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OUTLINE

Computing services
1. First generation batch processing: Map-reduce
2. Second generation batch processing: Spark

3. Stream processing
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1. First generation batch processing: Map-reduce

Programming model

Execution model
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2. Second generation batch processing: Spark

3. Stream processing
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MAPREDUCE

“A new abstraction that
allows us to expresses
simple computations we
were trying to perform but
hides the messy details
of parallelization, fault-
tolerance, data-distribution
and load-balancing in a
library”

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine

ication. This allows p without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of hines. Pra

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
ified map and reduce operations allows us to paral-

find the system easy to use: hundreds of MapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure
of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

To appear in OSDI 2004

lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.

Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance

of our impl ion for a variety of
tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis
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MAPREDUCE (2)

“A programming model and
an associated
implementation for
processing large datasets.”

“Runs on a large cluster of
commodity machines ... a

pical ... computation
processes many terabytes of
data on thousands of
machines.”

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine

icati This allows p without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers
find the system easy to use: hundreds of MapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure
of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

To appear in OSDI 2004

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-
lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.

Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance
measurements of our implementation for a variety of
tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis
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EXAMPLE APPLICATION

Consider you have a huge text.
Goal: find out the words that appear more frequently in a text.
Can be transformed into:

Goal 1: Count the number of times each word appears in the
text.

Goal 2: Order the words by frequency.
Is this a useless example?

Not really... e.g. analyze web logs to find popular URLs, analyze
social media posts to find trending topics, etc.
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MAPREDUCE: OVERVIEW

Sequentially read a lot of data

Map phase:
Extract the important information

Each computation step is
composed of a map and a
reduce steps.

Group by key: Sort and Shuffle the output of the map

phase

Reduce phase:

Aggregate, summarize, filter or transform

Write the result

A computation is a sequence of
map-reduce computations.
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MAPREDUCE:

NOVA SBE
NUNO
NOVA

Map: read the input

and produce
key,value pairs

(NOVA, 1)
(SBE,1)

(NUNO,1)
(NOVA, 1)

LUDWIG SBE
ANGELO
NOVA ADA

CARCAVELOS
NOVA MSC
SBE

(LUDWIG, 1)
(SBE,1)
(ANGELO, 1)
(NOVA, 1)
(ADA,1)

(CARCAVELOS, 1)
(NOVA, 1)
(MSC,1)

(SBE,1)

Sort & shuffle:

performed by the
SSE

(ADA,1)
(ANGELO, 1)
(CARCAVELOS, 1)
(LUDWIG, 1)
(MSC,1)

(NOVA, 1)
(NOVA, 1)
(NOVA, 1)
(NOVA, 1)
(NUNO,1)

(SBE,1)
(SBE,1)
(SBE,1)

Map: for each word,
output its count.

Reduce: collect
values with the same
key and produce

(ADA,1)
(ANGELO, 1)
(CARCAVELOS, 1)
(LUDWIG, 1)
(MSC,1)

(NOVA, 4)
(NUNO,1)

(SBE,3)

Reduce: count the
frequency per word.
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WORD COUNT USING MAPREDUCE

map(key, value): // key: document name; value: text of the document
for each word w in value:

emit(w, 1)

reduce(key, values): // key: a word; value: an iterator over counts
result = 0
for each count v in values:
result += v

emit(Ckey, result)
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MAPREDUCE MODEL

Input: a set of key-value pairs

Programmer specifies two methods:

Map(k, v) — <k’, v'>*

Takes a key-value pair and outputs a set of key-value pairs
E.g., key is the filename, value is a single line in the file

Map is called for every (k,v) pair

Reduce(k’, <v’>*) — <k’, v’>*
All values v’with same key k”are reduced together and
processed in v’order

Reduce is called for each unique key &’
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EXAMPLE APPLICATION

Consider you have a huge text.
Goal: find out the words that appear more frequently in a text.
Can be transformed into:

Goal 1: Count the number of times each word appears in the
text.

Goal 2: Order the words by frequency.
Is this a useless example?

Not really... e.g. analyze web logs to find popular URLs, analyze
social media posts to find trending topics, etc.
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GOAL 2: ORDER THE WORDS BY FREQUENCY.

. values with the same values with the same
reduce before retu rnmg key and produce key and produce
them? (ADA,1) (ADA,1)

(ANGELO, 1) (ANGELO, 1)
NO I11 (CARCAVELOS, 1) (CARCAVELOS, 1)
(LUDWIG, 1) (LUDWIG, 1)
I (MSC,1) (MSC,1)
Each reduce will be NOvA NGRS D
processed independently (by | (nuno,1) (NOVA 4)

a different machine).

Also bad idea because it
requires storing potentially
large amount of data.

(SBE,3) (SBE,3)

Cloud Computing System 21/22 — Nuno Prequica — DI/FCT/NOVA / 12



MAPREDUCE: EXAMPLE

Map: read the input

Sort & shuffle:
performed by the

Reduce: collect

values with the same

and produce
key,value pairs

SSE

key and p_roduce

(ADA,1) (1,ADA) (1,ADA) (ADA,1)
(ANGELO, 1) (1,ANGELO) (1,ANGELO) (ANGELO,1)
(CARCAVELOS, 1) (1,CARCAVELOS) | | (1,CARCAVELOS) (CARCAVELOS,1)
(LUDWIG, 1) (1,LUDWIG) (1,LUDWIG) (LUDWIG, 1)
(MSC,1) (1,MSC) (1,MSC) (MSC,1)

(NOVA 4) (4,NOVA) (1,NUNO) (NUNO,1)
(NUNO,1) (1,NUNO) (3,SBE) (SBE, 3)

(SBE,3) (3,SBE) (4,NOVA) (NOVA,4)

Map: reverse order of

pair.

Reduce: reverse order

of pair.
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WORD COUNT SORT USING MAPREDUCE

map(key, value): // key: word; value: word count

emit(value, key)
reduce(key, values): // key: word count; value: word

for each v in values:

emit(v, key)
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MAPREDUCE

Programmer responsible for:

Map function
Reduce function

MapReduce system responsible for:

Partitioning the input data

Scheduling the program’s execution across a set of machines
Performing the sort by key & shuffle step

Handling machine failures

Managing required inter-machine communication
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OUTLINE

Computing services

1. First generation batch processing: Map-reduce

Programming model

Execution model
Handling faults

2. Second generation batch processing: Spark

3. Stream processing
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MAPREDUCE: LOGICAL EXECUTION...

Input

v

I
e e @ @@? @? @ »

Map: read the input

Intermediate | kl:v kl:v k2:v k3:v kd:v k4:v k5:v kd:v | kl:vk3:v

F

Sort & shuffle:
performed by the [[Gm“*’ by Keyj]
system

Grouped [kl:v,v,v,v|k2:v |k3:v,v | k4:v,v,v [k5:v

Reduce: collect

values with the same
key and produce

O
O
o
O

@

Output
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MAPREDUCE: DISTRIBUTED EXECUTION...

Map: read the input

and produce
key,value pairs

Sort & shuffle:

performed by the
system

Reduce: collect
values with the same
key and produce

Map Task 1

kl:v kl:v k2

Partitioning Function

EXT

— e - - - — o - o ]

Sort and Group
k2:v | kd:v vy | k5:v

568

Reduce Task 1

Map Task 2

© ¢

k3:v kd:v | kd:v kS:v

Partitioning Function

b e e e e e e e e -

- J_ A
Sort and Group
klvyvyvy I k3:v,v

59

Reduce Task 2
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MAPREDUCE: DISTRIBUTED EXECUTION...

Map: read the input

and produce
key,value pairs

Sort & shuffle:

performed by the
system

Reduce: collect
values with the same
key and produce

Map Task |

Map Task 2

kl:vkl:wvk2:wv

k3:v kd:v | kd:v kS:v

Partitioning Functlon

X1

e

Partitioning Function

Sort and Group

k2:v I kd:v vy | k5:v

——————— -
Map Task 3 I

|

|

|

|

|

|

k4 v kl:v k3w |
P'lmtlonmg Function I
-4

Sort and Group
klvyvvy I k3:v .y

§o¢

Reduce Task 1

Each phase is divided in
multiple tasks. Each task
is executed independently

on a different nodes.

E@@i
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MAPREDUCE ARCHITECTU [Easiiaheiy

programs to the
ENGE

3. Master asks User
workers to run map Program
tasks: process splits

. in parallel, and... JASEEGLS e 4. Master asks workers to

1. Input files stored : run reduce tasks: reducers
in a distributed file PN sort intermediate files before

system, and a;jigl" IV processing values for each

divided into splits

map

Spllt 0 (6) write output
split 1 (5) remote read worker file O
split 2 | (3) read (4) local write

worker
. output
i file 1

worker

split 4

00 ¢

Input Map 3 save Reduce Output
files phase B phase files

intermediate results in
multiple files by key
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MAPREDUCE SYSTEM: MASTER NODE

Master node coordinates the
execution:

Task status: (idle, in-progress,
completed)

Idle tasks get scheduled as
workers become available

When a map task completes, it

sends the master the location and
sizes of its intermediate files, one -
for each reducer
Master pushes this info to —

reducers

Input Map Intermediate files Reduce Output
1 S

Master ping_s workers periodically o ol ik
to detect failures
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MAPREDUCE SYSTEM: WORKER

Worker node performs
map or reduce tasks, as

Program

I‘equeSted by the “i_ff’,‘.k-“ e ”-<1.>_ff>.rtk»
coordinator.

ssign d
o map I

split O

- output
Spllt 1 file O
Split 2 (4) local write

q output
split 3 file 1
split 4
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files
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MAPREDUCE SYSTEM: HANDLING FAULTS

Map worker failure

Upon detection of the failure
of a worker, map tasks
restarted in different worker

Reduce worker failure

Reduce task is restarted in
other worker

Stragglers (slow workers)

If a task is taking too long to
complete, it is launched in

other worker. First result used.

split O

output

Split 1 file O

Split 9] 3) read

output

split 3 file 1

split 4
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MAPREDUCE SYSTEM: HANDLING FAULTS (2)

Master failure

MapReduce task is aborted
and client is notified

N .4 ?2)
N ssign ..
N _assign reduce . "
- .

split O
- output
Spllt 1 file O
split 2
q output
split 3 file 1
split 4
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files
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OUTLINE

Computing services

1. First generation batch processing: Map-reduce

Programming model

Execution model
Handling faults

2. Second generation batch processing: Spark

3. Stream processing
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MAPREDUCE:

NOVA SBE
NUNO
NOVA

Map: read the input

and produce
key,value pairs

(NOVA, 1)
(SBE,1)

(NUNO,1)
(NOVA, 1)

LUDWIG SBE
ANGELO
NOVA ADA

CARCAVELOS
NOVA MSC
SBE

(LUDWIG, 1)
(SBE,1)
(ANGELO, 1)
(NOVA,1)
(ADA,1)

(CARCAVELOS, 1)
(NOVA, 1)
(MSC,1)

(SBE,1)

Sort & shuffle:

performed by the
SSE

(ADA,1)
(ANGELO, 1)
(CARCAVELOS, 1)
(LUDWIG, 1)
(MSC,1)

(NOVA, 1)
(NOVA, 1)
(NOVA, 1)
(NOVA, 1)
(NUNO,1)

(SBE,1)
(SBE,1)
(SBE,1)

Map: for each word,
output its count.

Reduce: collect
values with the same
key and produce

(ADA,1)
(ANGELO, 1)
(CARCAVELOS, 1)
(LUDWIG, 1)
(MSC,1)

(NOVA, 4)
(NUNO,1)

(SBE,3)

Reduce: count the
frequency per word.
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MAPREDUCE:

Map: read the input Sort & shuffle: Reduce: collect
and produce performed by the values with the same
key,value pairs SSE key and produce
(NOVA, 1) (ADA,1)
NOVA SBE (SBE,1) (ANGELO, 1)
NUNO (NUNO, 1) (CARCAVELOS, 1)
(NOVA,1) (LUDWIG, 1)
NOVA (LUDWIG, 1) (MSC,1)
LUDWIG SBE (SBE, 1) (NOVA, 4)
ANGELO » (ANGELO, 1) (NUNO, 1)
NOVA ADA ENOVAI)D
ADA, 1
CARCAVELOS (CARCAVELOS, 1)
NOVA MSC (NOVA,1) (SBE,3)
SBE , (MSC,1)
(SBE, 1)
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MAPREDUCE:

Map: read the input Sort & shuffle: Reduce: collect
and produce performed by the values with the same
key,value pairs SSE key and produce
(NOVA,1) (ADA,1)
NOVA SBE (SBE,1) (ANGELO, 1)
NUNO (NUNO,1) (CARCAVELOS, 1)
(NOVA, 1) (LUDWIG, 1)
NOVA (LUDWIG, 1) (MSC,1)
LUDWIG SBE (SBE, 1) (NOVA, 4)
ANGELO » (ANGELO, 1) (NUNO,1)
NOVA ADA ENOVAI)D
ADA, 1
CARCAVELOS (CARCAVELOS, 1)
NOVA MSC (NOVA,1) (SBE,3)
SBE , (MSC,1)
(SBE, 1)

Mapper 1 sends two tuples
for NOVA !
How to improve this?
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IMPROVING MAPREDUCE: COMBINER

Combiner allows to pre-
aggregate values in the

mapper.
Combine(k, <v>*) - <k, v'>
All values v with same key & now ot |2y o (ancelo.1
are combined and processed e nows T >< i
in vorder LOWGSBE |, |(wen) [ (Wova
Combine is called at each rvillng wons M e
?apper for each unique key Eg;iﬁvfsios g E))’ S >< -
(SBE,1)

Combiner function is usually
the same as the reduce
function.
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WHY WAS MAP-REDUCE SO POPULAR?

Distributed computation before MapReduce:
how to divide the workload among multiple machines?
how to distribute data and program to other machines?
how to schedule tasks?
what happens if a task fails while running?
...and ... and ...

Distributed computation after MapReduce
how to write Map function?
how to write Reduce function?
systems to efficiently execute map-reduce jobs: Hadoop.
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APACHE HADOOP 2.0

Multi Purpose
(batch + streaming, etc.)

HADOOP 2.0

YARN
(cluster resource management)

HDFS 2
(redundant, reliable storage, highly-available)
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TO KNOW MORE

J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters, OSDI'04.
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