
Sistemas de Bases de Dados 2019/20
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapter 18 : Concurrency Control

FCT NOVA2José Alferes – Adaptado de Database System Concepts - 7th Edition

Optimistic vs Pessimistic protocols

§ What to do now?
• It may well be that the complete transactions are serializable
• But they may also turn out not to be serializable!

§ Optimistic protocols do not stop at potential conflicts; if something goes
wrong, rollback!

§ Pessimistic protocols stop at potential conflicts, until no possible conflict
exists; if in the end no conflict happened, it just lost time!

§ Let’s start with a pessimistic protocol.

T1 T2

Read(A)
Write(A)

Read(B)
Write(B)

Read(A)

Write(A)

FCT NOVA3José Alferes – Adaptado de Database System Concepts - 7th Edition

Timestamp Based Concurrency Control

FCT NOVA4José Alferes – Adaptado de Database System Concepts - 7th Edition

Timestamp-Based Protocols

§ Instead of determining the order of each operation in a transaction at
execution time, determines the order by the time of beginning of each
transaction.
• Each transaction is issued a timestamp when it enters the system. If

an old transaction To has timestamp TS(To), a new transaction Tn is
assigned time-stamp TS(Tn) such that TS(To) <TS(Tn).

§ Timestamp-based protocols manage concurrent execution such that
time-stamp order = serializability order

§ Several alternative protocols based on timestamps

FCT NOVA5José Alferes – Adaptado de Database System Concepts - 7th Edition

Timestamp-Ordering Protocol

The timestamp ordering (TSO) protocol
§ Maintains for each data item Q two timestamp values:

• W-timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successfully.

• R-timestamp(Q) is the largest time-stamp of any transaction that
executed read(Q) successfully.

§ Imposes rules on read and write operations to ensure that
• Any conflicting operations are executed in timestamp order
• Out of order operations cause transaction rollback

§ It is an optimistic protocol!

FCT NOVA6José Alferes – Adaptado de Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

§ Suppose a transaction Tr issues a read(Q)

1. If TS(Tr) £ W-timestamp(Q), then Tr needs to read a value of Q that
was already overwritten.
§ Hence, the read operation is rejected, and Tr is rolled back.

2. If TS(Tr) ³ W-timestamp(Q), then the read operation is executed, and
R-timestamp(Q) is set to

max(R-timestamp(Q), TS(Tr)).

FCT NOVA7José Alferes – Adaptado de Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

§ Suppose that transaction Tw issues write(Q).
1. If TS(Tw) < R-timestamp(Q), then the value of Q that Tw is producing

was needed previously, and the system assumed that that value
would never be produced.
Ø Hence, the write operation is rejected, and Tw is rolled back.

2. If TS(Tw) < W-timestamp(Q), then Tw is attempting to write an
obsolete value of Q.
Ø Hence, this write operation is rejected, and Tw is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q) is
set to TS(Tw).

FCT NOVA8José Alferes – Adaptado de Database System Concepts - 7th Edition

Correctness of Timestamp-Ordering Protocol

§ The timestamp-ordering protocol guarantees serializability since all the
arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph
§ Timestamp protocol ensures freedom from deadlock as no transaction

ever waits.
§ But the schedule may not be cascade-free and may not even be

recoverable.

FCT NOVA9José Alferes – Adaptado de Database System Concepts - 7th Edition

Multiversion Concurrency Control

FCT NOVA10José Alferes – Adaptado de Database System Concepts - 7th Edition

Multiversion Schemes

§ Multiversion schemes keep old versions of data item to increase
concurrency. Several variants:
• Multiversion Timestamp Ordering
• Multiversion Two-Phase Locking
• Snapshot isolation

§ Key ideas:
• Each successful write results in the creation of a new version of the

data item written.
• Use timestamps to label versions.
• When a read(Q) operation is issued, select an appropriate version of

Q based on the timestamp of the transaction issuing the read request,
and return the value of the selected version.

§ reads never have to wait as an appropriate version is returned
immediately.

FCT NOVA11José Alferes – Adaptado de Database System Concepts - 7th Edition

Multiversion Timestamp Ordering

§ Each data item Q has a sequence of versions <Q1, Q2,...., Qm>. Each
version Qk contains three data fields:
• Content – the value of version Qk.
• W-timestamp(Qk) – timestamp of the transaction that created (wrote)

version Qk

• R-timestamp(Qk) – largest timestamp of a transaction that
successfully read version Qk

FCT NOVA12José Alferes – Adaptado de Database System Concepts - 7th Edition

Multiversion Timestamp Ordering (Cont)

§ Suppose that transaction Ti issues a read(Q) or write(Q) operation. Let Qk
denote the version of Q whose W-timestamp is the largest write timestamp
less than or equal to TS(Ti) – i.e. the “version” of the item right before Ti
started
1. If transaction Ti issues a read(Q), then

§ the value returned is the content of version Qk

§ If R-timestamp(Qk) < TS(Ti), set R-timestamp(Qk) := TS(Ti),
2. If transaction Ti issues a write(Q)

1. if TS(Ti) < R-timestamp(Qk), then transaction Ti is rolled back.
2. if TS(Ti) = W-timestamp(Qk), the contents of Qk are overwritten
3. Otherwise, a new version Qi of Q is created

• W-timestamp(Qi) and R-timestamp(Qi) are initialized to TS(Ti).

FCT NOVA13José Alferes – Adaptado de Database System Concepts - 7th Edition

Multiversion Timestamp Ordering (Cont)

§ Observations
• Reads always succeed
• A write by Tw is rejected if some other transaction Tr that (in the

serialization order defined by the timestamp values) should read Tr's
write, has already read a version created by a transaction older than
Tr.

§ Protocol guarantees serializability

FCT NOVA14José Alferes – Adaptado de Database System Concepts - 7th Edition

Multiversion Two-Phase Locking

§ Differentiates between read-only transactions and update transactions
§ Update transactions

• When an update transaction wants to read a data item:
§ it obtains a shared lock on it and reads the latest version.

• When it wants to write an item
§ it obtains X-lock; it then creates a new version of the item and sets

this version's timestamp to ∞.
• This is to prevent other concurrent transactions to read its value,

and guarantee that other reads on the same transaction get this
version.

• When update transaction T completes, commit processing occurs:
§ T sets timestamp on the versions it has created to ts-counter + 1
§ T increments ts-counter by 1

FCT NOVA15José Alferes – Adaptado de Database System Concepts - 7th Edition

Multiversion Two-Phase Locking (Cont.)

§ Read-only transactions
• are assigned a timestamp = ts-counter when they start execution
• follow the multiversion timestamp-ordering protocol for performing

reads
§ Do not obtain any locks

§ Read-only transactions that start after Ti increments ts-counter will see
the values updated by Ti.

§ Read-only transactions that start before Ti increments the
ts-counter will see the value before the updates by Ti.

§ Only serializable schedules are produced.

FCT NOVA16José Alferes – Adaptado de Database System Concepts - 7th Edition

MVCC: Implementation Issues

§ Creation of multiple versions increases storage overhead
• Extra tuples
• Extra space in each tuple for storing version information

§ Versions can, however, be garbage collected
• E.g., if Q has two versions Q5 and Q9, and the oldest active transaction

has timestamp > 9, then Q5 will never be required again
§ Issues with

• primary key and foreign key constraint checking
• Indexing of records with multiple versions
See textbook for details

FCT NOVA17José Alferes – Adaptado de Database System Concepts - 7th Edition

Snapshot Isolation
§ Motivation: Decision support queries that read large amounts of data

have concurrency conflicts with OLTP transactions that update a few
rows
• Poor performance results

§ Solution 1: Use multiversion 2-phase locking
• Give logical “snapshot” of database state to read only transaction

§ Reads performed on snapshot
• Update (read-write) transactions use normal locking
• Works well, but how does the system know a transaction is read

only?
§ Solution 2 (partial): Give snapshot of database state to every transaction

• Reads performed on snapshot
• Use 2-phase locking on updated data items
• Problem: variety of anomalies such as lost update can result
• Better solution: snapshot isolation level (next slide)

FCT NOVA18José Alferes – Adaptado de Database System Concepts - 7th Edition

Snapshot Isolation

§ A transaction T1 executing with Snapshot
Isolation
• Takes snapshot of committed data at

start
• Always reads/modifies data in its own

snapshot
• Updates of concurrent transactions are

not visible to T1
• Writes of T1 complete when it commits
• First-committer-wins rule:

4 Commits only if no other concurrent
transaction has already written data
that T1 intends to write.

T1 T2 T3

W(Y := 1)
Commit

Start
R(X) à 0
R(Y)à 1

W(X:=2)
W(Z:=3)
Commit

R(Z) à 0
R(Y) à 1
W(X:=3)
Commit-Req
Abort

Concurrent updates not visible
Own updates are visible
Not first-committer of X

Serialization error, T2 is rolled back

FCT NOVA19José Alferes – Adaptado de Database System Concepts - 7th Edition

Snapshot Read
§ Concurrent updates invisible to snapshot read

FCT NOVA20José Alferes – Adaptado de Database System Concepts - 7th Edition

Snapshot Write: First Committer Wins

• Variant: “First-updater-wins”
! Check for concurrent updates when write occurs by locking item

4 But lock should be held till all concurrent transactions have
finished

! (Oracle uses this plus some extra features)
! Differs only in when abort occurs, otherwise equivalent

FCT NOVA21José Alferes – Adaptado de Database System Concepts - 7th Edition

Benefits and problems of SI

§ Reads are never blocked,
• and don’t block other transactions activities

§ Performance like Read Committed
§ Avoids several anomalies

• No dirty read, i.e. no read of uncommitted data
• tNo lost update

§ I.e., update made by a transaction is overwritten by another
transaction that did not see the update)

• No non-repeatable read
§ I.e., if read is executed again, it will see he same value

§ Problems with SI
• SI does not always give serializable executions

§ Serializable: among two concurrent transactions, one sees the
effects of the other

§ In SI: neither sees the effects of the other
• Result: Integrity constraints can be violated

FCT NOVA22José Alferes – Adaptado de Database System Concepts - 7th Edition

Snapshot Isolation

§ Example of problem with SI
• Initially A = 3 and B = 17

§ In the end succeeds with A = 17 and B = 3
§ Serializing Ti before Tj results in A = B = 17
§ Serializing Ti after Tj results in A = B = 3

§ Called skew write
§ Skew also occurs with inserts

• E.g:
§ Find max order number among all orders
§ Create a new order with order number = previous max + 1
§ Two transaction can both create order with same number

• Is an example of phantom phenomenon

FCT NOVA23José Alferes – Adaptado de Database System Concepts - 7th Edition

Serializable Snapshot Isolation

§ Serializable snapshot isolation (SSI): extension of snapshot isolation that
ensures serializability

§ Snapshot isolation tracks write-write conflicts, but does not track read-write
conflicts
• Where Ti writes a data a data item Q, Tj reads an earlier version of Q,

but Tj is serialized after Ti

§ Idea: track read-write dependencies separately, and roll-back transactions
where cycles can occur
• Ensures serializability
• Details in book

§ Implemented in PostgreSQL from version 9.1 onwards
• PostgreSQL implementation of SSI also uses index locking to detect

phantom conflicts, thus ensuring true serializability

FCT NOVA24José Alferes – Adaptado de Database System Concepts - 7th Edition

SI Implementations

§ Snapshot isolation supported by many databases
• Including Oracle, PostgreSQL, SQL Server, IBM DB2, etc
• Isolation level can be set to snapshot isolation

§ Oracle implements “first updater wins” rule (variant of “first committer
wins”)
• Concurrent writer check is done at time of write, not at commit time
• Allows transactions to be rolled back earlier

§ Warning: even if isolation level is set to serializable, Oracle actually uses
snapshot isolation
• Old versions of PostgreSQL prior to 9.1 did this too
• Oracle and PostgreSQL < 9.1 do not support true serializable

execution

FCT NOVA25José Alferes – Adaptado de Database System Concepts - 7th Edition

Transaction Definition in SQL

§ Data manipulation language must include a construct for specifying the set
of actions that comprise a transaction.

§ In SQL, a transaction begins implicitly, after previous transaction.
§ A transaction in SQL ends by:

• Commit work commits current transaction and begins a new one.
• Rollback work causes current transaction to abort.

§ In almost all database systems, by default every SQL statement also
commits implicitly if it executes successfully
• Implicit commit can be turned off by a database directive

§ E.g. in JDBC, connection.setAutoCommit(false);
§ Four levels of (weak) consistency, cf. before.

FCT NOVA26José Alferes – Adaptado de Database System Concepts - 7th Edition

Transaction management in Oracle

§ Transaction beginning and ending as in SQL
• Explicit commit work and rollback work
• Implicit commit on session end, and implicit rollback on failure
• Implicit commit before and after DDL commands

§ Log-based deferred recovery using rollback segment
§ Checkpoints (inside transactions) can be handled explicitly

• savepoint <name>
• rollback to <name>

§ Concurrency control is made by snapshot isolation
§ Deadlock are detected using a wait-graph

• Upon deadlock detection, the operation locked for longer fails (but the
transaction is not rolled back)

FCT NOVA27José Alferes – Adaptado de Database System Concepts - 7th Edition

Consistency verification in Oracle

§ By default, consistency is verified after each command, rather than at the
end of the transaction, as is prescribed by ACID properties

§ However, it is possible to defer the verification of constraints to the end of
transactions

§ This requires both:
• A prior declaration of all constraints that can possibly be deferred

§ Done by adding deferrable to the end of the declarations of the
constraint

• an instruction in the beginning of each of the transactions where
constraints are deferred
§ Done with:

• set constraints all deferred or
• set constraints <nome1>, ..., <nomen> deferred

FCT NOVA28José Alferes – Adaptado de Database System Concepts - 7th Edition

Levels of Consistency in Oracle

§ Oracle implements 2 of the 4 of levels of SQL
• Read committed, by default in Oracle and with

§ set transaction isolation level read committed
• Serializable (which indeed implements Snapshot Isolation) with

§ set transaction isolation level serializable
§ Appropriate for large databases with only few updates, and usually

with not many conflicts. Otherwise it is too costly.
§ Further, it supports a level similar to repeatable read:

• Read only mode, only allow reads on committed data, and further
doesn’t allow INSERT, UPDATE or DELETE on that data (without
unrepeatable reads!)
§ set transaction read only

FCT NOVA29José Alferes – Adaptado de Database System Concepts - 7th Edition

Granularity in Oracle

§ By default Oracle performs row level locking.
§ Command
§ select … for update
§ locks the selected rows so that other users cannot lock or update the rows

until you end your transaction. Restriction:
• Only at top-level select (not in sub-queries)
• Not possible with DISTINCT operator, CURSOR expression, set

operators, group by clause, or aggregate functions.
§ Explicit locking of tables is possible in several modes, with

• lock table <name> in
§ row share mode
§ row exclusive mode
§ share mode
§ share row exclusive mode
§ exclusive mode

FCT NOVA30José Alferes – Adaptado de Database System Concepts - 7th Edition

Lock modes in Oracle

§ Row share mode
• The least restrictive mode (with highest degree of concurrency)
• Allows other transactions to query, insert, update, delete, or lock rows

concurrently in the same table, except for exclusive mode
§ Row exclusive mode

• As before, but doesn’t allow setting other modes except for row share.
• Acquired automatically after a insert, update or delete command on a

table
§ Exclusive mode

• Only allows queries to records of the locked table
• No modifications are allowed
• No other transaction can lock the table in any other mode

§ See manual for details of other (intermediate) modes

Sistemas de Bases de Dados 2019/20
Capítulo refere-se a: Database System Concepts, 7th Ed

Chapter 19: Recovery System

FCT NOVA32José Alferes – Adaptado de Database System Concepts - 7th Edition

Failure Classification

§ Transaction failure :
• Logical errors: transaction cannot complete due to some internal

error condition
• System errors: the database system must terminate an active

transaction due to an error condition (e.g., deadlock)
§ System crash: a power failure or other hardware or software failure

causes the system to crash.
• Fail-stop assumption: non-volatile storage contents are assumed to

not be corrupted by system crash
§ Database systems have numerous integrity checks to prevent

corruption of disk data
§ Disk failure: a head crash or similar disk failure destroys all or part of disk

storage
• Destruction is assumed to be detectable: disk drives use checksums to

detect failures

FCT NOVA33José Alferes – Adaptado de Database System Concepts - 7th Edition

Recovery Algorithms

§ Suppose transaction Ti transfers €50 from account A to account B
• Two updates: subtract 50 from A and add 50 to B

§ Transaction Ti requires updates to A and B to be output to the database.
• A failure may occur after one of these modifications have been made

but before both are made.
• Modifying the database without ensuring that the transaction will

commit may leave the database in an inconsistent state
• Not modifying the database may result in lost updates if failure occurs

just after transaction commits
§ Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure enough
information exists to recover from failures

2. Actions taken after a failure to recover the database contents to a state
that ensures atomicity, consistency and durability

FCT NOVA34José Alferes – Adaptado de Database System Concepts - 7th Edition

Recovery and Atomicity

§ To ensure atomicity despite failures, we first output information describing
the modifications to stable storage without modifying the database itself.

§ We study log-based recovery mechanisms

§ Less used alternative: shadow-copy and shadow-paging

shadow-copy

FCT NOVA35José Alferes – Adaptado de Database System Concepts - 7th Edition

Log-Based Recovery

§ A log is a sequence of log records. The records keep information about
update activities on the database.
• The log is kept on stable storage

§ When transaction Ti starts, it registers itself by writing a
<Ti start> log record

§ Before Ti executes write(X), a log record
<Ti, X, V1, V2>

is written, where V1 is the value of X before the write (the old
value), and V2 is the value to be written to X (the new value).

§ When Ti finishes it last statement, the log record <Ti commit> is written.
§ Two approaches using logs

• Immediate database modification
• Deferred database modification.

FCT NOVA36José Alferes – Adaptado de Database System Concepts - 7th Edition

Deferred Database Modifiction

§ The deferred database modification scheme records all modifications to
the log, and defers actual writes to after partial commit.

§ Transaction starts by writing <T start> record to log.
§ A write(X) operation results in a log record <T, X, V> being written, where

V is the new value for X (the old value is not needed).
• The write is not performed on X at this time, but is deferred.

§ When T partially commits, <T commit> is written to the log
§ After that, the log records are read and used to actually execute the

previously deferred writes.
§ During recovery after a crash, a transaction needs to be redone iff both

<T start> and <T commit> are (still) in the log.
§ Redoing a transaction T (redoT) sets the value of all data items updated

by the transaction to the new values.

FCT NOVA37José Alferes – Adaptado de Database System Concepts - 7th Edition

Immediate Database Modification

§ The immediate-modification scheme allows updates of an
uncommitted transaction to be made to the buffer, or the disk itself,
before the transaction commits
• since undoing may be needed, update logs must have both old value

and new value
§ Update log record must be written before database item is written

• We assume that the log record is output directly to stable storage
• Can be extended to postpone log record output, so long as prior to

execution of an output(B) operation for a data block B, all log
records corresponding to items B must be flushed to stable storage

§ Output of updated blocks can take place at any time before or after
transaction commit

§ Order in which blocks are output can be different from the order in which
they are written.

FCT NOVA38José Alferes – Adaptado de Database System Concepts - 7th Edition

Immediate Database Modification (cont)

§ Recovery procedure has two operations instead of one:
• undo(T) restores the value of all data items updated by T to their old

values, going backwards from the last log record for T
• redo(T) sets the value of all data items updated by T to the new

values, going forward from the first log record for T
§ Both operations must be idempotent

• I.e. even if the operation is executed multiple times the effect is the
same as if it is executed once
§ Needed since operations may get re-executed during recovery

§ When recovering after failure:
• Transaction T needs to be undone if the log contains the record

<T start>, but does not contain the record <T commit>.
• Transaction Ti needs to be redone if the log contains both the record

<T start> and the record <T commit>.
§ Undo operations are performed before redo operations.

FCT NOVA39José Alferes – Adaptado de Database System Concepts - 7th Edition

Checkpoints

§ Redoing/undoing all transactions recorded in the log can be very slow
• Processing the entire log is time-consuming if the system has run for a

long time
• We might unnecessarily redo transactions which have already output

their updates to the database.
§ Streamline recovery procedure by periodically performing checkpointing

1. Output all log records currently residing in main memory onto stable
storage.

2. Output all modified buffer blocks to the disk.
3. Write a log record < checkpoint L> onto stable storage where L is a

list of all transactions active at the time of checkpoint.
4. All updates are stopped while doing checkpointing

FCT NOVA40José Alferes – Adaptado de Database System Concepts - 7th Edition

Checkpoints (Cont.)

§ During recovery we need to consider only the most recent transaction Ti
that started before the checkpoint, and transactions that started after Ti.
• Scan backwards from end of log to find the most recent <checkpoint

L> record
• Only transactions that are in L or started after the checkpoint need to

be redone or undone
• Transactions that committed or aborted before the checkpoint

already have all their updates output to stable storage.
§ Some earlier part of the log may be needed for undo operations

• Continue scanning backwards till a record <Ti start> is found for
every transaction Ti in L.

• Parts of log prior to earliest <Ti start> record above are not needed
for recovery and can be erased whenever desired.

