
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 1

CLOUD COMPUTING SYSTEMS

Lectures 6-7

Nuno Preguiça
(nuno.preguica_at_fct.unl.pt)

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 2

OUTLINE

Computing services

1. First generation batch processing: Map-reduce

2. Second generation batch processing: Spark

3. Stream processing

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 3

OUTLINE

Computing services

1. First generation batch processing: Map-reduce
• Programming model
• Execution model

• Handling faults

2. Second generation batch processing: Spark

3. Stream processing

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 4

MAPREDUCE

“A new abstraction that
allows us to expresses
simple computations we
were trying to perform but
hides the messy details
of parallelization, fault-
tolerance, data-distribution
and load-balancing in a
library”

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 5

MAPREDUCE (2)

“A programming model and
an associated
implementation for
processing large datasets.”

“Runs on a large cluster of
commodity machines … a
typical … computation
processes many terabytes of
data on thousands of
machines.”

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 6

EXAMPLE APPLICATION

Consider you have a huge text.
Goal: find out the words that appear more frequently in a text.
Can be transformed into:
Goal 1: Count the number of times each word appears in the
text.
Goal 2: Order the words by frequency.
Is this a useless example?
Not really… e.g. analyze web logs to find popular URLs, analyze
social media posts to find trending topics, etc.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 7

MAPREDUCE: OVERVIEW

Sequentially read a lot of data
Map phase:

• Extract the important information

Group by key: Sort and Shuffle the output of the map
phase
Reduce phase:

• Aggregate, summarize, filter or transform

Write the result

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 7

A computation is a sequence of
map-reduce computations.

Each computation step is
composed of a map and a

reduce steps.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 8

MAPREDUCE: EXAMPLE

NOVA SBE
NUNO
NOVA
LUDWIG SBE
ANGELO
NOVA ADA
CARCAVELOS
NOVA MSC
SBE

Map: for each word,
output its count.

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1)
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1)
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map: read the input
and produce

key,value pairs
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,1)
(NOVA,1)
(NOVA,1)
(NOVA,1)
(NUNO,1)
(SBE,1)
(SBE,1)
(SBE,1)

Sort & shuffle:
performed by the

system
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect
values with the same

key and produce
result

Reduce: count the
frequency per word.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 9

WORD COUNT USING MAPREDUCE
map(key, value): // key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values): // key: a word; value: an iterator over counts

result = 0

for each count v in values:

result += v

emit(key, result)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 9

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 10

MAPREDUCE MODEL

Input: a set of key-value pairs

Programmer specifies two methods:
• Map(k, v) ® <k’, v’>*

• Takes a key-value pair and outputs a set of key-value pairs
• E.g., key is the filename, value is a single line in the file

• Map is called for every (k,v) pair
• Reduce(k’, <v’>*) ® <k’, v’’>*

• All values v’ with same key k’ are reduced together and
processed in v’ order

• Reduce is called for each unique key k’

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 10

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 11

EXAMPLE APPLICATION

Consider you have a huge text.
Goal: find out the words that appear more frequently in a text.
Can be transformed into:
Goal 1: Count the number of times each word appears in the
text.
Goal 2: Order the words by frequency.
Is this a useless example?
Not really… e.g. analyze web logs to find popular URLs, analyze
social media posts to find trending topics, etc.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 12

GOAL 2: ORDER THE WORDS BY FREQUENCY.

Can we sort the values of the
reduce before returning
them?

NO !!!
Each reduce will be
processed independently (by
a different machine).
Also bad idea because it
requires storing potentially
large amount of data.

(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect
values with the same

key and produce
result (ADA,1)

(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NUNO,1)
(NOVA,4)

(SBE,3)

Reduce: collect
values with the same

key and produce
result

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 13

MAPREDUCE: EXAMPLE

(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)
(SBE,3)

Map: reverse order of
pair.

Map: read the input
and produce

key,value pairs

Sort & shuffle:
performed by the

system

Reduce: collect
values with the same

key and produce
result

Reduce: reverse order
of pair.

(1,ADA)
(1,ANGELO)
(1,CARCAVELOS)
(1,LUDWIG)
(1,MSC)
(4,NOVA)
(1,NUNO)
(3,SBE)

(1,ADA)
(1,ANGELO)
(1,CARCAVELOS)
(1,LUDWIG)
(1,MSC)
(1,NUNO)
(3,SBE)
(4,NOVA)

(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NUNO,1)
(SBE,3)
(NOVA,4)

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 14

WORD COUNT SORT USING MAPREDUCE
map(key, value): // key: word; value: word count

emit(value, key)

reduce(key, values): // key: word count; value: word

for each v in values:

emit(v, key)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 14

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 15

MAPREDUCE

Programmer responsible for:
• Map function
• Reduce function

MapReduce system responsible for:
• Partitioning the input data
• Scheduling the program’s execution across a set of machines
• Performing the sort by key & shuffle step
• Handling machine failures
• Managing required inter-machine communication

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 15

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 16

OUTLINE

Computing services

1. First generation batch processing: Map-reduce
• Programming model
• Execution model

• Handling faults

2. Second generation batch processing: Spark

3. Stream processing

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 17

MAPREDUCE: LOGICAL EXECUTION…

Map: read the input
and produce

key,value pairs

Sort & shuffle:
performed by the

system

Reduce: collect
values with the same

key and produce
result

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 18

MAPREDUCE: DISTRIBUTED EXECUTION…

Map: read the input
and produce

key,value pairs

Sort & shuffle:
performed by the

system

Reduce: collect
values with the same

key and produce
result

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 19

MAPREDUCE: DISTRIBUTED EXECUTION…

Map: read the input
and produce

key,value pairs

Sort & shuffle:
performed by the

system

Reduce: collect
values with the same

key and produce
result

Each phase is divided in
multiple tasks. Each task
is executed independently

on a different nodes.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 20

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

MAPREDUCE ARCHITECTURE

1. Input files stored
in a distributed file

system, and
divided into splits

3. Master asks
workers to run map
tasks: process splits

in parallel, and...

3. ...save
intermediate results in
multiple files by key

range

4. Master asks workers to
run reduce tasks: reducers

sort intermediate files before
processing values for each

key.

2. Clients send
programs to the

master.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 21

MAPREDUCE SYSTEM: MASTER NODE
Master node coordinates the
execution:

Task status: (idle, in-progress,
completed)
Idle tasks get scheduled as
workers become available
When a map task completes, it
sends the master the location and
sizes of its intermediate files, one
for each reducer
Master pushes this info to
reducers

Master pings workers periodically
to detect failures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 21

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 22

MAPREDUCE SYSTEM: WORKER

Worker node performs
map or reduce tasks, as
requested by the
coordinator.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 22

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 23

MAPREDUCE SYSTEM: HANDLING FAULTS

Map worker failure
Upon detection of the failure
of a worker, map tasks
restarted in different worker

Reduce worker failure
Reduce task is restarted in
other worker

Stragglers (slow workers)
If a task is taking too long to
complete, it is launched in
other worker. First result used.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 23

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 24

MAPREDUCE SYSTEM: HANDLING FAULTS (2)

Master failure
MapReduce task is aborted
and client is notified

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 24

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 25

OUTLINE

Computing services

1. First generation batch processing: Map-reduce
• Programming model
• Execution model

• Handling faults

2. Second generation batch processing: Spark

3. Stream processing

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 26

MAPREDUCE: EXAMPLE

NOVA SBE
NUNO
NOVA
LUDWIG SBE
ANGELO
NOVA ADA
CARCAVELOS
NOVA MSC
SBE

Map: for each word,
output its count.

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1)
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1)
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map: read the input
and produce

key,value pairs
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,1)
(NOVA,1)
(NOVA,1)
(NOVA,1)
(NUNO,1)
(SBE,1)
(SBE,1)
(SBE,1)

Sort & shuffle:
performed by the

system
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect
values with the same

key and produce
result

Reduce: count the
frequency per word.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 27

MAPREDUCE: EXAMPLE

NOVA SBE
NUNO
NOVA
LUDWIG SBE
ANGELO
NOVA ADA
CARCAVELOS
NOVA MSC
SBE

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1)
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1)
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map: read the input
and produce

key,value pairs

Sort & shuffle:
performed by the

system
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect
values with the same

key and produce
result

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 28

MAPREDUCE: EXAMPLE

NOVA SBE
NUNO
NOVA
LUDWIG SBE
ANGELO
NOVA ADA
CARCAVELOS
NOVA MSC
SBE

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1)
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1)
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map: read the input
and produce

key,value pairs

Sort & shuffle:
performed by the

system
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect
values with the same

key and produce
result

Mapper 1 sends two tuples
for NOVA !!

How to improve this?

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 29

IMPROVING MAPREDUCE: COMBINER

Combiner allows to pre-
aggregate values in the
mapper.

Combine(k, <v>*) ® <k, v’>
All values v with same key k
are combined and processed
in v order
Combine is called at each
mapper for each unique key
k

Combiner function is usually
the same as the reduce
function.

NOVA SBE
NUNO
NOVA
LUDWIG SBE
ANGELO
NOVA ADA
CARCAVELOS
NOVA MSC
SBE

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1)
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1)
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map
Sort &
shuffle

(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce

Co
m
bi
ne

r

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 30

WHY WAS MAP-REDUCE SO POPULAR?

Distributed computation before MapReduce:
• how to divide the workload among multiple machines?
• how to distribute data and program to other machines?
• how to schedule tasks?
• what happens if a task fails while running?
• … and … and ...

Distributed computation after MapReduce
• how to write Map function?
• how to write Reduce function?
• systems to efficiently execute map-reduce jobs: Hadoop.

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 31

APACHE HADOOP 2.0

Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 32

TO KNOW MORE
J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters, OSDI’04.

