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OUTLINE

Computing services

1. First generation batch processing: Map-reduce

2. Second generation batch processing: Spark

3. Stream processing
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OUTLINE

Computing services

1. First generation batch processing: Map-reduce
• Programming model
• Execution model

• Handling faults

2. Second generation batch processing: Spark

3. Stream processing



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   4

MAPREDUCE

“A new abstraction that 
allows us to expresses 
simple computations we 
were trying to perform but 
hides the messy details
of parallelization, fault-
tolerance, data-distribution 
and load-balancing in a 
library”
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MAPREDUCE (2)

“A programming model and 
an associated 
implementation for 
processing large datasets.”

“Runs on a large cluster of 
commodity machines …  a 
typical … computation 
processes many terabytes of 
data on thousands of 
machines.”
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EXAMPLE APPLICATION

Consider you have a huge text.
Goal: find out the words that appear more frequently in a text.
Can be transformed into:
Goal 1: Count the number of times each word appears in the 
text.
Goal 2: Order the words by frequency.
Is this a useless example?
Not really… e.g. analyze web logs to find popular URLs, analyze 
social media posts to find trending topics, etc.
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MAPREDUCE: OVERVIEW

Sequentially read a lot of data
Map phase:

• Extract the important information

Group by key: Sort and Shuffle the output of the map 
phase
Reduce phase:

• Aggregate, summarize, filter or transform

Write the result

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 7

A computation is a sequence of 
map-reduce computations.

Each computation step is 
composed of a map and a 

reduce steps.
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MAPREDUCE: EXAMPLE

NOVA SBE
NUNO
NOVA 
LUDWIG SBE
ANGELO
NOVA ADA 
CARCAVELOS
NOVA MSC
SBE

Map: for each word, 
output its count.

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1) 
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1) 
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map: read the input 
and produce 

key,value pairs
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,1)
(NOVA,1) 
(NOVA,1)
(NOVA,1)
(NUNO,1)
(SBE,1)
(SBE,1)
(SBE,1)

Sort & shuffle: 
performed by the 

system
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect 
values with the same 

key and produce 
result

Reduce: count the 
frequency per word.
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WORD COUNT USING MAPREDUCE
map(key, value):  // key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values): // key: a word; value: an iterator over counts

result = 0

for each count v in values:

result += v

emit(key, result)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 9
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MAPREDUCE MODEL

Input: a set of key-value pairs

Programmer specifies two methods:
• Map(k, v) ® <k’, v’>*

• Takes a key-value pair and outputs a set of key-value pairs
• E.g., key is the filename, value is a single line in the file

• Map is called for every (k,v) pair
• Reduce(k’, <v’>*) ® <k’, v’’>*

• All values v’ with same key k’ are reduced together and 
processed in v’ order

• Reduce is called for each unique key k’

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 10
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EXAMPLE APPLICATION

Consider you have a huge text.
Goal: find out the words that appear more frequently in a text.
Can be transformed into:
Goal 1: Count the number of times each word appears in the 
text.
Goal 2: Order the words by frequency.
Is this a useless example?
Not really… e.g. analyze web logs to find popular URLs, analyze 
social media posts to find trending topics, etc.
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GOAL 2: ORDER THE WORDS BY FREQUENCY.

Can we sort the values of the 
reduce before returning 
them?

NO !!!
Each reduce will be 
processed independently (by 
a different machine).
Also bad idea because it 
requires storing potentially 
large amount of data.

(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect 
values with the same 

key and produce 
result (ADA,1)

(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NUNO,1)
(NOVA,4)

(SBE,3)

Reduce: collect 
values with the same 

key and produce 
result



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   13

MAPREDUCE: EXAMPLE

(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)
(SBE,3)

Map: reverse order of 
pair.

Map: read the input 
and produce 

key,value pairs

Sort & shuffle: 
performed by the 

system

Reduce: collect 
values with the same 

key and produce 
result

Reduce: reverse order 
of pair.

(1,ADA)
(1,ANGELO)
(1,CARCAVELOS)
(1,LUDWIG)
(1,MSC)
(4,NOVA)
(1,NUNO)
(3,SBE)

(1,ADA)
(1,ANGELO)
(1,CARCAVELOS)
(1,LUDWIG)
(1,MSC)
(1,NUNO)
(3,SBE)
(4,NOVA)

(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NUNO,1)
(SBE,3)
(NOVA,4)
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WORD COUNT SORT USING MAPREDUCE
map(key, value):  // key: word; value: word count

emit(value, key)

reduce(key, values): // key: word count; value: word

for each v in values:

emit(v, key)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 14
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MAPREDUCE

Programmer responsible for:
• Map function
• Reduce function

MapReduce system responsible for:
• Partitioning the input data
• Scheduling the program’s execution across a set of machines
• Performing the sort by key & shuffle step
• Handling machine failures
• Managing required inter-machine communication

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 15



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   16

OUTLINE

Computing services

1. First generation batch processing: Map-reduce
• Programming model
• Execution model

• Handling faults

2. Second generation batch processing: Spark

3. Stream processing
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MAPREDUCE: LOGICAL EXECUTION…

Map: read the input 
and produce 

key,value pairs

Sort & shuffle: 
performed by the 

system

Reduce: collect 
values with the same 

key and produce 
result
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MAPREDUCE: DISTRIBUTED EXECUTION…

Map: read the input 
and produce 

key,value pairs

Sort & shuffle: 
performed by the 

system

Reduce: collect 
values with the same 

key and produce 
result
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MAPREDUCE: DISTRIBUTED EXECUTION…

Map: read the input 
and produce 

key,value pairs

Sort & shuffle: 
performed by the 

system

Reduce: collect 
values with the same 

key and produce 
result

Each phase is divided in 
multiple tasks. Each task 
is executed independently 

on a different nodes.
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User
Program

Master

(1) fork

worker

(1) fork
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(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

  

output
file 0

    (6) write

worker
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worker

  
(4) local write

  

Map
phase

Intermediate files
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files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

MAPREDUCE ARCHITECTURE

1. Input files stored
in a distributed file 

system, and
divided into splits

3. Master asks
workers to run map
tasks: process splits 

in parallel, and...

3. ...save
intermediate results in 
multiple files by key 

range

4. Master asks workers to 
run reduce tasks: reducers

sort intermediate files before 
processing values for each 

key.

2. Clients send
programs to the

master.
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MAPREDUCE SYSTEM: MASTER NODE
Master node coordinates the 
execution:

Task status: (idle, in-progress, 
completed)
Idle tasks get scheduled as 
workers become available
When a map task completes, it 
sends the master the location and 
sizes of its intermediate files, one 
for each reducer
Master pushes this info to 
reducers

Master pings workers periodically 
to detect failures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 21
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Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3
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MAPREDUCE SYSTEM: WORKER

Worker node performs 
map or reduce tasks, as 
requested by the 
coordinator.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 22
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Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3
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MAPREDUCE SYSTEM: HANDLING FAULTS

Map worker failure
Upon detection of the failure 
of a worker, map tasks 
restarted in different worker

Reduce worker failure
Reduce task is restarted in 
other worker 

Stragglers (slow workers)
If a task is taking too long to 
complete, it is launched in 
other worker. First result used.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 23
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Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3
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MAPREDUCE SYSTEM: HANDLING FAULTS (2)

Master failure
MapReduce task is aborted 
and client is notified

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 24
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Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3
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OUTLINE

Computing services

1. First generation batch processing: Map-reduce
• Programming model
• Execution model

• Handling faults

2. Second generation batch processing: Spark

3. Stream processing
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MAPREDUCE: EXAMPLE

NOVA SBE
NUNO
NOVA 
LUDWIG SBE
ANGELO
NOVA ADA 
CARCAVELOS
NOVA MSC
SBE

Map: for each word, 
output its count.

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1) 
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1) 
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map: read the input 
and produce 

key,value pairs
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,1)
(NOVA,1) 
(NOVA,1)
(NOVA,1)
(NUNO,1)
(SBE,1)
(SBE,1)
(SBE,1)

Sort & shuffle: 
performed by the 

system
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect 
values with the same 

key and produce 
result

Reduce: count the 
frequency per word.
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MAPREDUCE: EXAMPLE

NOVA SBE
NUNO
NOVA 
LUDWIG SBE
ANGELO
NOVA ADA 
CARCAVELOS
NOVA MSC
SBE

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1) 
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1) 
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map: read the input 
and produce 

key,value pairs

Sort & shuffle: 
performed by the 

system
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect 
values with the same 

key and produce 
result
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MAPREDUCE: EXAMPLE

NOVA SBE
NUNO
NOVA 
LUDWIG SBE
ANGELO
NOVA ADA 
CARCAVELOS
NOVA MSC
SBE

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1) 
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1) 
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map: read the input 
and produce 

key,value pairs

Sort & shuffle: 
performed by the 

system
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect 
values with the same 

key and produce 
result

Mapper 1 sends two tuples 
for NOVA !!

How to improve this?
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IMPROVING MAPREDUCE: COMBINER

Combiner allows to pre-
aggregate values in the 
mapper.

Combine(k, <v>*) ® <k, v’>
All values v with same key k
are combined and processed 
in v order
Combine is called at each 
mapper for each unique key 
k

Combiner function is usually 
the same as the reduce 
function.

NOVA SBE
NUNO
NOVA 
LUDWIG SBE
ANGELO
NOVA ADA 
CARCAVELOS
NOVA MSC
SBE

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1) 
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1) 
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map
Sort & 
shuffle

(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce

Co
m
bi
ne

r



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   30

WHY WAS MAP-REDUCE SO POPULAR?

Distributed computation before MapReduce:
• how to divide the workload among multiple machines?
• how to distribute data and program to other machines?
• how to schedule tasks?
• what happens if a task fails while running?
• … and … and ... 

Distributed computation after MapReduce
• how to write Map function?
• how to write Reduce function? 
• systems to efficiently execute map-reduce jobs: Hadoop.
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APACHE HADOOP 2.0
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TO KNOW MORE
J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing on Large 
Clusters, OSDI’04.


