Sistemas de Bases de Dados, 2nd test 11.05.2022

DI, FCT-NOVA

Sistemas de Bases de Dados

2" Test —2021/22
Duration: 1 Hour and 30 Minutes

Group 1

Consider a (simplified) database for managing a flying-passenger locator system of a national health
authority (something that is quite common since the COVID pandemic), with the following tables (where
attributes that form the primary keys are underlined):

routes(NumR,IdC, Origin, Time, Destination) persons(ldP,NameP,Address, Zip,Sex,Age, CertID)

flights(NumR,Date) companies(ldC,NameC,Country,...)
travels(Code,ldP, Origin,Destination) travelLegs(Code,NumR, Date, SeatNo)

vaccinationCert(CertiD,IdP,DateV,Doses,Lab,issuedBy)

Each of these tables has a B+ tree clustered index over the primary key.

For each passenger, the database stores, in the persons table, her id, name, address (including zip code)
sex, age, the id of her certificate of vaccination (with a null value if the person has no vaccination
certificate). Each vaccination certificate has, besides a unique certificate identifier, the identifier of the
person, the date of the (last) vaccination shot, number of doses taken, the name of the Lab that made the
vaccine, and of the authority that issued the certificate.

The health authority uses this database to track which flights each person is taking, passing through which
airports. Each flight has a route number and a date. Route numbers refer to routes that may take place
everyday, or once a week, etc. E.g., Route number TP943 refers to daily TAP flights leaving at 1pm from
Geneve to Lisbon.

A travel is a sequence of flights that a passenger may take. Each one is identified by a reservation code,
refers to a passenger, and has and origin and a final destination. Each step (or travel leg) in a travel, refers
to a flight (identified by the route number and date), and the seat number reserved for the corresponding
passenger in that flight.

Furthermore, at a given moment the companies table has 100 tuples, the routes table has 2.000 tuples,
the flights table has 200.000 tuples, the travels table 400.000 tuple, vaccinationCert with 800.000 tuples,
persons with 1.000.000 tuples, and travelLegs with 20.000.000 tuples. Tuples of all these tables are of
variable size and, on average, each tuple of flights has 25 bytes, each tuple of either routes, companies,
travels or travelLegs has 50 bytes, each tuple of vaccinationCert has 100 bytes, and each tuple of persons
has 200 bytes.

The database is implemented in a system using 4KB blocks and a memory of 1,000 blocks.

Note: In this group, whenever an example is asked for, the example must be in terms of the database
above. Moreover, all your answers must include a brief justification.

1a) Present two execution plans for the following query (that returns all persons over 70 that
travelled from Lisbon to Madrid on May 10), and justify which one should have the lowest
cost:

select distinct nameP
from persons natural inner join fravels natural inner join travelLegs
where age > 70 and Origin = ‘Lisbon’ and Destination = ‘Madrid’ and Date = 10/05/2022

1b) Assume that the DBMS only has the “block nested loop join” algorithm for joins, eventually
using index files when available. For each of the join queries below, which is the best join
order?

1. travelsX| travelLegs

2. routes)X| companies |X] travelLegs

Page 1 of 2 DI, FCT-NOVA

Sistemas de Bases de Dados, 2nd test 11.05.2022

1¢)

1d)

le)

In general the merge-join algorithm does not allow the use of pipelining between the join and
other operations. However, there are situation in which that is not the case.

Give an example of an SQL query and a corresponding execution plan for which the merge-
join algorithm could be used with pipelining without any problems.

Give an example of an SQL query whose execution would be more efficient if there were
foreign keys in the database above, also specifying which foreign keys would have to be
defined for that example.

Consider now that the system implements all the algorithms that we’ve studied during the
course, and that there is a foreign key declaration on attribute /dP in travels referencing /dP in
persons.

What is the best execution plan for the following query (that returns the names of persons over
70 that flew on May 10 on a same route in which the passenger with id 1111 also flew)?

with flightP1111 as
(select NumR, Date from travelLegs natural inner join travels natural inner join persons
where IdP = 1111)

select nameP
from travelLegs natural inner join travels natural inner join persons
where person.Age > 70 and
exists (select * from flightP1111 where travelLegs.Date = 10/05/2022 and
travelLegs.Date = flightP1111.Date and
travelLegs.NumR = flightP1111.NumR)

Group 2

2 a)

2b)

2¢)

“The external sort merge algorithm makes a first pass on the whole table, where individual
runs are independently sorted, followed by one or more passes where the several runs are
merged. However, in practice, it is extremely rare that more than one merge pass is needed.
As such, some DBMSs don’t even include the implementation for several merge passes.”

Justify that in practice these situations are indeed quite unlikely (e.g. showing, in concrete
databases and computers, from which sizes more than one pass is required).

Although in general the efficiency of query execution is greatly improved by cost-based
optimisation (where the cost of all possible execution plans is estimated before one is chosen
for execution) this is not always the case. There are situations, and specific queries, for which
cost-based optimisation is unaffordable, and for which its computational cost largely exceeds
its potential benefits for the execution of the query.

Explain in which situations cost-based optimisation is not desirable, giving a concrete example
of a database and query where this is the case.

Give an example of a query-processing algorithm that can take a big advantage of parallelism.
Briefly explain the algorithm, focusing on the characteristics that make it especially fit for
intra-operation parallelism.

Page 2 of 2 DI, FCT-NOVA

