI

M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry.
An A-prolog decision support system for the space shuttle.
In I. Ramakrishnan, editor, Proceedings of the Third International
Symposium on Practical Aspects of Declarative Languages (PADL’01),
volume 1990 of Lecture Notes in Computer Science, pages 169–183.
Springer-Verlag, 2001.

E. Oikarinen and T. Janhunen.
Modular equivalence for normal logic programs.
In G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors,
Proceedings of the Seventeenth European Conference on Artificial
Intelligence (ECAI’06), pages 412–416. IOS Press, 2006.

M. Osorio, J. Navarro, and J. Arrazola.
Equivalence in answer set programming.
In A. Pettorossi, editor, Proceedings of the Eleventh International
Workshop on Logic Based Program Synthesis and Transformation
(LOPSTR’01), volume 2372 of Lecture Notes in Computer Science,
pages 57–75. Springer-Verlag, 2001.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 133 / 136



Bibliography XII

David Pearce, Hans Tompits, and Stefan Woltran.
Encodings for equilibrium logic and logic programs with nested
expressions.
In Pavel Brazdil and Alípio Jorge, editors, EPIA, volume 2258 of Lecture
Notes in Computer Science, pages 306–320. Springer, 2001.

David Pearce.
A new logical characterisation of stable models and answer sets.
In Jürgen Dix, Luís Moniz Pereira, and Teodor C. Przymusinski, editors,
NMELP, volume 1216 of Lecture Notes in Computer Science, pages
57–70. Springer, 1996.

David Pearce.
Equilibrium logic.
Ann. Math. Artif. Intell., 47(1-2):3–41, 2006.

Raymond Reiter.
A logic for default reasoning.
Artif. Intell., 13(1-2):81–132, 1980.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 134 / 136



Bibliography XIII

Domenico Saccà and Carlo Zaniolo.
Stable models and non-determinism in logic programs with negation.
In PODS, pages 205–217. ACM Press, 1990.

P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

T. Syrjänen.
Lparse 1.0 user’s manual.
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz.

H. Turner.
Strong equivalence made easy: nested expressions and weight
constraints.
Theory and Practice of Logic Programming, 3(4-5):609–622, 2003.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 135 / 136



Bibliography XIV

Maarten H. van Emden and Robert A. Kowalski.
The semantics of predicate logic as a programming language.
J. ACM, 23(4):733–742, 1976.

M.Knorr (DI/FCT/UNL) Answer Set Programming December 3, 2020 136 / 136


	Answer Set Programming
	Introduction
	Normal Logic Programs
	Modeling
	Disjunctive Logic Programs
	Nested Logic Programs
	Propositional Theories
	Computational Complexity

	Extensions
	Strong Negation
	Choice Rules
	Cardinality Constraints
	Cardinality Rules
	Weight Constraints (and more)
	Aggregates

	Bibliography

