Chapter 18 : Concurrency Control

Sistemas de Bases de Dados 2020/21

Capitulo refere-se a: Database System Concepts, 7th Ed

Outline

= |Lock-Based Protocols

= Timestamp-Based Protocols

= Validation-Based Protocols

= Multiple Granularity

= Multiversion Schemes

= |nsert and Delete Operations

= Concurrency in Index Structures

José Alferes — Adaptado de Database System Concepts - 7th Edition 2 FCT NOVA

ACID Properties - Summary

A transaction is a unit of program execution that accesses and possibly
updates various data items. To preserve the integrity of data the database
system must ensure:

= Atomicity. Either all operations of the transaction are properly reflected in
the database or none are.

= Consistency. Execution of a transaction preserves the consistency of the
database in the end.

= |solation. Although multiple transactions may execute concurrently, each
transaction must be unaware of other concurrently executing transactions.
Intermediate transaction results must be hidden from other concurrently
executed transactions.

That is, for every pair of transactions T;and T, it appears to T;that either
T, finished execution before T, started, or T; started execution after T,
finished.

= Durability. After a transaction completes successfully, the changes it has
made to the database persist, even if there are system failures.

José Alferes — Adaptado de Database System Concepts - 7th Edition 3 FCT NOVA

Concurrency Control

= A database must provide a mechanism that ensures that all possible
schedules are

either conflict or view serializable, and
are recoverable and preferably cascadeless

= A policy in which only one transaction can execute at a time generates serial
schedules, but provides a poor degree of concurrency

= Testing a schedule for serializability after it has executed is a little too late!

= Goal —to develop concurrency control protocols that assure serializability

José Alferes — Adaptado de Database System Concepts - 7th Edition 4 FCT NOVA

Optimistic vs Pessimistic protocols

T1

T2

Read(A)

Write(A)

= What to do now?

It may well be that the complete transactions are serializable
But they may also turn out not to be serializable!

José Alferes — Adaptado de Database System Concepts - 7th Edition

FCT NOVA

Optimistic vs Pessimistic protocols

T1 T2
Read(A)
Write(A)
Read(B)
Write(B)
Read(A)

= What to do now?

It may well be that the complete transactions are serializable
But they may also turn out not to be serializable!

José Alferes — Adaptado de Database System Concepts - 7th Edition

FCT NOVA

Optimistic vs Pessimistic protocols

T1 T2

Read(A)

Write(A)

Read(A)

= What to do now?
It may well be that the complete transactions are serializable
But they may also turn out not to be serializable!

= Optimistic protocols do not stop at potential conflicts; if something goes
wrong, rollback!

= Pessimistic protocols stop at potential conflicts, until no possible conflict
exists; if in the end no conflict happened, it just lost time!

= Let’s start with a pessimistic protocol.

José Alferes — Adaptado de Database System Concepts - 7th Edition 5 FCT NOVA

Lock-Based Protocols

= Alock is a mechanism to control concurrent access to a data item
= Data items can be locked in two modes :
1. exclusive (X) mode. Data item can be both read as well as

written. X-lock is requested using lock-X instruction.
2. shared (S) mode. Data item can only be read. S-lock is

requested using lock-S instruction.
= Lock requests are made to the concurrency-control manager. The

transaction can proceed only after the request is granted.

José Alferes — Adaptado de Database System Concepts - 7th Edition 6 FCT NOVA

Lock-Based Protocols (Cont.)

= Lock-compatibility matrix

S X

S true false

X | false | false
= Atransaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions

= Any number of transactions can hold shared locks on an item,

But if any transaction holds an exclusive lock on the item no other
transaction may hold any lock on the item.

= |f a lock cannot be granted, the requesting transaction is made to wait until
all incompatible locks held by other transactions have been released. The
lock is then granted.

José Alferes — Adaptado de Database System Concepts - 7th Edition 7 FCT NOVA

Schedule With Lock Grants

= Simply having locks does

not guar antee T, T, concurrency-control manager
serializability! lock-X(8)
grant-X(B, T))
This schedule is not read(B)
serializable. B:=5~ 30
write(B)
unlock(B)
lock-S(4)
grant-S(4, 75)
read(4)
unlock(A4)
lock-S(B)
grant-S(B, 7,)
read(B)
unlock(B)
display(4 + B)
lock-X(A4)
grant-X(4, T,)
read(A4)
A=A4+50
write(4)
unlock(4)

José Alferes — Adaptado de Database System Concepts - 7th Edition 8 FCT NOVA

Schedule With Lock Grants

= Simply having locks does

not guar antee T, T, concurrency-control manager
serializability! lock-X(8) X T
grant- , 1
This schedule is not read(B)
serializable. B:=5~ 30
write(B)
= A locking protocol is a unlock(B)
set of rules followed by all lock-3(4) Grant-SA. T
transactions while read(4) o
requesting and releasing unlock(4)
grant-S(B, 7,)
Locking protocols read(B)
enforce serializability unlock(8)
.. display(4 + B)
by restricting the set lock-X(4)
of possible schedules. grant-X(4, T')
read(A4)
A=A4+50
write(4)
unlock(4)

José Alferes — Adaptado de Database System Concepts - 7th Edition 8 FCT NOVA

The Two-Phase Locking Protocol (2-PL)

= A protocol which ensures conflict-serializable
schedules.

= Phase 1: Growing Phase

Transaction may obtain locks
Transaction may not release locks
= Phase 2: Shrinking Phase

Transaction may release locks
Transaction may not obtain locks Time

= The protocol assures serializability: it can be
proved that the transactions can be serialized
in the order of their lock points (i.e., the
point where a transaction acquired its final
lock).

José Alferes — Adaptado de Database System Concepts - 7th Edition 9 FCT NOVA

The Two-Phase Locking Protocol (2-PL)

= A protocol which ensures conflict-serializable
schedules.

= Phase 1: Growing Phase
Transaction may obtain locks

Transaction may not release locks
= Phase 2: Shrinking Phase

Transaction may release locks
Transaction may not obtain locks Time

= The protocol assures serializability: it can be
proved that the transactions can be serialized
in the order of their lock points (i.e., the
point where a transaction acquired its final
lock).

José Alferes — Adaptado de Database System Concepts - 7th Edition 9 FCT NOVA

The Two-Phase Locking Protocol (2-PL)

= A protocol which ensures conflict-serializable

schedules.
= Phase 1: Growing Phase
Transaction may obtain locks ®
Transaction may not release locks ié
= Phase 2: Shrinking Phase
Transaction may release locks
Transaction may not obtain locks Time

= The protocol assures serializability: it can be
proved that the transactions can be serialized
in the order of their lock points (i.e., the
point where a transaction acquired its final
lock).

José Alferes — Adaptado de Database System Concepts - 7th Edition 9 FCT NOVA

The Two-Phase Locking Protocol (Cont.)

= Extensions to basic two-phase locking are needed to ensure recoverability
of freedom from cascading roll-back

Strict two-phase locking: a transaction must hold all its exclusive
locks until it commits or aborts.

Ensures recoverability and avoids cascading roll-backs

Rigorous two-phase locking: a transaction must hold all locks until
commit or abort.

Transactions can be serialized in the order in which they commit.

= Most databases implement rigorous two-phase locking, but refer to it as
simply two-phase locking

José Alferes — Adaptado de Database System Concepts - 7th Edition 10 FCT NOVA

Lock Conversions

= Two-phase locking protocol with lock conversions:
— Growing Phase:
can acquire a lock-S on item
can acquire a lock-X on item
can convert a lock-S to a lock-X (upgrade)
— Shrinking Phase:
can release a lock-S
can release a lock-X
can convert a lock-X to a lock-S (downgrade)
= This protocol still ensures serializability

José Alferes — Adaptado de Database System Concepts - 7th Edition 1 FCT NOVA

Automatic Acquisition of Locks

= Atransaction T issues the standard read/write instruction, without explicit
locking calls.
= The operation read(D) is processed as:
if T, has alock on D

then
read(D)

else begin
if necessary, wait until no other

transaction has a lock-X on D
grant T;a lock-S on D;

read(D)
end

José Alferes — Adaptado de Database System Concepts - 7th Edition 12 FCT NOVA

Automatic Acquisition of Locks (Cont.)

= The operation write(D) is processed as:
if 7,has a lock-X on D

then
write(D)
else begin
if necessary, wait until no other trans. has any lock on D,

if T:has a lock-S on D

then

upgrade lock on D to lock-X
else

grant T;a lock-X on D

write(D)
end;
= All locks are released after commit or abort

José Alferes — Adaptado de Database System Concepts - 7th Edition 13 FCT NOVA

Implementation of Locking

= A lock manager can be implemented as a separate process
= Transactions can send lock and unlock requests as messages

= The lock manager replies to a lock request by sending a lock grant
messages (or a message asking the transaction to roll back, in case of a
deadlock— to be seen in a few minutes)

The requesting transaction waits until its request is answered

= The lock manager maintains an in-memory data-structure called a lock
table to record granted locks and pending requests

José Alferes — Adaptado de Database System Concepts - 7th Edition 14 FCT NOVA

Lock Table

123
o] >
B] fPD
Tl T8 T2

_— 1912

T23

| 14

José Alferes — Adaptado de Database System Concepts - 7th Edition

15

Dark rectangles indicate granted locks,
light colored ones indicate waiting
requests

Lock table also records the type of lock
granted or requested

New request is added to the end of the
queue of requests for the data item,
and granted if it is compatible with all
earlier locks

Unlock requests result in the request
being deleted, and later requests are
checked to see if they can now be
granted

If a transaction aborts, all waiting or
granted requests of the transaction are
deleted

lock manager may keep a list of
locks held by each transaction, to
implement this efficiently

FCT NOVA

Deadlock

= Consider the partial schedule

T, T,

lock-X(B)

read(B)

B:=B-50

write(B)
lock-S(A4)
read(4)
lock-S(B)

lock-X(A)

José Alferes — Adaptado de Database System Concepts - 7th Edition

16

FCT NOVA

Deadlock

= Consider the partial schedule

T, T,

lock-X(B)

read(B)

B:=B-50

write(B)
lock-S(A4)
read(4)
lock-S(B)

lock-X(A)

= Neither T; nor T, can make progress — executing lock-S(B) causes T, to
wait for T, to release its lock on B, while executing lock-X(A) causes T, to

wait for T, to release its lock on A.

José Alferes — Adaptado de Database System Concepts - 7th Edition 16 FCT NOVA

Deadlock

= Consider the partial schedule

T, T,

lock-X(B)

read(B)

B:=B-50

write(B)
lock-S(A4)
read(4)
lock-S(B)

lock-X(A)

= Neither T; nor T, can make progress — executing lock-S(B) causes T, to
wait for T, to release its lock on B, while executing lock-X(A) causes T, to

wait for T, to release its lock on A.

= Such a situation is called a deadlock.
To handle a deadlock one of T, or T, must be rolled back
and its locks released.

José Alferes — Adaptado de Database System Concepts - 7th Edition 16 FCT NOVA

Deadlock (Cont.)

= The potential for deadlock exists in most locking protocols.
E.g. (all versions so far of) 2-PL may have deadlocks
= Deadlocks are a necessary evil when using lock-protocols

= Starvation is also possible if concurrency control manager is badly
designed. For example:

A transaction may be waiting for an X-lock on an item, while a
sequence of other transactions request and are granted an S-lock on
the same item.

The same transaction is repeatedly rolled back due to deadlocks.
= Concurrency control manager can be designed to prevent starvation.

José Alferes — Adaptado de Database System Concepts - 7th Edition 17 FCT NOVA

Deadlock Handling

= Deadlock prevention protocols ensure that the system will never enter a
deadlock state. Some prevention strategies:

Require that each transaction locks all its data items before it begins
execution (pre-declaration).

Impose partial ordering of all data items and require that a transaction
can lock data items only in the order specified by the partial order
(graph-based protocol).

José Alferes — Adaptado de Database System Concepts - 7th Edition 18 FCT NOVA

More Deadlock Prevention Strategies

= wait-die scheme — non-preemptive
Older transaction may wait for younger one to release data item.

Younger transactions never wait for older ones; they are rolled back
instead.

A transaction may die several times before acquiring a lock
= wound-wait scheme — preemptive

Older transaction wounds (forces rollback) of younger transaction
instead of waiting for it.

Younger transactions may wait for older ones.
Fewer rollbacks than wait-die scheme.

= |n both schemes, a rolled back transactions is restarted with its original
timestamp.

Ensures that older transactions have precedence over newer ones,
and starvation is thus avoided.

José Alferes — Adaptado de Database System Concepts - 7th Edition 19 FCT NOVA

Deadlock prevention (Cont.)

= Timeout-Based Schemes:

A transaction waits for a lock only for a specified amount of time. After
that, the wait times-out and the transaction is rolled back.

Ensures that deadlocks get resolved by timeout if they occur

Simple to implement

But may roll back transaction unnecessarily in absence of deadlock
Difficult to determine good value of the timeout interval.

Starvation is also possible

José Alferes — Adaptado de Database System Concepts - 7th Edition 20 FCT NOVA

Deadlock Detection

= Wait-for graph
Vertices: transactions
Edge from T, —T. :if T;is waiting for a lock held in conflicting mode by T,

= The system is in a deadlock state if and only if the wait-for graph has a
cycle.

= |nvoke a deadlock-detection algorithm periodically to look for cycles.

Col

Wait-for graph without a cycle Wait-for graph with a cycle

José Alferes — Adaptado de Database System Concepts - 7th Edition 21 FCT NOVA

Deadlock Recovery

= When deadlock is detected :

Some transaction will have to rolled back (made a victim) to break
deadlock cycle.

Select as victim the transaction that will incur minimum cost
Rollback — determine how far to roll back transaction
Total rollback: Abort the transaction and then restart it.

Partial rollback: Roll back victim transaction only as far as

necessary to release locks that another transaction in cycle is
waiting for

= Starvation can happen

One solution: oldest transaction in the deadlock set is never chosen as
victim

José Alferes — Adaptado de Database System Concepts - 7th Edition 22 FCT NOVA

Multiple Granularity

= Allow data items to be of various sizes and define a hierarchy of data
granularities, where the small granularities are nested within larger ones

= Can be represented graphically as a tree

= When a transaction explicitly locks a node in the tree, it implicitly locks all
the node's descendants in the same mode.

= Granularity of locking (level in tree where locking is done):

Fine granularity (lower in tree): high concurrency, high locking
overhead

Coarse granularity (higher in tree): low locking overhead, low
concurrency

José Alferes — Adaptado de Database System Concepts - 7th Edition 23 FCT NOVA

Example of Granularity Hierarchy

= The levels, starting from the coarsest (top) level are
database
area
file
record
= The corresponding tree

José Alferes — Adaptado de Database System Concepts - 7th Edition 24 FCT NOVA

Insert/Delete Operations and Predicate Reads

= Locking rules for insert/delete operations
An exclusive lock must be obtained on an item before it is deleted

A transaction that inserts a new tuple into the database is automatically
given an X-mode lock on the tuple

= Ensures that
reads/writes conflict with deletes

Inserted tuple is not accessible by other transactions until the
transaction that inserts the tuple commits

José Alferes — Adaptado de Database System Concepts - 7th Edition 25 FCT NOVA

Phantom Phenomenon

= Example of phantom phenomenon.
A transaction T1 that performs predicate read (or scan) of a relation

select count(*)
from instructor
where dept_name = 'Physics'

and a transaction T2 that inserts a tuple while T1 is active but after
predicate read

insert into instructor values ('11111', 'Feynman’, 'Physics', 94000)
(conceptually) conflict despite not accessing any tuple in common.
= |f only tuple locks are used, non-serializable schedules can be obtained

E.g. the scan transaction does not see the new instructor, but may read
some other tuple written by the update transaction

= (Can also occur with updates
E.g. update Wu’s department from Finance to Physics

José Alferes — Adaptado de Database System Concepts - 7th Edition 26 FCT NOVA

Handling Phantoms

= There is a conflict at the data level

The transaction performing predicate read or scanning the relation is
reading information that indicates what tuples the relation contains

The transaction inserting/deleting/updating a tuple updates the same
information.

The conflict should be detected, e.g. by locking the information.
= One solution:

Associate a data item with the relation, to represent the information
about what tuples the relation contains.

Transactions scanning the relation acquire a shared lock in the data
item,

Transactions inserting or deleting a tuple acquire an exclusive lock on
the data item. (Note: locks on the data item do not conflict with locks on
individual tuples.)

= This protocol provides very low concurrency for insertions/deletions.

José Alferes — Adaptado de Database System Concepts - 7th Edition 27 FCT NOVA

Index Locking To Prevent Phantoms

= |ndex locking protocol to prevent phantoms
Every relation must have at least one index.

A transaction can access tuples only after finding them through one or
more indices on the relation

A transaction T, that performs a lookup must lock all the index leaf nodes
that it accesses, in S-mode

Even if the leaf node does not contain any tuple satisfying the index
lookup (e.g. for a range query, no tuple in a leaf is in the range)

A transaction T, that inserts, updates or deletes a tuple t;in a relation r

Must update all indices to r

Must obtain exclusive locks on all index leaf nodes affected by the
insert/update/delete

The rules of the two-phase locking protocol must be observed
= (Guarantees that phantom phenomenon won’t occur

José Alferes — Adaptado de Database System Concepts - 7th Edition 28 FCT NOVA

