
Sistemas de Bases de Dados 2019/20
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapter 18 : Concurrency Control

FCT NOVA2José Alferes – Adaptado de Database System Concepts - 7th Edition

Outline

§ Lock-Based Protocols
§ Timestamp-Based Protocols
§ Validation-Based Protocols
§ Multiple Granularity
§ Multiversion Schemes
§ Insert and Delete Operations
§ Concurrency in Index Structures

FCT NOVA3José Alferes – Adaptado de Database System Concepts - 7th Edition

ACID Properties - Summary

§ Atomicity. Either all operations of the transaction are properly reflected in
the database or none are.

§ Consistency. Execution of a transaction preserves the consistency of the
database in the end.

§ Isolation. Although multiple transactions may execute concurrently, each
transaction must be unaware of other concurrently executing transactions.
Intermediate transaction results must be hidden from other concurrently
executed transactions.
• That is, for every pair of transactions Ti and Tj, it appears to Ti that

either Tj, finished execution before Ti started, or Tj started execution
after Ti finished.

§ Durability. After a transaction completes successfully, the changes it has
made to the database persist, even if there are system failures.

A transaction is a unit of program execution that accesses and possibly
updates various data items. To preserve the integrity of data the database
system must ensure:

FCT NOVA4José Alferes – Adaptado de Database System Concepts - 7th Edition

Concurrency Control

§ A database must provide a mechanism that will ensure that all possible
schedules are
• either conflict or view serializable, and
• are recoverable and preferably cascadeless

§ A policy in which only one transaction can execute at a time generates
serial schedules, but provides a poor degree of concurrency

§ Testing a schedule for serializability after it has executed is a little too late!

§ Goal – to develop concurrency control protocols that will assure
serializability

FCT NOVA5José Alferes – Adaptado de Database System Concepts - 7th Edition

Optimistic vs Pessimistic protocols

§ What to do now?
• It may well be that the complete transactions are serializable
• But they may also turn out not to be serializable!

§ Optimistic protocols do not stop at potential conflicts; if something goes
wrong, rollback!

§ Pessimistic protocols stop at potential conflicts, until no possible conflict
exists; if in the end no conflict happened, it just lost time!

§ Let’s start with a pessimistic protocol.

T1 T2

Read(A)
Write(A)

Read(B)
Write(B)

Read(A)

Write(A)

FCT NOVA6José Alferes – Adaptado de Database System Concepts - 7th Edition

Lock-Based Protocols

§ A lock is a mechanism to control concurrent access to a data item
§ Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as well as
written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is
requested using lock-S instruction.

§ Lock requests are made to concurrency-control manager. Transaction can
proceed only after request is granted.

FCT NOVA7José Alferes – Adaptado de Database System Concepts - 7th Edition

Lock-Based Protocols (Cont.)

§ Lock-compatibility matrix

§ A transaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions

§ Any number of transactions can hold shared locks on an item,
• But if any transaction holds an exclusive on the item no other

transaction may hold any lock on the item.
§ If a lock cannot be granted, the requesting transaction is made to wait until

all incompatible locks held by other transactions have been released. The
lock is then granted.

S X
S true false

X false false

FCT NOVA8José Alferes – Adaptado de Database System Concepts - 7th Edition

Schedule With Lock Grants

§ Simply having locks does
not guarantee
serializability!
• This schedule is not

serializable.
§ A locking protocol is a

set of rules followed by
all transactions while
requesting and releasing
locks.
• Locking protocols

enforce serializability
by restricting the set
of possible
schedules.

FCT NOVA9José Alferes – Adaptado de Database System Concepts - 7th Edition

The Two-Phase Locking Protocol (2-PL)

§ A protocol which ensures conflict-
serializable schedules.

§ Phase 1: Growing Phase
• Transaction may obtain locks
• Transaction may not release locks

§ Phase 2: Shrinking Phase
• Transaction may release locks
• Transaction may not obtain locks

§ The protocol assures serializability. It can be
proved that the transactions can be
serialized in the order of their lock points
(i.e., the point where a transaction acquired
its final lock).

Time

Lo
ck
s

FCT NOVA10José Alferes – Adaptado de Database System Concepts - 7th Edition

The Two-Phase Locking Protocol (Cont.)

§ Extensions to basic two-phase locking are needed to ensure
recoverability of freedom from cascading roll-back
• Strict two-phase locking: a transaction must hold all its exclusive

locks until it commits or aborts.
§ Ensures recoverability and avoids cascading roll-backs

• Rigorous two-phase locking: a transaction must hold all locks until
commit or abort.
§ Transactions can be serialized in the order in which they commit.

§ Most databases implement rigorous two-phase locking, but refer to it as
simply two-phase locking

FCT NOVA11José Alferes – Adaptado de Database System Concepts - 7th Edition

Lock Conversions

§ Two-phase locking protocol with lock conversions:
– Growing Phase:
• can acquire a lock-S on item
• can acquire a lock-X on item
• can convert a lock-S to a lock-X (upgrade)

– Shrinking Phase:
• can release a lock-S
• can release a lock-X
• can convert a lock-X to a lock-S (downgrade)

§ This protocol still ensures serializability

FCT NOVA12José Alferes – Adaptado de Database System Concepts - 7th Edition

Automatic Acquisition of Locks

§ A transaction Ti issues the standard read/write instruction, without explicit
locking calls.

§ The operation read(D) is processed as:
if Ti has a lock on D

then
read(D)

else begin
if necessary wait until no other

transaction has a lock-X on D
grant Ti a lock-S on D;
read(D)

end

FCT NOVA13José Alferes – Adaptado de Database System Concepts - 7th Edition

Automatic Acquisition of Locks (Cont.)

§ The operation write(D) is processed as:
if Ti has a lock-X on D

then
write(D)

else begin
if necessary wait until no other trans. has any lock on D,
if Ti has a lock-S on D

then
upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end;

§ All locks are released after commit or abort

FCT NOVA14José Alferes – Adaptado de Database System Concepts - 7th Edition

Implementation of Locking

§ A lock manager can be implemented as a separate process
§ Transactions can send lock and unlock requests as messages
§ The lock manager replies to a lock request by sending a lock grant

messages (or a message asking the transaction to roll back, in case of a
deadlock)
• The requesting transaction waits until its request is answered

§ The lock manager maintains an in-memory data-structure called a lock
table to record granted locks and pending requests

FCT NOVA15José Alferes – Adaptado de Database System Concepts - 7th Edition

Lock Table
§ Dark rectangles indicate granted

locks, light colored ones indicate
waiting requests

§ Lock table also records the type of
lock granted or requested

§ New request is added to the end of
the queue of requests for the data
item, and granted if it is compatible
with all earlier locks

§ Unlock requests result in the request
being deleted, and later requests are
checked to see if they can now be
granted

§ If transaction aborts, all waiting or
granted requests of the transaction
are deleted
• lock manager may keep a list of

locks held by each transaction, to
implement this efficiently

FCT NOVA16José Alferes – Adaptado de Database System Concepts - 7th Edition

Deadlock

§ Consider the partial schedule

§ Neither T3 nor T4 can make progress — executing lock-S(B) causes T4
to wait for T3 to release its lock on B, while executing lock-X(A) causes
T3 to wait for T4 to release its lock on A.

§ Such a situation is called a deadlock.
• To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

FCT NOVA17José Alferes – Adaptado de Database System Concepts - 7th Edition

Deadlock (Cont.)

§ The potential for deadlock exists in most locking protocols.
• E.g. (all versions so far of) 2-PL may have deadlocks

§ Deadlocks are a necessary evil when using lock-protocols

§ Starvation is also possible if concurrency control manager is badly
designed. For example:
• A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock on
the same item.

• The same transaction is repeatedly rolled back due to deadlocks.
§ Concurrency control manager can be designed to prevent starvation.

FCT NOVA18José Alferes – Adaptado de Database System Concepts - 7th Edition

Deadlock Handling

§ Deadlock prevention protocols ensure that the system will never enter a
deadlock state. Some prevention strategies:
• Require that each transaction locks all its data items before it begins

execution (pre-declaration).
• Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified by the
partial order (graph-based protocol).

FCT NOVA19José Alferes – Adaptado de Database System Concepts - 7th Edition

More Deadlock Prevention Strategies

§ wait-die scheme — non-preemptive
• Older transaction may wait for younger one to release data item.
• Younger transactions never wait for older ones; they are rolled back

instead.
• A transaction may die several times before acquiring a lock

§ wound-wait scheme — preemptive
• Older transaction wounds (forces rollback) of younger transaction

instead of waiting for it.
• Younger transactions may wait for older ones.
• Fewer rollbacks than wait-die scheme.

§ In both schemes, a rolled back transactions is restarted with its original
timestamp.
• Ensures that older transactions have precedence over newer ones,

and starvation is thus avoided.

FCT NOVA20José Alferes – Adaptado de Database System Concepts - 7th Edition

Deadlock prevention (Cont.)

§ Timeout-Based Schemes:
• A transaction waits for a lock only for a specified amount of time. After

that, the wait times out and the transaction is rolled back.
• Ensures that deadlocks get resolved by timeout if they occur
• Simple to implement
• But may roll back transaction unnecessarily in absence of deadlock

§ Difficult to determine good value of the timeout interval.
• Starvation is also possible

FCT NOVA21José Alferes – Adaptado de Database System Concepts - 7th Edition

Deadlock Detection

§ Wait-for graph
• Vertices: transactions
• Edge from Ti ®Tj. : if Ti is waiting for a lock held in conflicting mode

byTj

§ The system is in a deadlock state if and only if the wait-for graph has a
cycle.

§ Invoke a deadlock-detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

T18 T20

T17

T19

T18 T20

T17

T19

FCT NOVA22José Alferes – Adaptado de Database System Concepts - 7th Edition

Deadlock Recovery

§ When deadlock is detected :
• Some transaction will have to rolled back (made a victim) to break

deadlock cycle.
§ Select that transaction as victim that will incur minimum cost

• Rollback – determine how far to roll back transaction
§ Total rollback: Abort the transaction and then restart it.
§ Partial rollback: Roll back victim transaction only as far as

necessary to release locks that another transaction in cycle is
waiting for

§ Starvation can happen (why?)
• One solution: oldest transaction in the deadlock set is never chosen

as victim

FCT NOVA23José Alferes – Adaptado de Database System Concepts - 7th Edition

Multiple Granularity

§ Allow data items to be of various sizes and define a hierarchy of data
granularities, where the small granularities are nested within larger ones

§ Can be represented graphically as a tree
§ When a transaction locks a node in the tree explicitly, it implicitly locks all

the node's descendants in the same mode.
§ Granularity of locking (level in tree where locking is done):

• Fine granularity (lower in tree): high concurrency, high locking
overhead

• Coarse granularity (higher in tree): low locking overhead, low
concurrency

FCT NOVA24José Alferes – Adaptado de Database System Concepts - 7th Edition

Example of Granularity Hierarchy

§ The levels, starting from the coarsest (top) level are
• database
• area
• file
• record

§ The corresponding tree

ra1 ra2 ran rb1 rbk rc1 rcm

Fa Fb Fc

A1 A2

DB

FCT NOVA25José Alferes – Adaptado de Database System Concepts - 7th Edition

Insert/Delete Operations and Predicate Reads

§ Locking rules for insert/delete operations
• An exclusive lock must be obtained on an item before it is deleted
• A transaction that inserts a new tuple into the database is

automatically given an X-mode lock on the tuple
§ Ensures that

• reads/writes conflict with deletes
• Inserted tuple is not accessible by other transactions until the

transaction that inserts the tuple commits

FCT NOVA26José Alferes – Adaptado de Database System Concepts - 7th Edition

Phantom Phenomenon

§ Example of phantom phenomenon.
• A transaction T1 that performs predicate read (or scan) of a relation

§ select count(*)
from instructor
where dept_name = 'Physics'

• and a transaction T2 that inserts a tuple while T1 is active but after
predicate read
§ insert into instructor values ('11111', 'Feynman', 'Physics', 94000)
(conceptually) conflict despite not accessing any tuple in common.

§ If only tuple locks are used, non-serializable schedules can be obtained
• E.g. the scan transaction does not see the new instructor, but may

read some other tuple written by the update transaction
§ Can also occur with updates

• E.g. update Wu’s department from Finance to Physics

FCT NOVA27José Alferes – Adaptado de Database System Concepts - 7th Edition

Handling Phantoms

§ There is a conflict at the data level
• The transaction performing predicate read or scanning the relation is

reading information that indicates what tuples the relation contains
• The transaction inserting/deleting/updating a tuple updates the same

information.
• The conflict should be detected, e.g. by locking the information.

§ One solution:
• Associate a data item with the relation, to represent the information

about what tuples the relation contains.
• Transactions scanning the relation acquire a shared lock in the data

item,
• Transactions inserting or deleting a tuple acquire an exclusive lock on

the data item. (Note: locks on the data item do not conflict with locks
on individual tuples.)

§ This protocol provides very low concurrency for insertions/deletions.

FCT NOVA28José Alferes – Adaptado de Database System Concepts - 7th Edition

Index Locking To Prevent Phantoms

§ Index locking protocol to prevent phantoms
• Every relation must have at least one index.
• A transaction can access tuples only after finding them through one or

more indices on the relation
• A transaction Ti that performs a lookup must lock all the index leaf

nodes that it accesses, in S-mode
§ Even if the leaf node does not contain any tuple satisfying the index

lookup (e.g. for a range query, no tuple in a leaf is in the range)
• A transaction Ti that inserts, updates or deletes a tuple ti in a relation r

§ Must update all indices to r
§ Must obtain exclusive locks on all index leaf nodes affected by the

insert/update/delete
• The rules of the two-phase locking protocol must be observed

§ Guarantees that phantom phenomenon won’t occur

