
Sistemas de Bases de Dados 2019/20
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapter 15: Query Processing
(and also chapter 22: Parallel Query Processing)

FCT NOVA2José Alferes – Adaptado de Database System Concepts - 7th Edition

Chapter 15: Query Processing

§ Overview
§ Measures of Query Cost
§ Selection Operation
§ Sorting
§ Join Operation
§ Other Operations
§ Evaluation of Expressions
§ Parallel query processing

FCT NOVA3José Alferes – Adaptado de Database System Concepts - 7th Edition

Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

FCT NOVA4José Alferes – Adaptado de Database System Concepts - 7th Edition

Join Operation

§ Several different algorithms to implement joins
• Nested-loop join
• Block nested-loop join
• Indexed nested-loop join
• Merge-join
• Hash-join

§ Choice based on cost estimate
§ Examples use the following information

• Number of records of student: 5,000 takes: 10,000
• Number of blocks of student: 100 takes: 400

FCT NOVA5José Alferes – Adaptado de Database System Concepts - 7th Edition

Nested-Loop Join

§ To compute the theta join r ⨝ q s
for each tuple tr in r do begin

for each tuple ts in s do begin
test pair (tr,ts) to see if they satisfy the join condition q
if they do, add tr • ts to the result.

end
end

§ r is called the outer relation and s the inner relation of the join.
§ Requires no indices and can be used with any kind of join condition.
§ Expensive since it examines every pair of tuples in the two relations.

FCT NOVA6José Alferes – Adaptado de Database System Concepts - 7th Edition

Nested-Loop Join Costs

§ In the worst case, if there is enough memory only to hold one block of
each relation, the estimated cost is

nr * bs + br block transfers, plus nr + br seeks
§ In general, it is much better to have the smaller relation as the outer

relation
• The number of block transfers is multiplied by the number of blocks

of the inner relation
• The number of seeks only depends on the outer relation

§ However, if the smaller relation fits entirely in memory, one should use it
as the inner relation!
• Reduces cost to br + bs block transfers and 2 seeks

§ The choice of the inner and outer relation strongly depends on the
estimate of the size of each relation
• Statics on the size of the relations, in run time, can be a great help!

FCT NOVA7José Alferes – Adaptado de Database System Concepts - 7th Edition

Nested-Loop Join Costs

§ For joining student and takes, assuming worst case memory availability,y
cost estimate is
• with student as outer relation:

§ 5000 * 400 + 100 = 2,000,100 block transfers,
§ 5000 + 100 = 5100 seeks

• with takes as the outer relation
§ 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks

§ If smaller relation (student) fits entirely in memory, the cost estimate will
be 500 block transfers and 2 seeks

§ Instead of iterating over records, one could iterate over blocks. This way,
instead of nr ∗ bs + br we would have br ∗ bs + br block transfers

§ This is the basis of the block nested-loops algorithm (next slide).

FCT NOVA8José Alferes – Adaptado de Database System Concepts - 7th Edition

Block Nested-Loop Join

§ Variant of nested-loop join in which every block of inner relation
is paired with every block of outer relation.
for each block Br of r do begin

for each block Bs of s do begin
for each tuple tr in Br do begin

for each tuple ts in Bs do begin
Check if (tr,ts) satisfy the join condition
if they do, add tr • ts to the result.

end
end

end
end

FCT NOVA9José Alferes – Adaptado de Database System Concepts - 7th Edition

Block Nested-Loop Join (Cont.)

§ Worst case estimate: br * bs + br block transfers + 2 * br seeks
• Each block in the inner relation s is read once for each block in the

outer relation
§ Best case(when smaller relation fits into memory): br + bs block transfers

plus 2 seeks.

§ In the running example the cost of student ⨝ takes is:
• If student is outer: 100*400+100 = 40,100 transfer + 200 seeks
• If takes is outer: 400*100+400 = 40,400 transfers + 400 seeks

§ Improvements to nested loop and block nested loop algorithms:
• If equijoin attribute forms a key or inner relation, stop inner loop on

first match
• Scan inner loop forward and backward alternately, to make use of

the blocks remaining in buffer (with LRU replacement)
• Use index on inner relation if available (next slide)

FCT NOVA10José Alferes – Adaptado de Database System Concepts - 7th Edition

Indexed Nested-Loop Join

§ Index lookups can replace file scans if
• join is an equijoin or natural join and
• an index is available on the inner relation’s join attribute

§ In some cases, it pays to construct an index just to compute a
join.

§ For each tuple tr in the outer relation r, use the index to look up tuples
in s that satisfy the join condition with tuple tr.

§ Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s.

§ Cost of the join: br (tT + tS) + nr * c
• Where c is the cost of traversing index and fetching all matching

s tuples for one tuple or r
• c can be estimated as cost of a single selection on s using the

join condition (usually quite small compared to the join cost)
§ If indices are available on join attributes of both r and s,

use the relation with fewer tuples as the outer relation.

FCT NOVA11José Alferes – Adaptado de Database System Concepts - 7th Edition

Example of Nested-Loop Join Costs

§ Compute student ⨝ takes, with student as the outer relation.
§ Let takes have a primary B+-tree index on the attribute ID, which contains

20 entries in each index node.
§ Since takes has 10,000 tuples, the height of the tree is 4, and one more

access is needed to find the actual data
§ student has 5000 tuples
§ As we’ve seen, the best cost of block nested loops join

• 400*100 + 100 = 40,100 block transfers + 2 * 100 = 200 seeks
§ assuming worst case memory
§ may be significantly less with more memory

§ Cost of indexed nested loops join
• 100 + 5000 * 5 = 25,100 block transfers and seeks.

• CPU cost likely to be less than that for block nested loops join

• However in terms of time for transfers and seeks, in this case using
the index doesn’t pay (this is so because the relations are small)

FCT NOVA12José Alferes – Adaptado de Database System Concepts - 7th Edition

Merge-Join

1. Sort both relations on their join attribute (if not already sorted on the join
attributes).

2. Merge the sorted relations to join them
1. Join step is like the merge stage of the sort-merge algorithm.
2. Main difference is handling of duplicate values in join attribute —

every pair with same value on join attribute must be matched
3. Detailed algorithm in the book

a 3
b 1
d 8

13d
f 7

m 5
q 6

a A
b G
c L
d N
m B

a1 a2 a1 a3
pr ps

r

s

FCT NOVA13José Alferes – Adaptado de Database System Concepts - 7th Edition

Merge-Join (Cont.)

§ Can be used only for equi-joins and natural joins
§ Each block needs to be read only once (assuming all tuples for any

given value of the join attributes fit in memory)
§ Thus the cost of merge join is:

br + bs block transfers + ébr / bbù + ébs / bbù seeks
+ the cost of sorting if relations are unsorted.

§ hybrid merge-join: If one relation is sorted, and the other has a
secondary B+-tree index on the join attribute
• Merge the sorted relation with the leaf entries of the B+-tree .
• Sort the result on the addresses of the unsorted relation’s tuples
• Scan the unsorted relation in physical address order and merge with

previous result, to replace addresses by the actual tuples
§ Sequential scan more efficient than random lookup

FCT NOVA14José Alferes – Adaptado de Database System Concepts - 7th Edition

Hash-Join

§ Applicable for equi-joins and natural joins.
§ A hash function h is used to partition tuples of both relations
§ h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the

common attributes of r and s used in the natural join.
• r0, r1, . . ., rn denote partitions of r tuples

§ Each tuple tr Î r is put in partition ri where i = h(tr [JoinAttrs]).
• s0,, s1. . ., sn denotes partitions of s tuples

§ Each tuple ts Îs is put in partition si, where i = h(ts [JoinAttrs]).
§ General idea:

• Partition the relations according to this
• Then perform the join on each partition ri and si

§ There is no need to compute the join between different partitions
since an r tuple and an s tuple that satisfy the join condition will
have the same value for the join attributes. If that value is hashed
to some value i, the r tuple must be in ri and the s tuple in si

FCT NOVA15José Alferes – Adaptado de Database System Concepts - 7th Edition

Hash-Join (Cont.)

0

1

2

3

4

0

1

2

3

4r

s

.

.

.

.

.

.

.

.

partitions
of r

partitions
of s

FCT NOVA16José Alferes – Adaptado de Database System Concepts - 7th Edition

Hash-Join Algorithm

1. Partition the relation s using hashing function h. When partitioning a
relation, one block of memory is reserved as the output buffer for
each partition.

2. Partition r similarly.
3. For each i:

(a)Load si into memory and build an in-memory hash index on it
using the join attribute. This hash index uses a different hash
function than the earlier one h.

(b)Read the tuples in ri from the disk one by one. For each tuple tr
locate each matching tuple ts in si using the in-memory hash
index. Output the concatenation of their attributes.

The hash-join of r and s is computed as follows.

Relation s is called the build input and r is called the probe input.

FCT NOVA17José Alferes – Adaptado de Database System Concepts - 7th Edition

Hash-Join algorithm (Cont.)

§ The value n and the hash function h is chosen such that each si should
fit in memory.
• Typically n is chosen as ébs/Mù * f where f is a “fudge factor”,

typically around 1.2
• The probe relation partitions ri need not fit in memory

§ Recursive partitioning required if number of partitions n is greater than
number of pages M of memory.
• instead of partitioning n ways, use M – 1 partitions for s
• Further partition the M – 1 partitions using a different hash function
• Use same partitioning method on r
• Rarely required: e.g., with block size of 4 KB, recursive partitioning

not needed for relations of < 1TB with memory size of 2GB
§ So we will not further consider it here (see the book for details on

the associated costs)

FCT NOVA18José Alferes – Adaptado de Database System Concepts - 7th Edition

Cost of Hash-Join
§ If recursive partitioning is not required: cost of hash join is

3(br + bs) +4 * n block transfers +
2(ébr / bbù + ébs / bbù) seeks

where bb is the number of blocks allocated for the input and each output
buffer

§ If the entire build input can be kept in main memory no partitioning is required
• Cost estimate goes down to br + bs

§ For the running example student ⨝ takes
• Assume that memory size is 20 blocks
• bstudent = 100 and btakes = 400.
• student is to be used as build input. Partition it into five partitions, each

of size 20 blocks. This partitioning can be done in one pass.
• Similarly, partition takes into five partitions, each of size 80. This is also

done in one pass.
• Therefore total cost, ignoring cost of writing partially filled blocks (and

assuming 3 blocks for input and each partition buffer – so that they fit in
memory):
§ 3(100 + 400) = 1500 block transfers +

2(é100/3ù + é400/3ù) = 336 seeks
• The best we had was 40,100 block transfer+200 seek (block nested loop)

or 25,100 block transfers and seeks (índex nested loop).

FCT NOVA19José Alferes – Adaptado de Database System Concepts - 7th Edition

Complex Joins

§ Join with a conjunctive condition:
r ⨝ q1Ù q 2Ù... Ù q n s

• Either use nested loops/block nested loops, or
• Compute the result of one of the simpler joins r ⨝ qi s

§ the final result comprises those tuples in the intermediate result
that satisfy the remaining conditions

q1 Ù . . . Ù qi –1 Ù qi +1 Ù . . . Ù qn

§ Join with a disjunctive condition
r ⨝ q1 Ú q2 Ú... Ú qn s

• Either use nested loops/block nested loops, or
• Compute as the union of the records in individual joins r ⨝ qi s:

(r ⨝ q1 s) È (r ⨝ q2 s) È . . . È (r ⨝ qn s)

FCT NOVA20José Alferes – Adaptado de Database System Concepts - 7th Edition

Joins over Spatial Data

§ No simple sort order for spatial joins
§ Indexed nested loops join with spatial indices

• R-trees, quad-trees, k-d-B-trees

FCT NOVA21José Alferes – Adaptado de Database System Concepts - 7th Edition

Other Operations

§ Duplicate elimination can be implemented via hashing or sorting.
• On sorting duplicates will come adjacent to each other, and all but

one set of duplicates can be deleted.
• Optimization: duplicates can be deleted during run generation as

well as at intermediate merge steps in external sort-merge.
• Hashing is similar – duplicates will come into the same bucket.

§ Projection:
• perform projection on each tuple
• followed by duplicate elimination.

FCT NOVA22José Alferes – Adaptado de Database System Concepts - 7th Edition

Other Operations : Aggregation

§ Aggregation can be implemented in a manner like duplicate
elimination.
• Sorting or hashing can be used to bring tuples in the same

group together, and then the aggregate functions can be applied
on each group.

• Optimization: partial aggregation
§ combine tuples in the same group during run generation and

intermediate merges, by computing partial aggregate values
§ For count, min, max, sum: keep aggregate values on tuples

found so far in the group.
• When combining partial aggregate for count, add up the

partial aggregates
§ For avg, keep sum and count, and divide sum by count at the

end

FCT NOVA23José Alferes – Adaptado de Database System Concepts - 7th Edition

Other Operations : Set Operations

§ Set operations (È, Ç and ¾): can either use variant of merge-join after
sorting, or variant of hash-join.

§ E.g., Set operations using hashing:
1. Partition both relations using the same hash function
2. Process each partition i as follows.

1. Using a different hashing function, build an in-memory hash
index on ri.

2. Process si as follows
• r È s:

1. Add tuples in si to the hash index if they are not already
in it.

2. At end of si add the tuples in the hash index to the
result.

FCT NOVA24José Alferes – Adaptado de Database System Concepts - 7th Edition

Other Operations : Set Operations

§ E.g., Set operations using hashing:
1. as before partition r and s,
2. as before, process each partition i as follows

1. build a hash index on ri

2. Process si as follows
• r Ç s:

1. output tuples in si to the result if they are already there in
the hash index

• r – s:
1. for each tuple in si, if it is there in the hash index, delete

it from the index.
2. At end of si add remaining tuples in the hash index to

the result.

FCT NOVA25José Alferes – Adaptado de Database System Concepts - 7th Edition

Other Operations : Outer Join

§ Outer join can be computed either as
• A join followed by addition of null-padded non-participating tuples.
• by modifying the join algorithms.

§ Modifying merge join to compute r ⟕ s
• In r ⟕ s, nonparticipating tuples are those in r – PR(r ⨝ s)
• Modify merge-join to compute r ⟕ s:

§ During merging, for every tuple tr from r that do not match any
tuple in s, output tr padded with nulls.

• Right outer-join and full outer-join can be computed similarly.

§ Modifying hash join to compute r ⟕ s
• If r is probe relation, output non-matching r tuples padded with

nulls
• If r is build relation, when probing keep track of which

r tuples matched s tuples. At end of si output
non-matched r tuples padded with nulls

FCT NOVA26José Alferes – Adaptado de Database System Concepts - 7th Edition

Evaluation of Expressions

§ So far: we have seen algorithms for individual operations
§ Alternatives for evaluating an entire expression tree

• Materialization: generate results of an expression whose inputs
are relations or are already computed, materialize (store) it on
disk. Repeat.

• Pipelining: pass on tuples to parent operations even as an
operation is being executed

§ We study above alternatives in more detail

FCT NOVA27José Alferes – Adaptado de Database System Concepts - 7th Edition

Materialization

§ Materialized evaluation: evaluate one operation at a time, starting at
the lowest-level. Use intermediate results materialized into temporary
relations to evaluate next-level operations.

§ E.g., in figure below, compute and store

then compute the store its join with instructor, and finally compute the
projection on name.

)("Watson" departmentbuilding=s

Π

σ

name

building = “Watson”

department

instructor

FCT NOVA28José Alferes – Adaptado de Database System Concepts - 7th Edition

Materialization (Cont.)

§ Materialized evaluation is always applicable
§ Cost of writing results to disk and reading them back can be quite high

• Our cost formulas for operations ignore cost of writing results to
disk, so
§ Overall cost = Sum of costs of individual operations +

cost of writing intermediate results to disk
§ Double buffering: use two output buffers for each operation, when one

is full write it to disk while the other is getting filled
• Allows overlap of disk writes with computation and reduces

execution time

FCT NOVA29José Alferes – Adaptado de Database System Concepts - 7th Edition

Pipelining

§ Pipelined evaluation: evaluate several operations simultaneously,
passing the results of one operation on to the next.

§ E.g., in previous expression tree, don’t store result of

• instead, pass tuples directly to the join.. Similarly, don’t store result
of join, pass tuples directly to projection.

§ Much cheaper than materialization: no need to store a temporary relation
to disk.

§ Pipelining may not always be possible – e.g., sort, hash-join.
§ For pipelining to be effective, use evaluation algorithms that generate

output tuples even as tuples are received for inputs to the operation.
§ Pipelines can be executed in two ways: demand driven and producer

driven

)("Watson" departmentbuilding =s

FCT NOVA30José Alferes – Adaptado de Database System Concepts - 7th Edition

Pipelining (Cont.)

§ In demand driven (or lazy or pull) evaluation
• system repeatedly requests next tuple from top level operation
• Each operation requests next tuple from children operations as

required, in order to output its next tuple
• In between calls, operation has to maintain “state” so it knows what

to return next
§ In producer-driven (or eager or push) pipelining

• Operators produce tuples eagerly and pass them up to their parents
§ Buffer maintained between operators, child puts tuples in buffer,

parent removes tuples from buffer
§ if buffer is full, child waits till there is space in the buffer, and then

generates more tuples
• System schedules operations that have space in output buffer and

can process more input tuples

FCT NOVA31José Alferes – Adaptado de Database System Concepts - 7th Edition

Pipelining (Cont.)

§ Implementation of demand-driven pipelining
• Each operation is implemented as an iterator implementing the

following operations
§ open()

• E.g., file scan: initialize file scan
§ state: pointer to beginning of file

• E.g., merge join: sort relations;
§ state: pointers to beginning of sorted relations

§ next()
• E.g., for file scan: Output next tuple, and advance and store

file pointer
• E.g., for merge join: continue with merge from earlier state

till next output tuple is found. Save pointers as iterator state.
§ close()

FCT NOVA32José Alferes – Adaptado de Database System Concepts - 7th Edition

Blocking Operations

§ Blocking operations: cannot generate any output until all input is
consumed
• E.g., sorting, aggregation, …

§ But can often consume inputs from a pipeline, or produce outputs to a
pipeline

§ Key idea: blocking operations often have two suboperations
• E.g., for sort: run generation and merge
• For hash join: partitioning and build-probe

§ Treat them as separate operations

FCT NOVA33José Alferes – Adaptado de Database System Concepts - 7th Edition

Pipeline Stages

§ Pipeline stages:
• All operations in a stage run concurrently
• A stage can start only after preceding stages have completed

execution

FCT NOVA34José Alferes – Adaptado de Database System Concepts - 7th Edition

Evaluation Algorithms for Pipelining

§ Some algorithms are not able to output results even as they get input
tuples
• E.g., merge join, or hash join
• intermediate results written to disk and then read back

§ Algorithm variants to generate (at least some) results on the fly, as
input tuples are read in
• E.g., hybrid hash join generates output tuples even as probe

relation tuples in the in-memory partition (partition 0) are read in

§ It is clear that pipelining could greatly benefit from parallel processing,
especially if there are sufficiently independent sub-expressions
• And this is not the only chance for parallelism in query processing!

