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Classical Negation: Syntax

Generalisation
Extend the language of Logic Programs to allow classical negation ¬ (for
atoms only!), besides default negation not (or ⇠).

Definition (Language)

Given an alphabet A of atoms, let A = {¬A | A 2 A}.
We assume A \A = ;.
The atoms A and ¬A are complementary.

¬A is the classical negation of A, and vice versa.
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Classical Negation: Semantics

Definition (Consistency)

A set X of atoms (over A [A) is consistent if X \ {A | ¬A 2 X} = ;, and
inconsistent, otherwise.

Definition (Answer Set)

A set X of atoms is an answer set of a logic program ⇧ over A [A if X is an
answer set of ⇧ [ {B  A,¬A | A 2 A,B 2 (A [A)}

Proposition

For a logic program ⇧ over A [A, exactly one of the following two cases
applies:

1 All answer sets of ⇧ are consistent or
2 X = A [A is the only answer set of ⇧.
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Classical Negation: Examples

Example
⇧1 = {cross  not train}

Answer set: {cross}
⇧2 = {cross  ¬train}

Answer set: ;
⇧3 = {cross  ¬train, ¬train }

Answer set: {cross,¬train}
⇧4 = {cross  ¬train, ¬train , ¬cross  }

Answer set: {cross,¬cross, train,¬train}
⇧5 = {cross  ¬train, ¬train not train, ¬cross  }

No answer set
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Classical Negation: Translation

Definition ((Possibly inconsistent) answer sets)
For determining the (possibly inconsistent) answer sets of a logic program ⇧
over A [A in the standard way, translate ⇧ into ⇧0 as follows:

⇧0 = ⇧ [ {B  A,¬A ¬B  A,¬A | A 2 A,B 2 A,A 6= B}

Definition (Consistent answer sets)

In order to determine the answer sets of a logic program ⇧ over A [A in the
standard way, translate ⇧ (or F) into ⇧00 (or F 00) as follows:

⇧00 = ⇧ [ { A,¬A | A 2 A}
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Example

Example
⇧ = {p  , ¬p  , q  not r}
⇧0 = ⇧ [ {A (B,¬B), ¬A (B,¬B) | A,B 2 {p, q, r}}
Answer set: {p,¬p, q,¬q, r ,¬r}
⇧ = {p ; q  , r  p, ¬r  p }
⇧0 = ⇧ [ {A (B,¬B), ¬A (B,¬B) | A,B 2 {p, q, r}}
Answer set: {q}
⇧ = {p ; not p  >, ¬p ; not q  >, q ; not q  >}
⇧0 = ⇧ [ {A (B,¬B), ¬A (B,¬B) | A,B 2 {p, q}}
Answer sets: ;, {p}, {¬p, q}, and {p,¬p, q,¬q}
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Language Extensions

The expressiveness of a language can be enhanced by introducing new
constructs.
To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the new
constructs, e.g., classical negation.
This translation might also be used for implementing the language
extension. When is this feasible?
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Choice Rules

Idea
Choices over subsets.

Syntax

{A1, . . . ,Am} Am+1, . . . ,An, not An+1, . . . , not Ao,

Informal meaning
If the body is satisfied in an answer set, then any subset of {A1, . . . ,Am} can
be included in the answer set.

Example
The program ⇧ = { {a} b, b  } has two answer sets: {b} and {a, b}.

Implementation
lparse/gringo/i-dlv + smodels/cmodels/nomore/clasp/wasp
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Choice Rules: Embedding in normal logic programs

Definition (Embedding of Choice Rules in normal logic programs)
A choice rule of form

{A1, . . . ,Am} Am+1, . . . ,An, not An+1, . . . , not Ao

can be translated into 2m + 1 rules

A Am+1, . . . ,An, not An+1, . . . , not Ao.

A1  A, not A1. . . . Am  A, not Am.

A1  not A1. . . . Am  not Am

by introducing new atoms A,A1, . . . ,Am.
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Cardinality constraints

Syntax
A (positive) cardinality constraint is of the form l {A1, . . . ,Am} u

Informal meaning
A cardinality constraint is satisfied in an answer set X , if the number of atoms
from {A1, . . . ,Am} satisfied in X is between l and u (inclusive).
More formally, if l  |{A1, . . . ,Am} \ X |  u.

Conditions
l {A1 : B1, . . . ,Am : Bm} u where B1, . . . ,Bm are used for restricting
instantiations of variables occurring in A1, . . . ,Am.

Example
2 {hd(a),. . . ,hd(m)} 4

Implementation
lparse/gringo/i-dlv + smodels/cmodels/nomore/clasp/wasp
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n-colorability revisited (with n = 3)

Example (n-colorability (with n = 3))

C(I) vertex(1)  edge(1,2)  
vertex(2)  edge(2,3)  
vertex(3)  edge(3,1)  

C(P) color(r)  color(b)  color(g)  
1 {colored(V,C) : color(C)} 1  vertex(V)

 edge(V,U),color(C),
colored(V,C),colored(U,C)

Answer set { colored(1,r), colored(2,b), colored(3,g), . . . }
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Cardinality rules

Idea
Control cardinality of subsets.

Syntax

A0  l {A1, . . . ,Am, not Am+1, . . . , not An}

Informal meaning
If at least l elements of the “body” are true in an answer set, then add A0 to
the answer set. l is a lower bound on the “body”

Example
The program ⇧ = { a 1{b, c}, b  } has one answer set: {a, b}.

Implementation
lparse/gringo/i-dlv + smodels/cmodels/nomore/clasp/wasp
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Cardinality Rules: Embedding in normal logic
programs

Definition (Embedding of Cardinality Rules in normal logic programs)
Replace each cardinality rule

A0  l {A1, . . . ,Am} by A0  cc(1, l)

where atom cc(i , j) represents the fact that at least j of the atoms in
{Ai , . . . ,Am}, that is, of the atoms that have an index equal or greater than i ,
are in a particular answer set.
The definition of cc(i , j) is given by the rules

cc(i , j + 1)  cc(i + 1, j),Ai
cc(i , j)  cc(i + 1, j)

cc(m + 1, 0)  

What about space complexity? The problem is that if the set {A1, ...,Am} is
big, then for this quadratic translation the resulting set of rules is rather large,
requiring O(ml) new atoms to be introduced. Moreover, the size of the
translation grows towards O(m2) with the value of l .
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Normal Rules: Embedding in Cardinality Rules

Definition (Normal Rules: Embedding in Cardinality Rules)
A normal rule

A0  A1, . . . ,Am, not Am+1, . . . , not An,

can be represented by the cardinality rule

A0  n + m {A1, . . . ,Am, not Am+1, . . . , not An}.
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Cardinality Rules with upper bounds

Definition (Embedding of Cardinality Rules with upper bounds in normal logic
programs)
A rule of the form

A0  l {A1, . . . ,Am, not Am+1, . . . , not An} u

stands for

A0  B, not C
B  l {A1, . . . ,Am, not Am+1, . . . , not An}
C  u + 1 {A1, . . . ,Am, not Am+1, . . . , not An}
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Cardinality Constraints as heads

Definition (Embedding of Cardinality Constraints as heads in normal logic
programs)
A rule of the form

l {A1, . . . ,Am} u  Am+1, . . . ,An, not An+1, . . . , not Ao,

stands for

B  Am+1, . . . ,An, not An+1, . . . , not Ao

{A1, . . . ,Am}  B
C  l {A1, . . . ,Am} u
 B, not C
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Full-fledged Cardinality Rules

Definition (Embedding of Cardinality Rules in normal logic programs)
A rule of the form

l0 S0 u0  l1 S1 u1, . . . , ln Sn un

stands for 0  i  n

Bi  li Si

Ci  ui + 1 Si

A  B1, . . . ,Bn, not C1, . . . , not Cn

 A, not B0

 A,C0

S0 \A  A

where A is the underlying alphabet.
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Weight constraints

Syntax

l [A1 = w1, . . . ,Am = wm, not Am+1 = wm+1, . . . , not An = wn] u

Informal meaning
A weight constraint is satisfied in an answer set X , if

l 
⇣P

1im,Ai2X wi +
P

m<in,Ai 62X wi

⌘
 u .

Generalization of cardinality constraints.

Example
10 [course(1)=3,course(2)=6,. . . ,course(10)=9] 20

Implementation
lparse/gringo/i-dlv + smodels/cmodels/nomore/clasp/wasp
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Optimization statements

Idea
Compute optimal answer sets by minimizing or maximizing a weighted sum of
given atoms, respectively.

Syntax

minimize [A1 = w1, . . . ,Am = wm, not Am+1 = wm+1, . . . , not An = wn]

maximize [A1 = w1, . . . ,Am = wm, not Am+1 = wm+1, . . . , not An = wn]

Several optimization statements are interpreted lexicographically.

Example
maximize [course(1)=3,course(2)=6,. . . ,course(10)=9]
minimize [road(X,Y) : length(X,Y,L) = L]

Implementation
lparse/gringo/i-dlv + smodels/cmodels/nomore/clasp/wasp
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Weak integrity constraints

Syntax

:⇠ A1, . . . ,Am, not Am+1, . . . , not An [w : l]

Informal meaning
1 minimize the sum of weights of violated constraints in the highest level;
2 minimize the sum of weights of violated constraints in the next lower level;
3 etc

Implementation
dlv (i-dlv + wasp)
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Conditional literals in gringo

We often want to encode the contents of a (multi-)set rather than
enumerating each of the elements.
To support this, lparse and gringo allow for conditional literals.

Syntax
A0 : A1 : . . . : Am : not Am+1 : . . . : not An

Informal meaning
List all ground instances of A0 such that corresponding
instances of A1, . . . ,Am, not Am+1, . . . , not An are true.

Example
gringo instantiates the program:

p(1). p(2). p(3). q(2).
{r(X) : p(X) : not q(X)}.

to:
p(1). p(2). p(3). q(2).
{r(1), r(3)}.
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Domain predicates in gringo

The predicates of literals on the right-hand side of a colon (:) must be
defined from facts without any negative recursion.
Such domain predicates are fully evaluated by gringo.

Example

p(1). p(2).
q(X) :- p(X), not p(X+1).
q(X) :- p(X), q(X+1).
r(X) :- p(X), not r(X+1).

p/1 and q/1 are domain predicates because none of them
negatively depends on itself.
r/1 is not a domain predicate because it is defined in
terms of not r(X+1).

See gringo documentations for further details.
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Aggregates: Motivation

Aggregates provide a general way to obtain a single value from a
collection of input values given as a set, a bag, or a list.
Popular aggregate (functions):

Average
Count
Maximum
Minimum
Sum

Cardinality and Weight constraints rely on Count and Sum aggregates.
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Aggregates: Syntax

Definition (Aggregate)
An aggregate has the form:

F hA1 = w1, . . . ,Am = wm, not Am+1 = wm+1, . . . , not An = wni � k

where
F stands for a function mapping multi-sets of Z to Z [ {+1,�1},
� stands for a relation between Z [ {+1,�1} and Z,
k is an integer,
Ai are atoms, and
wi are integers

for 1  i  n.

Example
sum hcourse(1) = 3, course(2) = 6, . . . , course(10) = 9i  60
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Aggregates: Semantics

Definition (Semantics of Aggregates)
A (positive) aggregate F hA1 = w1, . . . ,An = wni � k can be represented
by the formula:

^

I✓{1,...,n},Fhwi |i2Ii6�k

0

@
^

i2I

Ai !
_

i2I

Ai

1

A

where I = {1, . . . , n} \ I and 6� is the complement of �.
Then, F hA1 = w1, . . . ,An = wni � k is true in X iff the above formula is
true in X .
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Aggregates: An example

Example
Consider sumhp = 1, q = 1i 6= 1

i.e, A1 = p, A2 = q and w1 = 1, w2 = 1
I hwi | i 2 Ii sumhwi | i 2 Ii sumhwi | i 2 Ii = 1
; hi 0 false

{1} h1i 1 true
{2} h1i 1 true

{1, 2} h1, 1i 2 false

We get (p ! q) ^ (q ! p)
Analogously, we obtain (p _ q) ^ ¬(p ^ q) for sumhp = 1, q = 1i = 1.

Recall

^

I✓{1,...,n},Fhwi |i2Ii6�k

0

@
^

i2I

Ai !
_

i2I

Ai

1

A
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Aggregates: Monotonicity

Monotone aggregates
For instance,

body+(r)
sumhp = 1, q = 1i > 1 amounts to q ^ p

We get a simpler characterization:
V

I✓{1,...,n},Fhwi |i2Ii6�k
W

i2I Ai

Anti-monotone aggregates
For instance,

body�(r)
sumhp = 1, q = 1i < 1 amounts to ¬p ^ ¬q

We get a simpler characterization:
V

I✓{1,...,n},Fhwi |i2Ii6�k ¬
V

i2I Ai

Non-monotone aggregates
For instance, sumhp = 1, q = 1i 6= 1 is non-monotone.
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