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OUTLINE 
Computing services 
1. First generation batch processing: Map-reduce 2. Second generation batch processing: Spark 3. Stream processing
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OUTLINE 
Computing services 
1. First generation batch processing: Map-reduce • Programming model 
• Execution model 
• Handling faults 
2. Second generation batch processing: Spark 3. Stream processing
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MAPREDUCE 
“A new abstraction that  allows us to expresses  simple computations we  were trying to perform but  hides the messy details of parallelization, fault tolerance, data-distribution  and load-balancing in a  library”
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MAPREDUCE (2) 
“A programming model and  an associated  
implementation for  
processing large datasets.” 
“Runs on a large cluster of  commodity machines … a  typical … computation  
processes many terabytes of  data on thousands of  
machines.”
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EXAMPLE APPLICATION 
Consider you have a huge text. 
Goal: find out the words that appear more frequently in a text. Can be transformed into: 
Goal 1: Count the number of times each word appears in the  text. 
Goal 2: Order the words by frequency. 
Is this a useless example? 
Not really… e.g. analyze web logs to find popular URLs, analyze  social media posts to find trending topics, etc.
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MAPREDUCE: OVERVIEW 
Sequentially read a lot of data 
Map phase: 
• Extract the important information 
Each computation step is  composed of a map and a  reduce steps.[image: ][image: ]
Group by key: Sort and Shuffle the output of the map  phase 
Reduce phase: 
• Aggregate, summarize, filter or transform 
Write the resultA computation is a sequence of  map-reduce computations. [image: ][image: ]
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MAPREDUCE: EXAMPLE Map: read the input  
and produce  
key,value pairs 
Sort & shuffle:  performed by the  system 
Reduce: collect  values with the same  key and produce  
(NOVA,1) 
(ADA,1) 
(ADA,1) 
result 
NOVA SBE NUNO 
NOVA  
LUDWIG SBE ANGELO 
NOVA ADA  CARCAVELOS NOVA MSC SBE 
(SBE,1) 
(NUNO,1) 
(NOVA,1)  
(LUDWIG,1) 
(SBE,1) 
(ANGELO,1) 
(NOVA,1) 
(ADA,1)  
(CARCAVELOS,1) 
(NOVA,1) 
(MSC,1) 
(SBE,1) 
Map: for each word,  output its count. 
(ANGELO,1) 
(CARCAVELOS,1) (LUDWIG,1) 
(MSC,1) 
(NOVA,1) 
(NOVA,1)  
(NOVA,1) 
(NOVA,1) 
(NUNO,1) 
(SBE,1) 
(SBE,1) 
(SBE,1) 
(ANGELO,1) 
(CARCAVELOS,1) 
(LUDWIG,1) 
(MSC,1) 
(NOVA,4) 
(NUNO,1) 
(SBE,3) 
Reduce: count the  frequency per word.
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WORD COUNT USING MAPREDUCE 
map(key, value): // key: document name; value: text of the document for each word w in value: 
emit(w, 1) 
reduce(key, values): // key: a word; value: an iterator over counts result = 0 
for each count v in values: 
result += v 
emit(key, result)
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MAPREDUCE MODEL 
Input: a set of key-value pairs 
Programmer specifies two methods: 
• Map(k, v) → <k’, v’>* 
• Takes a key-value pair and outputs a set of key-value pairs • E.g., key is the filename, value is a single line in the file 
• Map is called for every (k,v) pair 
• Reduce(k’, <v’>*) → <k’, v’’>* 
• All values v’ with same key k’ are reduced together and  
processed in v’ order 
• Reduce is called for each unique key k’
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EXAMPLE APPLICATION 
Consider you have a huge text. 
Goal: find out the words that appear more frequently in a text. Can be transformed into: 
Goal 1: Count the number of times each word appears in the  text. 
Goal 2: Order the words by frequency. 
Is this a useless example? 
Not really… e.g. analyze web logs to find popular URLs, analyze  social media posts to find trending topics, etc.
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GOAL 2: ORDER THE WORDS BY FREQUENCY. 
Can we sort the values of the  reduce before returning  them? 
Reduce: collect  values with the same  key and produce  
Reduce: collect  values with the same  key and produce  
(ADA,1) 
result (ADA,1) 
result
NO !!! 
Each reduce will be  
processed independently (by  a different machine). 
Also bad idea because it  requires storing potentially  large amount of data. 
(ANGELO,1) 
(CARCAVELOS,1) (LUDWIG,1) 
(MSC,1) 
(NOVA,4) 
(NUNO,1) 
(SBE,3) 
(ANGELO,1) 
(CARCAVELOS,1) (LUDWIG,1) 
(MSC,1) 
(NUNO,1) 
(NOVA,4) 
(SBE,3) 
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MAPREDUCE: EXAMPLE 
Map: read the input  
and produce  
key,value pairs 
Sort & shuffle:  performed by the  system 
(1,ADA) 
Reduce: collect  values with the same  key and produce  result 
(ADA,1) 
(ANGELO,1) 
(CARCAVELOS,1) (LUDWIG,1) 
(MSC,1) 
(NOVA,4) 
(NUNO,1) 
(SBE,3) 
(1,ADA) 
(1,ANGELO) 
(1,CARCAVELOS) 
(1,LUDWIG) 
(1,MSC) 
(4,NOVA) 
(1,NUNO) 
(3,SBE) 
Map: reverse order of  pair. 
(1,ANGELO) 
(1,CARCAVELOS) (1,LUDWIG) 
(1,MSC) 
(1,NUNO) 
(3,SBE) 
(4,NOVA) 
(ADA,1) 
(ANGELO,1) 
(CARCAVELOS,1) 
(LUDWIG,1) 
(MSC,1) 
(NUNO,1) 
(SBE,3) 
(NOVA,4)
Reduce: reverse order  of pair. 
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WORD COUNT SORT USING MAPREDUCE 
map(key, value): // key: word; value: word count 
emit(value, key) 
reduce(key, values): // key: word count; value: word 
for each v in values: 
emit(v, key)
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MAPREDUCE 
Programmer responsible for: 
• Map function 
• Reduce function 
MapReduce system responsible for: 
• Partitioning the input data 
• Scheduling the program’s execution across a set of machines • Performing the sort by key & shuffle step 
• Handling machine failures 
• Managing required inter-machine communication
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OUTLINE 
Computing services 
1. First generation batch processing: Map-reduce • Programming model 
• Execution model 
• Handling faults 
2. Second generation batch processing: Spark 3. Stream processing
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MAPREDUCE: LOGICAL EXECUTION… 
Map: read the input  [image: ]
and produce  
key,value pairs 
Sort & shuffle:  
performed by the  
system 
Reduce: collect  
values with the same  
key and produce  
result
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MAPREDUCE: DISTRIBUTED EXECUTION… 
Map: read the input  [image: ]
and produce  
key,value pairs 
Sort & shuffle:  
performed by the  
system 
Reduce: collect  
values with the same  
key and produce  
result
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MAPREDUCE: DISTRIBUTED EXECUTION… 
Map: read the input  [image: ]
and produce  
key,value pairs 
Sort & shuffle:  
performed by the  
system 
Reduce: collect  
values with the same  
key and produce  result 
Each phase is divided in  
multiple tasks. Each task  
is executed independently  
on a different nodes.
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MAPREDUCE ARCHITECTURE 
2. Clients send 
programs to the 
master.
1. Input files stored in a distributed file  system, and 
divided into splits 
3. Master asks 
workers to run map tasks: process splits  
(1) fork 
in parallel, and... 
(2) 
assign 
map 
worker 
User 
Program (1) fork 
Master 
(1) fork 
(2) 
assign reduce 
4. Master asks workers to  run reduce tasks: reducers sort intermediate files before  processing values for each  key. 
split 0 split 1 split 2 
(3) read 
(4) local write 
(5) remote read 
worker 
 (6) write 
output file 0 
split 3 split 4 
worker worker 
worker output file 1 
Input files 
Map phase 
Intermediate files 
3. ...save 
(on local disks) 
intermediate results in  multiple files by key  Figure 1: Execution overview 
range 
Reduce phase 
Output files 
Inverted Index: The map function parses each docu ment, and emits a sequence of !word, document ID" pairs. The reduce function accepts all pairs for a given word, sorts the corresponding document IDs and emits a 
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large clusters of commodity PCs connected together with 
switched Ethernet [4]. In our environment: 
(1) Machines are typically dual-processor x86 processors 
running Linux, with 2-4 GB of memory per machine. 
MAPREDUCE SYSTEM: MASTER NODE 
Master node coordinates the  
execution: 
Task status: (idle, in-progress,  
User 
Program 
completed) 
(1) fork 
(1) fork 
(1) fork 
Idle tasks get scheduled as  
Master 
workers become available 
(2) 
assign 
(2) 
reduce 
assign 
When a map task completes, it  
map 
sends the master the location and  sizes of its intermediate files, one  for each reducer 
split 0 split 1 split 2 
worker 
(3) read 
(5) remote read 
(4) local write 
worker 
 (6) write 
output file 0 
Master pushes this info to  reducers 
split 3 split 4 
worker worker 
worker output file 1 
Input 
Map 
Master pings workers periodically  
files 
phase 
to detect failures 
Intermediate files 
(on local disks) 
Figure 1: Execution overview 
Reduce phase 
Output files 
Inverted Index: The map function parses each docu ment, and emits a sequence of !word, document ID" pairs. The reduce function accepts all pairs for a given word, sorts the corresponding document IDs and emits a 
large clusters of commodity PCs connected together with switched Ethernet [4]. In our environment: 
(1) Machines are typically dual-processor x86 processors running Linux, with 2-4 GB of memory per machine. 
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 21 
!word, list(document ID)" pair. The set of all output pairs forms a simple inverted index. It is easy to augment this computation to keep track of word positions. 
Distributed Sort: The map function extracts the key from each record, and emits a !key, record" pair. The reduce function emits all pairs unchanged. This compu tation depends on the partitioning facilities described in Section 4.1 and the orderin roerties described in Sec 
(2) Commodity networking hardware is used – typically either 100 megabits/second or 1 gigabit/second at the machine level, but averaging considerably less in over all bisection bandwidth. 
(3) A cluster consists of hundreds or thousands of ma chines, and therefore machine failures are common. 
(4) Storage is provided by inexpensive IDE disks at tached directly to individual machines. A distributed file
MAPREDUCE SYSTEM: WORKER 
Worker node performs  
map or reduce tasks, as  
User 
Program 
requested by the  
(1) fork 
(1) fork 
(1) fork 
coordinator. 
Master 
(2) 
assign 
(2) 
reduce 
assign 
map 
worker 
split 0 
 (6) write 
output 
split 1 split 2 
(3) read 
(4) local write 
(5) remote read 
worker 
file 0 
split 3 split 4 
worker worker 
worker output file 1 
Input files 
Map phase 
Intermediate files 
(on local disks) 
Figure 1: Execution overview 
Reduce phase 
Output files 
Inverted Index: The map function parses each docu ment, and emits a sequence of !word, document ID" pairs. The reduce function accepts all pairs for a given word, sorts the corresponding document IDs and emits a 
large clusters of commodity PCs connected together with switched Ethernet [4]. In our environment: 
(1) Machines are typically dual-processor x86 processors running Linux, with 2-4 GB of memory per machine. 
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!word, list(document ID)" pair. The set of all output pairs forms a simple inverted index. It is easy to augment this computation to keep track of word positions. 
Distributed Sort: The map function extracts the key from each record, and emits a !key, record" pair. The reduce function emits all pairs unchanged. This compu tation depends on the partitioning facilities described in Section 4.1 and the orderin roerties described in Sec 
(2) Commodity networking hardware is used – typically either 100 megabits/second or 1 gigabit/second at the machine level, but averaging considerably less in over all bisection bandwidth. 
(3) A cluster consists of hundreds or thousands of ma chines, and therefore machine failures are common. 
(4) Storage is provided by inexpensive IDE disks at tached directly to individual machines. A distributed file
MAPREDUCE SYSTEM: HANDLING FAULTS Map worker failure 
Upon detection of the failure  of a worker, map tasks  
restarted in different worker 
Reduce worker failure Reduce task is restarted in  
(1) fork 
(2) 
assign 
reduce 
split 0 
(1) fork 
(2) 
assign 
map 
worker 
User 
Program 
(1) fork 
Master 
 (6) write 
output 
other worker  
split 1 split 2 
(3) read 
(5) remote read 
(4) local write 
worker 
file 0 
Stragglers (slow workers) 
split 3 split 4 
worker worker 
worker output file 1 
If a task is taking too long to  complete, it is launched in  other worker. First result used. 
Input files 
Map phase 
Intermediate files 
(on local disks) 
Figure 1: Execution overview 
Reduce phase 
Output files 
Inverted Index: The map function parses each docu ment, and emits a sequence of !word, document ID" pairs. The reduce function accepts all pairs for a given word, sorts the corresponding document IDs and emits a 
large clusters of commodity PCs connected together with switched Ethernet [4]. In our environment: 
(1) Machines are typically dual-processor x86 processors running Linux, with 2-4 GB of memory per machine. 
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!word, list(document ID)" pair. The set of all output pairs forms a simple inverted index. It is easy to augment this computation to keep track of word positions. 
Distributed Sort: The map function extracts the key from each record, and emits a !key, record" pair. The reduce function emits all pairs unchanged. This compu tation depends on the partitioning facilities described in Section 4.1 and the orderin roerties described in Sec 
(2) Commodity networking hardware is used – typically either 100 megabits/second or 1 gigabit/second at the machine level, but averaging considerably less in over all bisection bandwidth. 
(3) A cluster consists of hundreds or thousands of ma chines, and therefore machine failures are common. 
(4) Storage is provided by inexpensive IDE disks at tached directly to individual machines. A distributed file
MAPREDUCE SYSTEM: HANDLING FAULTS (2) Master failure 
MapReduce task is aborted  and client is notified 
(1) fork 
(2) 
assign 
reduce 
split 0 
(1) fork 
(2) 
assign 
map 
worker 
User 
Program 
(1) fork 
Master 
 (6) write 
output 
split 1 split 2 
(3) read 
(4) local write 
(5) remote read 
worker 
file 0 
split 3 split 4 
worker worker 
worker output file 1 
Input files 
Map phase 
Intermediate files 
(on local disks) 
Figure 1: Execution overview 
Reduce phase 
Output files 
Inverted Index: The map function parses each docu ment, and emits a sequence of !word, document ID" pairs. The reduce function accepts all pairs for a given word, sorts the corresponding document IDs and emits a 
large clusters of commodity PCs connected together with switched Ethernet [4]. In our environment: 
(1) Machines are typically dual-processor x86 processors running Linux, with 2-4 GB of memory per machine. 
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!word, list(document ID)" pair. The set of all output pairs forms a simple inverted index. It is easy to augment this computation to keep track of word positions. 
Distributed Sort: The map function extracts the key from each record, and emits a !key, record" pair. The reduce function emits all pairs unchanged. This compu tation depends on the partitioning facilities described in Section 4.1 and the orderin roerties described in Sec 
(2) Commodity networking hardware is used – typically either 100 megabits/second or 1 gigabit/second at the machine level, but averaging considerably less in over all bisection bandwidth. 
(3) A cluster consists of hundreds or thousands of ma chines, and therefore machine failures are common. 
(4) Storage is provided by inexpensive IDE disks at tached directly to individual machines. A distributed file
OUTLINE 
Computing services 
1. First generation batch processing: Map-reduce • Programming model 
• Execution model 
• Handling faults 
2. Second generation batch processing: Spark 3. Stream processing
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MAPREDUCE: EXAMPLE Map: read the input  
and produce  
key,value pairs 
Sort & shuffle:  performed by the  system 
Reduce: collect  values with the same  key and produce  
(NOVA,1) 
(ADA,1) 
(ADA,1) 
result 
NOVA SBE NUNO 
NOVA  
LUDWIG SBE ANGELO 
NOVA ADA  CARCAVELOS NOVA MSC SBE 
(SBE,1) 
(NUNO,1) 
(NOVA,1)  
(LUDWIG,1) 
(SBE,1) 
(ANGELO,1) 
(NOVA,1) 
(ADA,1)  
(CARCAVELOS,1) 
(NOVA,1) 
(MSC,1) 
(SBE,1) 
Map: for each word,  output its count. 
(ANGELO,1) 
(CARCAVELOS,1) (LUDWIG,1) 
(MSC,1) 
(NOVA,1) 
(NOVA,1)  
(NOVA,1) 
(NOVA,1) 
(NUNO,1) 
(SBE,1) 
(SBE,1) 
(SBE,1) 
(ANGELO,1) 
(CARCAVELOS,1) 
(LUDWIG,1) 
(MSC,1) 
(NOVA,4) 
(NUNO,1) 
(SBE,3) 
Reduce: count the  frequency per word.
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MAPREDUCE: EXAMPLE Map: read the input  
and produce  
key,value pairs 
Sort & shuffle:  performed by the  system 
Reduce: collect  values with the same  key and produce  
(NOVA,1) 
(ADA,1) 
result
NOVA SBE NUNO 
NOVA  
LUDWIG SBE ANGELO 
NOVA ADA  CARCAVELOS NOVA MSC SBE 
(SBE,1) 
(NUNO,1) 
(NOVA,1)  
(LUDWIG,1) 
(SBE,1) 
(ANGELO,1) 
(NOVA,1) 
(ADA,1)  
(CARCAVELOS,1) (NOVA,1) 
(MSC,1) 
(SBE,1) 
[image: ](ANGELO,1) (CARCAVELOS,1) [image: ][image: ][image: ][image: ]
(LUDWIG,1) 
(MSC,1) 
(NOVA,4) 
[image: ](NUNO,1) [image: ][image: ]
(SBE,3) 
[image: ]
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MAPREDUCE: EXAMPLE Map: read the input  
and produce  
key,value pairs 
Sort & shuffle:  performed by the  system 
Reduce: collect  values with the same  key and produce  
(NOVA,1) 
(ADA,1) 
result 
NOVA SBE NUNO 
NOVA  
LUDWIG SBE ANGELO 
NOVA ADA  CARCAVELOS NOVA MSC SBE 
(SBE,1) 
(NUNO,1) 
(NOVA,1)  
(LUDWIG,1) 
(SBE,1) 
(ANGELO,1) 
(NOVA,1) 
(ADA,1)  
(CARCAVELOS,1) (NOVA,1) 
(MSC,1) 
(SBE,1) 
[image: ](ANGELO,1) (CARCAVELOS,1) [image: ][image: ][image: ][image: ]
(LUDWIG,1) 
(MSC,1) 
(NOVA,4) 
[image: ](NUNO,1) [image: ][image: ]
(SBE,3) 
[image: ]
Mapper 1 sends two tuples  
for NOVA !! 
How to improve this?
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 28 
IMPROVING MAPREDUCE: COMBINER 
Combiner allows to pre 
aggregate values in the  
mapper. 
Combine(k, <v>*) → <k, v’> 
MapSort &  shuffle 
Reduce 
All values v with same key k 
are combined and processed  
in v order 
Combine is called at each  
mapper for each unique key  
k 
Combiner function is usually  the same as the reduce  function. 
NOVA SBE NUNO 
NOVA  
LUDWIG SBE ANGELO 
NOVA ADA  CARCAVELOS NOVA MSC SBE 
(NOVA,1) 
(SBE,1) 
(NUNO,1) 
(NOVA,1)  
(LUDWIG,1) 
(SBE,1) 
(ANGELO,1) 
(NOVA,1) 
(ADA,1)  
(CARCAVELOS,1) (NOVA,1) 
(MSC,1) 
(SBE,1) 
[image: ][image: ][image: ][image: ][image: ]
r
e
n
ib[image: ][image: ][image: ]
m
o
C[image: ]
(ADA,1) 
(ANGELO,1) 
(CARCAVELOS,1) (LUDWIG,1) 
(MSC,1) 
(NOVA,4) 
(NUNO,1) 
(SBE,3) 
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WHY WAS MAP-REDUCE SO POPULAR? 
Distributed computation before MapReduce: 
• how to divide the workload among multiple machines? • how to distribute data and program to other machines? • how to schedule tasks? 
• what happens if a task fails while running? 
• … and … and ...  
Distributed computation after MapReduce 
• how to write Map function? 
• how to write Reduce function?  
• systems to efficiently execute map-reduce jobs: Hadoop.Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 30 
APACHE HADOOP 2.0
[image: ]Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 31 
OUTLINE 
Computing services 
1. First generation batch processing: Map-reduce 2. Second generation batch processing: Spark 3. Stream processing
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MAPREDUCE: CHAINING PROGRAMS 
MapReduce requires complex computations to be split into  successive MapReduce jobs 
These complex programs can experience high latency  due to several factors, including: 
• need to read and write files 
• underlying filesystem replication (for writes) 
• one job must finish before the next can be started… 
Apache Spark tackles these limitations.
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APACHE SPARK 
Apache Spark provides in-memory, fault-tolerant  distributed processing. 
Key ideas: 
• Spark programs comprise multiple chained data  
transformations, using a high-level functional programming  model; 
• Spark defines a distributed collection data-structure :  Resilient Distributed Dataset (RDD).
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DATA MODEL AND APIS 
RDDs are immutable data 
• logically a RDD is an immutable collection of data tuples; 
• physically distributed (partitioned) across many nodes; 
• upon a failure (or cascade of failures), RDDs can be recreated automatically  and efficiently from the dependencies. 
Spark Dataframes 
• DataFrames are distributed collections of data that is grouped into named  columns. 
• DataFrames can be seen as RDDs with a schema that names the fields of the  underlying tuples. 
Spark SQL 
• SQL for specifying computations
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SPARKSQL ARCHITECTURE 
Programs using SQL/DataFrames are  translated into Spark programs.  
Programs are optimized to execute  efficiently. 
JDBC Console User Programs  (Java, Scala, Python)  [image: ][image: ][image: ][image: ][image: ][image: ]
Based on the techniques used in  database systems. 
Spark SQL  
[image: ]DataFrame API  
Libraries for advanced analytics  algorithms such as graph  processing and machine  learning. 
Catalyst Optimizer  
Spark  [image: ]
Resilient Distributed Datasets  
Figure 1: Interfaces to Spark SQL, and interaction with Spark. 
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The main abstraction in Spark SQL’s API is a DataFrame, a dis tributed collection of rows with a homogeneous schema. A DataFrais equivalent to a table in a relational database, and can also be
FIRST EXAMPLE 
SparkSession.builder. … 
• A SparkSession represents the entry point to submit programs to a Spark cluster.  • master("local") : defines where the master Spark node is located – local means running on  local mode, i.e., not connected to a cluster. 
from pyspark.sql import SparkSession 
spark = SparkSession.builder \ 
.master("local") \ 
.appName("Simple test") \ 
.getOrCreate() 
try: 
df = spark.read.text("doc.txt") 
df.printSchema() 
df.show() 
finally: 
spark.stop()
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FIRST EXAMPLE (2) 
spark.stop() 
• Shutdown the underlying SparkContext. 
• You should stop a SparkContext in the end, as only a single SparkContext may exist – we  are doing this in a finally clause to guarantee this. 
from pyspark.sql import SparkSession 
spark = SparkSession.builder \ 
.master("local") \ 
.appName("Simple test") \ 
.getOrCreate() 
try: 
df = spark.read.text("doc.txt") 
df.printSchema() 
df.show() 
finally: 
spark.stop()
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FIRST EXAMPLE: CREATING DATAFRAME FROM TEXT FILE 
dataframe = spark.read.text(filename) 
• Creates a Dataframe from a text file. The Dataframe includes a single column named  “value”, and each line is a row of the DataFrame. 
from pyspark.sql import SparkSession 
spark = SparkSession.builder \ 
.master("local") \ 
.appName("Simple test") \ 
.getOrCreate() 
try: 
df = spark.read.text("doc.txt") 
df.printSchema() 
df.show() 
finally: 
spark.stop()
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FIRST EXAMPLE: DISTRIBUTED EXECUTION 
CPU + GPU 
df = spark.read.text("doc.txt") 
File “doc.txt”  
NOVA SBE 
NUNO 
NOVA  
LUDWIG SBE 
ANGELO 
NOVA ADA  
CARCAVELOS 
NOVA MSC 
SBE 
disk
[“NOVA SBE”] 
[“NUNO”] 
[“NOVA”]  
CPU + GPU 
memory disk 
IO, net, … 
memory disk 
IO, net, … 
[“LUDWIG SBE”] [“ANGELO”] 
[“NOVA ADA”]  CPU + GPU 
memory disk 
IO, net, … 
[“CARCAVELOS”] [“NOVA MSC”] [“SBE”] 
CPU + GPU 
memory disk 
IO, net, … 
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FIRST EXAMPLE: CREATING DATAFRAME FROM TEXT FILE 
dataframe.show() 
• Displays the contents of the DataFrame. 
• To show the values of a DataFrame, it is necessary to collect them – remember that a  DataFrme might be distributed over multiple machines, and your program is running in a  single machine. 
from pyspark.sql import SparkSession 
spark = SparkSession.builder \ 
.master("local") \ 
.appName("Simple test") \ 
.getOrCreate() 
try: 
df = spark.read.text("doc.txt") 
df.printSchema() 
df.show() 
finally: 
spark.stop()
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FIRST EXAMPLE: DISTRIBUTED EXECUTION CPU + GPU 
Value of  
variable res [“NOVA SBE”, “NUNO”, 
“NOVA”,  
“LUDWIG SBE”, “ANGELO”, 
“NOVA ADA”,  “CARCAVELOS”, “NOVA MSC” “SBE”] 
df.show() 
[“NOVA SBE”] 
[“NUNO”] 
[“NOVA”]  
CPU + GPU 
memory disk 
IO, net, … 
memory disk 
IO, net, … 
[“LUDWIG SBE”] [“ANGELO”] 
[“NOVA ADA”]  CPU + GPU 
memory disk 
IO, net, … 
[“CARCAVELOS”] [“NOVA MSC”] [“SBE”] 
CPU + GPU 
memory disk 
IO, net, … 
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PROGRAMMING MODEL 
Spark Dataframe programs describe the flow of  
transformations that creates a DataFrame from another,  usually in several steps. 
Spark programs, encode the dependencies among the  various DataFrames (and underlying RDDs): 
• this is known as the lineage graph 
4 
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3
SECOND EXAMPLE 
Count the number of occurrences of each word and print those that  appear more than once. 
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \ 
.count() \ 
.where(col("count") > 1)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 44 
SECOND EXAMPLE: EXPLODE + SPLIT 
split( column, delimeter) 
• Divides the value of the column by delimiter, creating an array of values 
explode( column).alias(name) 
• Flattens the array, making each value an independent row, with name the result column. 
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \ 
.count() \ 
.where(col("count") > 1)
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SECOND EXAMPLE: FLATMAP 
(“NOVA SBE”) (“NUNO”) 
(“NOVA”)  
(“LUDWIG SBE”) (“ANGELO”) 
(“NOVA ADA”)  
(“CARCAVELOS”) (“NOVA MSC”) (“SBE”) 
df2 = df.select(explode(split(col("value"), " ")).alias("word")) 
(“NOVA”) (“SBE”) 
(“NUNO”) (“NOVA”) 
(“LUDWIG”) (“SBE”) 
(“ANGELO”) (“NOVA”)  (“ADA”)  
(“CARCAVELOS”) (“NOVA”) 
(“MSC”) 
(“SBE”) 
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SECOND EXAMPLE: GROUPBY 
groupBy( column) 
• Groups the rows using the value of the given column 
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \ 
.count() \ 
.where(col("count") > 1)
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SECOND EXAMPLE: GROUPBY().COUNT() 
groupBy( column).count() 
• Counts the number of rows in the group, adding a column with name  “column”. 
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \ 
.count() \ 
.where(col("count") > 1)
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SECOND EXAMPLE: REDUCEBYKEY 
(“NOVA”) (“SBE”) 
(“NUNO”) (“NOVA”)  
(“LUDWIG”) (“SBE”) 
(“ANGELO”) (“NOVA”)  (“ADA”)  
(“CARCAVELOS”) (“NOVA”) 
(“MSC”) 
(“SBE”) 
result = df2.groupBy(df2.word) \ .count() \
(“NOVA”,3) (“ANGELO”,1) (“NUNO”,1) 
(“LUDWIG”,1) (“ADA”,1) 
(“SBE”,4) 
(“CARCAVELOS”,1) (“MSC”,1) 
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SECOND EXAMPLE: WHERE 
where ( condition) 
• Returns a DataFrame with the rows that satisfy the given condition. 
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \ 
.count() \ 
.where(col("count") > 1)
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SECOND EXAMPLE: FILTER 
(“NOVA”,3) (“ANGELO”,1) (“NUNO”,1)
(“LUDWIG”,1) (“ADA”,1) 
(“SBE”,4) 
(“CARCAVELOS”,1) (“MSC”,1) 
.where(col("count") > 1)  
(“NOVA”,3) (“SBE”,4) 
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PROGRAMMING AND EXECUTION MODEL 
DataFrame programs are converted into RDD programs, which involve: 
• Transformations: RDD -> RDD 
• Actions: RDD -> Result (directly available to the client  application) 
Execution consists in applying the transformations in all the  partitions of an RDD in parallel 
• Performance is best when a RDD partition result does not  require data from input RDD partitions located in different nodes  (i.e., avoids shuffles)
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FROM DATAFRAME TO RDDS 
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \ 
.count() \ 
.where(col("count") > 1) 
freq = doc.flatMap (lambda s: s.split(' ‘) 
.map(lambda s: (s,1)) 
.reduceByKey (lambda v1,v2: v1+v2) 
.filter(lambda t: t[1] > 1)
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FROM DATAFRAME TO RDDS (2) 
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \ 
.count() \ 
.where(col("count") > 1) 
freq = doc.flatMap (lambda s: s.split(' ‘) 
.map(lambda s: (s,1)) 
.reduceByKey (lambda v1,v2: v1+v2) 
.filter(lambda t: t[1] > 1)
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FROM DATAFRAME TO RDDS (2) 
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \ 
.count() \ 
.where(col("count") > 1) 
freq = doc.flatMap (lambda s: s.split(' ‘) 
.map(lambda s: (s,1)) 
.reduceByKey (lambda v1,v2: v1+v2) 
.filter(lambda t: t[1] > 1)
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SECOND EXAMPLE: COMPLETE EXECUTION 
freq = doc.flatMap (lambda s: s.split(' ‘) 
.map(lambda s: (s,1)) 
.reduceByKey (lambda v1,v2: v1+v2) 
.filter(lambda t: t[1] > 1) 
flatMap 
V1 V2 V3 flatMap 
map 
V4 
V5 
V6 
map 
reduceByKey 
V7 
V8 V9 
reduceByKey 
filter
V10 V11 V12 filter 
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APACHE SPARK: (SCALA) API EXCERPT 
	Transformations
	map(f : T ) U) : RDD[T] ) RDD[U] 
filter(f : T ) Bool) : RDD[T] ) RDD[T] 
flatMap(f : T ) Seq[U]) : RDD[T] ) RDD[U] 
sample(fraction : Float) : RDD[T] ) RDD[T] (Deterministic sampling) 
groupByKey() : RDD[(K, V)] ) RDD[(K, Seq[V])] 
reduceByKey(f : (V,V) ) V) : RDD[(K, V)] ) RDD[(K, V)] 
union() : (RDD[T],RDD[T]) ) RDD[T] 
join() : (RDD[(K, V)],RDD[(K, W)]) ) RDD[(K, (V, W))] 
cogroup() : (RDD[(K, V)],RDD[(K, W)]) ) RDD[(K, (Seq[V], Seq[W]))] 
crossProduct() : (RDD[T],RDD[U]) ) RDD[(T, U)] 
mapValues(f : V ) W) : RDD[(K, V)] ) RDD[(K, W)] (Preserves partitioning) sort(c : Comparator[K]) : RDD[(K, V)] ) RDD[(K, V)] 
partitionBy(p : Partitioner[K]) : RDD[(K, V)] ) RDD[(K, V)]

	Actions
	count() : RDD[T] ) Long 
collect() : RDD[T] ) Seq[T] 
reduce(f : (T,T) ) T) : RDD[T] ) T 
lookup(k : K) : RDD[(K, V)] ) Seq[V] (On hash/range partitioned RDDs) 
save(path : String) : Outputs RDD to a storage system, e.g., HDFS




Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T. 
that searches for a hyperplane w that best separates two [image: ][image: ][image: ][image: ][image: ][image: ]
ranks0 input filemap  
sets of points (e.g., spam and non-spam emails). The al gorithm uses gradient descent: it starts w at a random value, and on each iteration, it sums a function of w over the data to move w in a direction that improves it. 
links  
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 57 join  [image: ][image: ]
contribs0  
reduce + map 
[image: ][image: ]ranks1  
contribs
PROGRAMMING MODEL: DEPENDENCIES 
Narrow Dependencies: Wide Dependencies:  
Wide-Dependencies are  
produced when an RDD  
Sta
partition depends on  
map, filter  
multiple partitions stored on  different nodes 
groupBy, join 
Expensive due to high cost of  
groupByKey 
C: 
network bandwidth union  
join with inputs  co-partitioned  
join with inputs not  co-partitioned  
St
Figure 4: Examples of narrow and wide dependencies. Each box is an RDD, with partitions shown as shaded rectangles. 
Figure 5: with solid in black if t
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map to the parent’s records in its iterator method. union: Callin union on two RDDs returns an RDD 
row transfoutput RD
PROGRAMMING MODEL: DEPENDENCIES (2) 
Narrow-dependencies are produced when a RDD  partition depends on data  
Narrow Dependencies: Wide Depen
that is co-located (in the  same node). 
Filter (where), map 
Fast as executed in the same  
map, filter  
join with inputs  
groupB
machine.union  
co-partitioned  
join with inco-partit
Figure 4: Examples of narrow and wide dependenbox is an RDD, with partitions shown as shaded rect
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union: Calling union on two RDDs returnswhose partitions are the union of those of th
FAULT-TOLERANCE 
Sparks deals with node failures  by recomputing lost  
partitions, using lineage  
V1 V2 V3 flatMap 
information. 
V4 
map 
V5 
V6 
Optimized by persisting  
intermediate RDDs. 
V7 
V8 V9 
reduceByKey 
V10 V11 V12 filter
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FAULT-TOLERANCE 
Sparks deals with node failures  by recomputing lost  
partitions, using lineage  
V1 V2 V3 flatMap 
information. 
V4 
map 
V5 
V6 
Optimized by persisting  
intermediate RDDs. 
V7 
V8 V9 
reduceByKey 
V10 V11 V12 filter
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FAULT-TOLERANCE 
Sparks deals with node failures  by recomputing lost  
partitions, using lineage  
V1 V2 V3 flatMap 
information. 
V4 
map 
V5 
V6 
Optimized by persisting  
intermediate RDDs. In the example, if V9 is  
V7 
V8 V9 
reduceByKey 
persisted, lots of  
recomputation would be  saved. 
V10 V11 V12 filter
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EXERCISES 
Consider the information about products, stored in file "shopdata.csv",  with the following format (where elements are separated by a tab): 
```store product price```, where elements are separated by a tab. 
6Ave Express LLC 13.3 MacBook Air (Mid 2017, Silver) 892.49 Amazon.com 13.3 MacBook Air (Mid 2017, Silver) 979 Best Buy 13.3 MacBook Air (Mid 2017, Silver) 899.99 bhphotovideo.com 13.3 MacBook Air (Mid 2017, Silver) 799
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 63 
LOAD CSV FILE 
dataframe = spark.read.csv(filename) 
• Creates a Dataframe from a CSV file. 
• Option “header” specifies if the first line is the header of the table. • Option “inferSchema” instructs Spark to infer data type for each column. 
df = spark.read.option("header", True) \ 
.option("inferSchema",True) \ 
.csv("shopdata.csv")
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REGISTER DATAFRAME AS SQL VIEW 
dataframe.createOrReplaceTempView( table_name) 
Registers a DataFrame as a SQL view / table. The table is available for  the SparkSession.  
After registering the table, it is possible to issue SQL statements.  
df = spark.read.option("header", True) \ 
.option("inferSchema",True) \ 
.csv("shopdata.csv") 
df.createOrReplaceTempView("products") 
result = spark.sql("SELECT * FROM products") 
result.show()
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EXECUTING SQL OPERATIONS 
dataframe = spark.sql( SQL statement) 
Execute SQL statement. The result is a DataFrame.  
df = spark.read.option("header", True) \ 
.option("inferSchema",True) \ 
.csv("shopdata.csv") 
df.createOrReplaceTempView("products") 
result = spark.sql("SELECT * FROM products") 
result.show()
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EXECUTING SQL OPERATIONS 
dataframe = spark.sql( SQL statement) 
Execute SQL statement. The result is a DataFrame.  
df = spark.read.option("header", True) \ 
.option("inferSchema",True) \ 
.csv("shopdata.csv") 
df.createOrReplaceTempView("products") 
result = spark.sql("SELECT * FROM products") 
result.show()
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EXECUTING SQL OPERATIONS 
dataframe = spark.sql( SQL statement) [image: ]
Execute SQL statement. The result is a DataFrame.  
df = spark.read.option("header", True) \ 
.option("inferSchema",True) \ 
.csv("shopdata.csv") 
df.createOrReplaceTempView("products") 
result = spark.sql("SELECT * FROM products") 
result.show()
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SIMPLE STATISTICS (1) 
Let’s assume data is registered under view name products. 
Find the minimum price for each product. 
result = spark.sql("""SELECT product, min(price) AS min_price FROM products  GROUP BY product""") 
result.show()
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 69 
SIMPLE STATISTICS (2) 
Find the average price for each product. 
result = spark.sql("""SELECT product, mean(price) AS avg_price FROM products  GROUP BY product""") 
result.show()
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SIMPLE STATISTICS (3) 
Find the minimum price and shop for each product. 
result = spark.sql("""SELECT m.product, p.shop, m.min_price FROM  (SELECT product, min(price) AS min_price FROM products GROUP BY product) m JOIN products p ON m.product = p.product AND m.min_price = p.price ORDER BY m.product""")
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OUTLINE 
Computing services 
1. First generation batch processing: Map-reduce 2. Second generation batch processing: Spark 3. Stream processing
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 83 
BIG DATA / BATCH PROCESSING 
All data known at the time of processing 
Goal: Execute computation over data and produce result 
Problem: what if new data arrives continuously, and new results should be  computed continuously? 
Source data [image: ]
Batch Processing  System  [image: ][image: ]
(e.g. Hadoop,  Spark) 
Results data[image: ]
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EXAMPLES OF BIG STREAMING DATA 
[image: ][image: ]
Producing information on 
traffic based on information 
collected from users’ 
mobile phones
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STREAMING PROCESSING: REQUIREMENTS 
Need to process data as it arrive (or at most with a very  small delay) 
Need to be able to process data from multiple sources Need to tolerate faults
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TWO PROCESSING MODELS (1) 
Continuous 
• Each tuple processed as it arrives 
• Processing system may keep state for executing  window computation and incremental computation 
[image: ]Stream Processing  
System  [image: ][image: ][image: ][image: ][image: ]
(e.g. Storm) 
[image: ]Results
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TWO PROCESSING MODELS (2) 
Mini-batches 
• Tuples received for each X ms grouped in a mini-batch • Process mini-batches 
• Processing system may keep state for executing window  computation and incremental computation 
Stream Processing  
System  [image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ]
(e.g. Spark  Streaming)
[image: ]Results 
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WINDOWING 
When doing stream processing, it is often interesting to compute results based on data  from a given interval, but compute results more frequently than the time interval — for  example, process data of last 3 minutes, but produce results every minutes. 
System for stream processing support the definition of sliding time windows. 
E.g. In SparkStreaming, s.window(“3s”) would output results comprising the records in intervals:  [0,3), [1,4), [2,5), … 
[image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ]
0 1 2 3 4 5 6 7 8 …
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SYSTEMS FOR STREAM PROCESSING 
Continuous processing 
• Apache Storm 
• Open sourced by Twitter 
• API: proprietary, SQL-like 
• Apache Flink 
• API: proprietary, table-based (similar to DataFrames), SQL-like 
Mini-batch processing 
• Spark streaming 
• API: proprietary, table-based, SQL-like
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SPARK STREAMING 
NOTE: slides with Spark Streaming intro are just for those  wanting to know a little more on this topic. 
Spark Streaming is an extension of the core Spark API to enable  scalable, high-throughput, fault-tolerant stream processing of live  data streams. 
Matei Zaharia, et. al. Discretized Streams: Fault-Tolerant Streaming  Computation at Scale. In Proc. SOSP’13. 
http://people.csail.mit.edu/matei/papers/2013/sosp_spark_streaming.pdf http://spark.apache.org/streaming/ 
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