Chapter 16: Query Optimization

Sistemas de Bases de Dados 2019/20

Capitulo refere-se a: Database System Concepts, 7th Ed

Outline

= |ntroduction

= Transformation of Relational Expressions

= Catalog Information for Cost Estimation

= Statistical Information for Cost Estimation

= Cost-based optimization

= Dynamic Programming for Choosing Evaluation Plans

= Join minimization, Materialized views and nested subqueries

José Alferes — Adaptado de Database System Concepts - 7th Edition 2 FCT NOVA

Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

query |

query
output

parser and
translator

evaluation engine

José Alferes — Adaptado de Database System Concepts - 7th Edition 3

relational-algebra
expression

<S>

execution plan

w

statistics

about data

FCT NOVA

Introduction

= An evaluation plan defines exactly what algorithm is used for each
operation, and how the execution of the operations is coordinated.

(sort to remove duplicates)
I1 name, title

PX}| (merge join)

S

SOI”[/D
sort,, X Qom)
0a’ept_narme = Music HCOWSé'_l'd, title
(use index 1)
instructor teaches course

José Alferes — Adaptado de Database System Concepts - 7th Edition 4 FCT NOVA

Introduction (Cont.)

= Cost difference between evaluation plans for a query can be enormous
E.g., seconds vs. days in some cases
= Steps in cost-based query optimization
Generate logically equivalent expressions using equivalence rules
Annotate resultant expressions to get alternative query plans
Choose the cheapest plan based on estimated cost
= Estimation of plan cost based on:
Statistical information about relations. Examples:
number of tuples, number of distinct values for an attribute
Statistics estimation for intermediate results
to compute cost of complex expressions
Cost formulae for algorithms, computed using statistics

José Alferes — Adaptado de Database System Concepts - 7th Edition 5 FCT NOVA

Generating Equivalent Expressions

Sistemas de Bases de Dados 2019/20

Capitulo refere-se a: Database System Concepts, 7th Ed

Join Ordering Example

= For all relations ry r, and r3,
(K X}IL)DXI =D (LX)
(Join Associativity) <
= If D4 rz is quite large and ry < r, is small, we choose

(ry D} 1) X} 1y

so that the computed and stored temporary relation (in case no pipelining
is used) is smaller

= Query optimizers use equivalence rules to systematically generate
expressions equivalent to the given expression

= Must consider the interaction of evaluation techniques when choosing
evaluation plans

choosing the cheapest algorithm for each operation independently
may not yield best overall algorithm. E.g.

merge-join may be costlier than hash-join but may provide a
sorted output which reduces the cost for an outer level
aggregation.

nested-loop join may provide opportunity for pipelining

José Alferes — Adaptado de Database System Concepts - 7th Edition 7 FCT NOVA

Join Ordering Example (Cont.)

= Consider the expression

1_Iname, title(Gdept_namez ‘Music” (instr uctor,) > teaCheS)
> 1_Icourse_id, title (COUI’ Se))))

= Could compute teaches M I ouse i, title (COUrse) first, and join result with
O dept_name= “Music” (instructor)
but the result of the first join is likely to be a large relation.

= Only a small fraction of the university’ s instructors are likely to be from
the Music department

it is better to compute
Gdept_ name= ‘Music” (InsStructor) > teaches
first.

José Alferes — Adaptado de Database System Concepts - 7th Edition 8 FCT NOVA

Dynamic Programming & Left Deep Join Trees

= To deal with the high combinatoric, Dynamic Programming may be
used

= To trim the combinatoric use left-deep join trees, where the right-
hand-side input for each join is a relation, not the result of an

intermediate join.
X X
X) 5
X
Y ><1< \,4 VRN 4/ AN
N r3 r ro
% 3 /N
/ \ rl r2

ri r2

(a) Left-deep join tree (b) Non-left-deep join tree

José Alferes — Adaptado de Database System Concepts - 7th Edition 9 FCT NOVA

Heuristic Optimization

= Cost-based optimization is expensive, even with dynamic programming.

= Systems may use heuristics to reduce the number of choices that must be
made in a cost-based fashion.

= Heuristic optimization transforms the query-tree by using a set of rules that
typically (but not in all cases) improve execution performance:

Perform selection early (reduces the number of tuples)
Perform projection early (reduces the number of attributes)

Perform most restrictive selection and join operations (i.e., with smallest
result size) before other similar operations.

Some systems use only heuristics, others combine heuristics with partial
cost-based optimization.

= Local search (e.g. hill-climbing and genetic algorithms) may also be used for
optimisation

José Alferes — Adaptado de Database System Concepts - 7th Edition 10 FCT NOVA

Structure of Query Optimizers

= Many optimizers considers only left-deep join orders.
Plus heuristics to push selections and projections down the query tree

Reduces optimization complexity and generates plans amenable to
pipelined evaluation.

= Heuristic optimization used in some versions of Oracle:
Repeatedly pick “best” relation to join next
Starting from each of n starting points. Pick best among these
= |ntricacies of SQL complicate query optimization
E.g., nested subqueries

= Even with the use of heuristics, cost-based query optimisation imposes a
substantial overhead.

But is worth it for expensive queries in large datasets

Optimisers often use simple heuristics for very cheap queries, and
perform exhaustive enumeration for more expensive queries

The cost of optimisation is a function of the size of the query,
whilst the gains are a functions of the size of the dataset

José Alferes — Adaptado de Database System Concepts - 7th Edition 11 FCT NOVA

Statistics for Cost Estimation

Sistemas de Bases de Dados 2019/20

Capitulo refere-se a: Database System Concepts, 7th Ed

Statistical Information for Cost Estimation

= n,; number of tuples in a relation r.

= b, number of blocks containing tuples of r.

= J:size of atuple of r.

= f.:blocking factor of r — i.e., the number of tuples of rthat fit into one block.

= V(A, r): number of distinct values that appear in rfor attribute A; same as
the size of [14(n).

= |f tuples of r are stored together physically in a file, then:

José Alferes — Adaptado de Database System Concepts - 7th Edition 13 FCT NOVA

Histograms

= Histogram on attribute age of relation person

50

40
>~
Q
g 30
)
on
& 20

10

1-5 6-10 11-15 16-20 21-25
= Equi-width histograms value

= Equi-depth histograms break up range such that each range has
(approximately) the same number of tuples

E.g. (4, 8, 14, 19)
= Many databases also store n most-frequent values and their counts
Histogram is built on remaining values only

José Alferes — Adaptado de Database System Concepts - 7th Edition 14 FCT NOVA

Histograms (cont.)

= Histograms and other statistics usually computed based on a random
sample

= Statistics may be out of date

Some database require a analyze command to be executed to update
statistics

Others automatically recompute statistics

e.g., when number of tuples in a relation changes by some
percentage

José Alferes — Adaptado de Database System Concepts - 7th Edition 15 FCT NOVA

Selection Size Estimation

" Gazln
n,/ V(A,r) : number of records that will satisfy the selection
Equality condition on a key attribute: size estimate =1
" o4./1) (case of 645 (1) is symmetric)
Let c denote the estimated number of tuples satisfying the condition.
If min(A,r) and max(A,r) are available in catalog

c=0if v<min(A,r)

v—min(A4,r)

cC= n,. .
max(A,r)—-min(A4,r)

If histograms available, can refine above estimate
In absence of statistical information ¢ is assumed to be n,/ 2.

José Alferes — Adaptado de Database System Concepts - 7th Edition 16 FCT NOVA

Size Estimation of Complex Selections

= The selectivity of a condition 0; is the probability that a tuple in the relation
r satisfies 0, .

If s; is the number of satisfying tuples in r, the selectivity of 0;is given
by s; /n,.

= Conjunction: oy;, ga.. .. » on (r)- Assuming independence, estimate of

: : S, kS, k.. kS
tuples in the resultis: 5 -1 "2 n

r n

n

r

= Disjunction:oyy, g2.. ... gn(r). Estimated number of tuples:

now| 1= (1=2L)s (1= 22y % (1-22)
n, n n

= Negation: o _¢(r). Estimated number of tuples:
n, — size(oyr))

r

José Alferes — Adaptado de Database System Concepts - 7th Edition 17 FCT NOVA

Join Operation: Running Example

Running example:
student > takes

Catalog information for join examples:
" DNstudgent = 5,000.

" fswdent = 50, which implies that
bstuaent =5000/50 = 100.

® Nes = 10000.

" fokes =25, which implies that
biakes = 10000/25 = 400.

= V(ID, takes) = 2500, which implies that on average, each student who has
taken a course has taken 4 courses.

Attribute ID in takes is a foreign key referencing student.
WV(ID, student) =5000 (primary key!)

José Alferes — Adaptado de Database System Concepts - 7th Edition 18 FCT NOVA

Estimation of the Size of Joins

= The Cartesian product r x s contains n,.n, tuples; each tuple occupies s, +
Ss bytes.

= fRNS=Y,thenrx sisthe same asr x s.

= |f Rn Sis a key for R, then a tuple of s will join with at most one tuple from
r

therefore, the number of tuples in r @ s is no greater than the number
of tuples in s.

= |f Rn SinSis aforeign key in S referencing R, then the number of tuples
in r @ sis exactly the same as the number of tuples in s.

The case for R n S being a foreign key referencing S is symmetric.

= |n the example query student x takes, ID in takes is a foreign key
referencing student

hence, the result has exactly n.stuples, which is 10000

José Alferes — Adaptado de Database System Concepts - 7th Edition 19 FCT NOVA

Estimation of the Size of Joins (Cont.)

= |[fRn S={A}is not a key for Ror S.
If we assume that every tuple tin R produces tuples in RJX|S, the number

of tuples in R Sis estimated to be:
V(A,S)
If the reverse is true, the estimate obtained will be:
V(A,r)
The lower of these two estimates is probably the more accurate one.
= We can improve on above if histograms are available

Use formula like above, for each cell of histograms on the two
relations

José Alferes — Adaptado de Database System Concepts - 7th Edition 20 FCT NOVA

Estimation of the Size of Joins (Cont.)

= Compute the size estimates for depositor > customer without using
information about foreign keys:

V(ID, takes) = 2500, and
V(ID, student) = 5000

The two estimates are 5000 * 10000/2500 = 20,000 and 5000 *
10000/5000 = 10000

We choose the lower estimate, which in this case, is the same as our
earlier computation using foreign keys.

José Alferes — Adaptado de Database System Concepts - 7th Edition 21 FCT NOVA

Size Estimation of Quter Joins

= Quter join:
Estimated size of r>< s =size of r><i s + size of r
Case of right outer join is symmetric
Estimated size of r><t s =size of ri< s + size of r + size of s

José Alferes — Adaptado de Database System Concepts - 7th Edition 22 FCT NOVA

Size Estimation for Other Operations

= Projection: estimated size of [[4() = WA,
= Aggregation : estimated size of gya() = V(G,)
= Set operations

For unions/intersections of selections on the same relation: rewrite
and use size estimate for selections

E.g., g1 () U cge (1) can be rewritten as gy o 92 (1
For operations on different relations:
estimated size of ru s = size of r + size of s.
estimated size of rm s = minimum size of r and size of s.
estimated size of r—s =r.

All the three estimates may be quite inaccurate but provide upper
bounds on the sizes.

José Alferes — Adaptado de Database System Concepts - 7th Edition 23 FCT NOVA

Estimation of Number of Distinct Values

Selections: o, (1)
= |f 0 forces A to take a specified value: V(A,cq (1) = 1.
e.g.,A=3

= |f O forces A to take on one of a specified set of values:
V(A,cq (1)) = number of specified values.

(e.g.,(A=1VA=3VA=4)),

= |f the selection condition 6 is of the form A op r
estimated V(A,c, (1) = V(A.nN * s

where s is the selectivity of the selection.

= |n all the other cases: use approximate estimate of
mln(V(Air)’ Nso (n)

More accurate estimate can be got using probability theory, but this
one works fine generally

José Alferes — Adaptado de Database System Concepts - 7th Edition 24 FCT NOVA

Estimation of Distinct Values (Cont.)

Joins: rii s

= |f all attributes in A are from r
estimated V(A, r>< s) =min (V(A,D), N 4 s)

= |f A contains attributes A1 from r and A2 from s, then estimated
V(A,r< s) =

min(V(A1,n*V(A2 — A1,s), V(A1 — A2,N*V(A2,S), N, &)

More accurate estimate can be got using probability theory, but this
one works fine generally

José Alferes — Adaptado de Database System Concepts - 7th Edition 25 FCT NOVA

Estimation of Distinct Values (Cont.)

= Estimation of distinct values are straightforward for projections.
They are the same in][5y asinr.

= The same holds for grouping attributes of aggregation.

= For aggregated values

For min(A) and max(A), the number of distinct values can be
estimated as min(V(A,r), V(G,r)) where G denotes grouping attributes

For other aggregates, assume all values are distinct, and use V(G,r)

José Alferes — Adaptado de Database System Concepts - 7th Edition 26 FCT NOVA

Additional Optimisation techniques

José Alferes — Adaptado de Database System Concepts - 7th Edition 27 FCT NOVA

Join Minimisation

= Join minimization

selectr.A, r.B
fromr, s
where r.B =s.B

= Check if join with s is redundant, drop it

E.g., join condition is on foreign key from r to s, r.B is declared as not
null, and no selection on s

Other sufficient conditions possible
selectr.A, s2.B

fromr, sas si1, sas s2
where r.B=s1.Band r.B =s2.B and s1.A <20 and s2.A <10

join with s1 is redundant and can be dropped (along with selection
on si)

José Alferes — Adaptado de Database System Concepts - 7th Edition 28 FCT NOVA

Materialized Views

= A materialized view is a view whose contents are computed and stored.

= Consider the view
create view department _total_salary(dept_name, total_salary) as
select dept_name, sum(salary)
from instructor

group by dept_name

= Materializing the above view would be very useful if the total salary by
department is required frequently

Saves the effort of finding multiple tuples and adding up their amounts

José Alferes — Adaptado de Database System Concepts - 7th Edition 29 FCT NOVA

Materialized View Maintenance

= The task of keeping a materialized view up-to-date with the underlying
data is known as materialized view maintenance

= Materialized views can be maintained by recomputation on every update
= A better option is to use incremental view maintenance

Changes to database relations are used to compute changes to
the materialized view, which is then updated

= View maintenance can be done by

Manually defining triggers on insert, delete, and update of each
relation in the view definition

Manually written code to update the view whenever database relations
are updated

Periodic recomputation (e.g. nightly)
Incremental maintenance supported by many database systems
Avoids manual effort/correctness issues

José Alferes — Adaptado de Database System Concepts - 7th Edition 30 FCT NOVA

Incremental View Maintenance

= The changes (inserts and deletes) to a relation or expressions are referred
to as its differential

Set of tuples inserted to and deleted from r are denoted i, and d,
= To simplify, we only consider inserts and deletes

We replace updates to a tuple by deletion of the tuple followed by
insertion of the update tuple

= We describe how to compute the change to the result of each relational
operation, given changes to its inputs

= We then outline how to handle relational algebra expressions

José Alferes — Adaptado de Database System Concepts - 7th Edition 31 FCT NOVA

Join Operation

= (Consider the materialized view v=r >< s and an update to r
= Let rP@and rewdenote the old and new states of relation r
= Consider the case of an insert to r:
We can write revp<sas (rrf'du i) < s
And rewrite the above to (ro'dp<18) U (i, < S)
But (9 >x s) is simply the old value of the materialized view, so the

José Alferes — Adaptado de Database System Concepts - 7th Edition

32

incremental change to the view isjust /. I<'s
" Thus, forinserts v™ew = vold(j. 1<)
= Similarly for deletes v™W = vold —(d, 11 5)
A, 1 1,p A1, p
B, 2 N 2r B, 2.1
C 2r
C,2s

FCT NOVA

Selection and Projection Operations

= Selection: Consider a view v = cy(r).
view = vold U (i)
view = yold - 4(d,)

= Projection is a more difficult operation
R=(A,B), and r(R) ={ (a,2), (a,3)}
[14(r) has a single tuple (a).

If we delete the tuple (a,2) from r, we should not delete the tuple (a)
from [1a(), but if we then delete (a,3) as well, we should delete the
tuple

= For each tuple in a projection [15(r) , we will keep a count of how many
times it was derived

On insert of a tuple to r, if the resultant tuple is already in [14(r) we
increment its count, else we add a new tuple with count = 1

On delete of a tuple from r, we decrement the count of the
corresponding tuple in [1a(n)

if the count becomes 0, we delete the tuple from [1A(r)

José Alferes — Adaptado de Database System Concepts - 7th Edition 33 FCT NOVA

Aggregation Operations

= Count:v=,% counin”-
When a set of tuples i, is inserted

For each tuple r in i, if the corresponding group is already present in
v, we increment its count, else we add a new tuple with count = 1

When a set of tuples d, is deleted

for each tuple t in i, we look for the group t.A in v, and subtract 1 from
the count for the group.

If the count becomes 0, we delete from v the tuple for the group
LA

= Sum:Vv=,4Y sump"

We maintain the sum in a manner similar to count, except we
add/subtract the B value instead of adding/subtracting 1 for the count

Additionally we maintain the count in order to detect groups with no
tuples. Such groups are deleted from v

Cannot simply test for sum = 0 (why?)

José Alferes — Adaptado de Database System Concepts - 7th Edition 34 FCT NOVA

Aggregate Operations (Cont.)

= Avg:

Maintain sum and count separately, and divide at the end
" min, max: v= A'Y min(B) (I‘)

Handling insertions on r is straightforward.

Maintaining the aggregate values min and max on deletions may be
more expensive. We have to look at the other tuples of rthat are in the

same group to find the new minimum

José Alferes — Adaptado de Database System Concepts - 7th Edition 35 FCT NOVA

Other Operations

= Setintersection: v=rns

when a tuple is inserted in r we check if it is present in s, and if so we
add it to v.

If the tuple is deleted from r, we delete it from the intersection if it is
present.

Updates to s are symmetric

The other set operations, union and set difference are handled in a
similar fashion.

= Quter joins are handled in much the same way as joins but with some extra
work

we leave details to you.

José Alferes — Adaptado de Database System Concepts - 7th Edition 36 FCT NOVA

Handling Expressions

To handle an entire expression, we derive expressions for computing the

incremental change to the result of each sub-expressions, starting from the
smallest sub-expressions.

E.g., consider E; < E, where each of E; and E; may be a complex
expression

Suppose the set of tuples to be inserted into E; is given by D,

Computed earlier, since smaller sub-expressions are handled first

Then the set of tuples to be inserted into E; I E; is given by
D; > E;

This is just the usual way of maintaining joins

José Alferes — Adaptado de Database System Concepts - 7th Edition 37 FCT NOVA

Query Optimization and Materialized Views

= Rewriting queries to use materialized views:

A materialized view v = r < s is available

A user submits aquery rp>< st

We can rewrite the query as v I t

Whether to do so depends on cost estimates for the two alternative

= Replacing a use of a materialized view by the view definition:

A materialized view v = r I} s is available, but without any index on it

User submits a query ca_1o(V).

Suppose also that s has an index on the common attribute B, and r has
an index on attribute A.

The best plan for this query may be to replace v by r < s, which can
lead to the query plan ca_1o(r) >4 s

= Query optimizer should be extended to consider all above
alternatives and choose the best overall plan

José Alferes — Adaptado de Database System Concepts - 7th Edition 38 FCT NOVA

Materialized View Selection

Materialized view selection: “What is the best set of views to materialize?”
Index selection: “what is the best set of indices to create”
closely related, to materialized view selection
but simpler

Materialized view selection and index selection based on typical system
workload (queries and updates)

Typical goal: minimize time to execute workload , subject to constraints
on space and time taken for some critical queries/updates

One of the steps in database tuning
more on tuning in later

Commercial database systems provide tools (called “tuning assistants” or
“wizards”) to help the database administrator choose what indices and
materialized views to create

José Alferes — Adaptado de Database System Concepts - 7th Edition 39 FCT NOVA

Top-K Queries

= Top-K queries

select *

fromr, s

where r.B =s.B

order by r.A ascending
limit 10

Alternative 1: Indexed nested loops join with r as outer

Alternative 2: estimate highest r.A value in result and add selection (and
r.A <= H) to where clause

If < 10 results, retry with larger H

José Alferes — Adaptado de Database System Concepts - 7th Edition 40 FCT NOVA

Optimizing Nested Subqueries

= Nested query example:

select name

from instructor
where exists (select *
from teaches
where instructor.ID = teaches.ID and teaches.year = 2019)

= SQL conceptually treats nested subqueries in the where clause as
functions that take parameters and return a single value or set of values

Parameters are variables from outer level query that are used in the
nested subquery; such variables are called correlation variables

= Conceptually, nested subquery is executed once for each tuple in the
cross-product generated by the outer level from clause

Such evaluation is called correlated evaluation

Note: other conditions in where clause may be used to compute a join
(instead of a cross-product) before executing the nested subquery

José Alferes — Adaptado de Database System Concepts - 7th Edition 41 FCT NOVA

Optimizing Nested Subqueries (Cont.)

= (Correlated evaluation may be quite inefficient since
a large number of calls may be made to the nested query
there may be unnecessary random 1I/O as a result

= SQL optimizers attempt to transform nested subqueries to joins where
possible, enabling use of efficient join techniques

= E.g.: earlier nested query can be rewritten as
select instructor.name
from instructor, teaches
where instructor.ID = teaches.ID and teaches.year = 2019

= |n general, it is not possible/straightforward to move the entire nested
subquery into the outer level query

A view is created instead, and used in the body of the outer level
query

José Alferes — Adaptado de Database System Concepts - 7th Edition 42 FCT NOVA

Optimizing Nested Subqueries (Cont.)

In general, SQL queries of the form below can be rewritten as shown

= Rewrite: select A
fromr,rn,..n,
where P, and exists (select *
from s, s,,..., S,
where P,' and P,?)
= To: with ¢, as
(select distinct V
from L,
where P,')
select ...
from L, t,
where P, and P,?

P,' contains predicates that do not involve any correlation variables
P,? contains predicates involving correlation variables

V contains all attributes used in predicates with correlation variables

José Alferes — Adaptado de Database System Concepts - 7th Edition 43 FCT NOVA

Optimizing Nested Subqueries (Cont.)

= |n our example, the original nested query would be transformed to
with t, as
(select distinct /D
from teaches
where year = 2019)
select name
from instructor, t,
where t,./D = instructor.ID

= The process of replacing a nested query by a query with a join (possibly
with a temporary relation) is called decorrelation.

= Decorrelation is more complicated in several cases, e.g.
The nested subquery uses aggregation, or
The nested subquery is a scalar subquery
Correlated evaluation used in these cases

José Alferes — Adaptado de Database System Concepts - 7th Edition 44 FCT NOVA

Decorrelation (Cont.)

Decorrelation of scalar aggregate subqueries can be done using group-
by/aggregation in some cases. E.g.

= select name
from instructor
where 1 < (select count(*)
from teaches
where instructor.ID = teaches.ID
and teaches.year = 2019)

can be transformed into

= with tas

(select ID, count(*) as cnt
from teaches select name
where teaches.year = 2019)
group by /D)

select name

from instructor, t

where instructor.ID = t.ID and cnt > 1)

José Alferes — Adaptado de Database System Concepts - 7th Edition 45 FCT NOVA

Multiquery Optimization

= Example
Q1: select * from (r natural join t) natural join s
Q2: select * from (r natural join u) natural join s
Both queries share common subexpression (r natural join s)

May be useful to compute (r natural join s) once and use it in both
queries

But this may be more expensive in some situations

e.g. (r natural join s) may be expensive, plans as shown in
queries may be cheaper

= Multiquery optimization: find best overall plan for a set of queries,
expoiting sharing of common subexpressions between queries where it is
useful

José Alferes — Adaptado de Database System Concepts - 7th Edition 46 FCT NOVA

Multiquery Optimization (Cont.)

= Simple heuristic used in some database systems:
optimize each query separately

detect and exploiting common subexpressions in the individual optimal
query plans

May not always give best plan, but is cheap to implement
Shared scans: widely used special case of multiquery optimization
= Set of materialized views may share common subexpressions
As a result, view maintenance plans may share subexpressions

Multiquery optimization can be useful in such situations

José Alferes — Adaptado de Database System Concepts - 7th Edition 47 FCT NOVA

Parametric Query Optimization

= Example
select *
from r natural join s

where r.a < $1
value of parameter $1 not known at compile time

known only at run time
different plans may be optimal for different values of $1
= Solution 1: optimize at run time, each time query is submitted
can be expensive
= Solution 2: Parametric Query Optimization:
optimizer generates a set of plans, optimal for different values of $1
Set of optimal plans usually small for 1 to 3 parameters
Key issue: how to do find set of optimal plans efficiently
best one from this set is chosen at run time when $1 is known

= Solution 3: Query Plan Caching
If optimizer decides that same plan is likely to be optimal for all
parameter values, it caches plan and reuses it, else reoptimize each time
Implemented in many database systems

José Alferes — Adaptado de Database System Concepts - 7th Edition 48 FCT NOVA

Plan Stability Across Optimizer Changes

= What if 95% of plans are faster on database/optimizer version N+1 than on
N, but 5% are slower?

Why should plans be slower on new improved optimizer?

Answer: Two wrongs can make a right, fixing one wrong can make
things worse!

= Approaches:
Allow hints for tuning queries

Not practical for migrating large systems with no access to source
code

Set optimization level, default to version N (Oracle)

And migrate one query at a time after testing both plans on new
optimizer

Save plan from version N, and give it to optimizer version N+1
Sybase, XML representation of plans (SQL Server)

José Alferes — Adaptado de Database System Concepts - 7th Edition 49 FCT NOVA

Adaptive Query Processing

= Some systems support adaptive operators that change execution algorithm
on the fly

E.g., (indexed) nested loops join or hash join chosen at run time,
depending on size of outer input

= QOther systems allow monitoring of behavior of plan at run time and adapt
plan

E.qg., if statistics such as number of rows is found to be very different in
reality from what optimizer estimated

Can stop execution, compute fresh plan, and restart

But must avoid too many such restarts

José Alferes — Adaptado de Database System Concepts - 7th Edition 50 FCT NOVA

