
Sistemas de Bases de Dados, 3rd test 09.06.2022

Page 1 of 2 DI, FCT-NOVA

DI, FCT-NOVA
Sistemas de Bases de Dados

3rd Test – 2021/22
Duration: 1 Hour and 30 Minutes

Group 1
Consider a (simplified) database for managing a flying-passenger locator system of a national health
authority (something that is quite common since the COVID pandemic), with the following tables (where
attributes that form the primary keys are underlined):

routes(NumR,IdC,Origin,Time,Destination) persons(IdP,NameP,Address,Zip,Sex,Age,CertID)
flights(NumR,Date) companies(IdC,NameC,Country,…)
travels(Code,IdP,Origin,Destination) travelLegs(Code,NumR,Date,SeatNo)
vaccinationCert(CertID,IdP,DateV,Doses,Lab,issuedBy)

Each of these tables has a B+ tree clustered index over the primary key.
For each passenger, the database stores, in the persons table, her id, name, address (including zip code)
sex, age, the id of her certificate of vaccination (with a null value if the person has no vaccination
certificate). Each vaccination certificate has, besides a unique certificate identifier, the identifier of the
person, the date of the (last) vaccination shot, number of doses taken, the name of the Lab that made the
vaccine, and of the authority that issued the certificate.
The health authority uses this database to track which flights each person is taking, passing through which
airports. Each flight has a route number and a date. Route numbers refer to routes that may take place
everyday, or once a week, etc. E.g., Route number TP943 refers to daily TAP flights leaving at 1pm from
Genève to Lisbon.
A travel is a sequence of flights that a passenger may take. Each one is identified by a reservation code,
refers to a passenger, and has and origin and a final destination. Each step (or travel leg) in a travel, refers
to a flight (identified by the route number and date), and the seat number reserved for the corresponding
passenger in that flight.
Furthermore, at a given moment the companies table has 100 tuples, the routes table has 2.000 tuples,
the flights table has 200.000 tuples, the travels table 400.000 tuple, vaccinationCert with 800.000 tuples,
persons with 1.000.000 tuples, and travelLegs with 20.000.000 tuples. Tuples of all these tables are of
variable size and, on average, each tuple of flights has 25 bytes, each tuple of either routes, companies,
travels or travelLegs has 50 bytes, each tuple of vaccinationCert has 100 bytes, and each tuple of persons
has 200 bytes.
The database is implemented in a system using 4KB blocks and a memory of 1,000 blocks.
Note: In this group, whenever an example is asked for, the example must be in terms of the database
above, and all examples must be given in SQL. Moreover, all your answers must include a brief
justification.

1 a) Assume that the database management system uses a rigorous 2-phase lock protocol for
concurrency control. Give an example of a schedule (in SQL) that would cause a deadlock.

1 b) Consider the following concurrent transactions (without assuming, for now, any particular
order between the operations between the transaction):

 1. begin transaction A. begin transaction
 2. update persons B. update persons

set age = age * 2 set age = age + 1
where IdP=12345678; where IdP =12345678;

 3. update persons C. commit;
set age = age * 3
where IdP =12345678

 4. commit;

Sistemas de Bases de Dados, 3rd test 09.06.2022

Page 2 of 2 DI, FCT-NOVA

 Assume that before the transactions’ execution the age of the person with IdP =12345678 is
1, and that no other transaction is executing at the same time.
What are the possible ages of that person after the execution of both transactions if:

(1) both transactions execute in serializable mode?
(2) both transactions execute in read committed mode?

For each possible final result, say which schedule generates that value of the age.

[You can write a schedule as a sequence of numbers and letters identifying the order in which
the operations above are executed, e.g. 1, 2, A, B, 3, 4, C]

1 c) Some database systems, such as Oracle, use multi-version concurrency control protocols,
where lock granularity is done at tuple level, and with “snapshot isolation”. Although these
protocols guarantee some weak form of isolation, they do not guarantee that the concurrent
execution is always equivalent to one of the sequential executions of the concurrent
transactions.
Present a schedule of SQL actions over two concurrent transactions which illustrates just that.
I.e., a schedule that, if executed e.g., in Oracle, both transactions would successfully end but
with a different result from the one obtained by first completely executing one transaction and
then the other (or vice-versa).

1 d) Present one schedule of two concurrent transactions (in SQL) that, if the DBMS uses a 2-
phase lock protocol then a deadlock would occur, but if the DBMS uses a protocol based on
timestamps, then both transactions would run successfully until the end (i.e., none of them
would have to rollback) without the need for suspending any action, let alone a deadlock.

1 e) Suppose now that the database is fragmented, with a central server with the complete tables
of persons, vaccinationCert and travels (i.e., all the tables with information that does not
depend on companies), plus the table companies, and then there is a server in each company
with the routes, flights, and travelLegs of that company.

What is the best execution plan for the following query (what are the names of the persons
who flew at least once from Lisbon to Madrid with TAP), that is asked in the central server,
assuming that the number of persons that flew from Lisbon to Madrid with TAP is much less
than the total number of persons (as it is obviously the case, in practice)?

select persons.NameP
from persons natural inner join travels natural inner join travelLegs
 inner join routes using (NumR)
where routes.Origin =‘Lisbon’ and routes.Destination =‘Madrid’ and idC = ‘TAP’

Group 2

2 a) In ACID transactions, the Consistency property only imposes the verification of integrity
constraints at the end of the transaction, rather than imposing the verification after each
action inside the transaction.

 Why isn’t it important to impose the integrity of the database after each action of a transaction?
 And which operations would be impossible if integrity would be imposed after each action?

Give an example of a database, and an operation over it, that would be impossible if integrity
was imposed after each action.

2 b) For dealing with recovery and thus guarantying the atomicity and durability ACID properties,
a database management system may either implement a deferred or an immediate
modification schema.

 Briefly explain the differences between these two schemas, mentioning also how the logs in
each of the cases differ.

2 c) Which problem in distributed databases does the 2-phase commit protocol address? In your
answer mention which of the ACID properties are relevant to that problem.

