CLOUD COMPUTING SYSTEMS
Lectures 6-7
Nuno Preguiça
(nuno.preguica_at_fct.unl.pt)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 1
OUTLINE
Computing services
1. First generation batch processing: Map-reduce 2. Second generation batch processing: Spark 3. Stream processing
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 2
OUTLINE
Computing services
1. First generation batch processing: Map-reduce • Programming model
• Execution model
• Handling faults
2. Second generation batch processing: Spark 3. Stream processing
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 3
MAPREDUCE
“A new abstraction that allows us to expresses simple computations we were trying to perform but hides the messy details of parallelization, fault tolerance, data-distribution and load-balancing in a library”
[image:]Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 4
MAPREDUCE (2)
“A programming model and an associated
implementation for
processing large datasets.”
“Runs on a large cluster of commodity machines … a typical … computation
processes many terabytes of data on thousands of
machines.”
[image:]Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 5
EXAMPLE APPLICATION
Consider you have a huge text.
Goal: find out the words that appear more frequently in a text. Can be transformed into:
Goal 1: Count the number of times each word appears in the text.
Goal 2: Order the words by frequency.
Is this a useless example?
Not really… e.g. analyze web logs to find popular URLs, analyze social media posts to find trending topics, etc.
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 6
MAPREDUCE: OVERVIEW
Sequentially read a lot of data
Map phase:
• Extract the important information
Each computation step is composed of a map and a reduce steps.[image:][image:]
Group by key: Sort and Shuffle the output of the map phase
Reduce phase:
• Aggregate, summarize, filter or transform
Write the resultA computation is a sequence of map-reduce computations. [image:][image:]
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 7
MAPREDUCE: EXAMPLE Map: read the input
and produce
key,value pairs
Sort & shuffle: performed by the system
Reduce: collect values with the same key and produce
(NOVA,1)
(ADA,1)
(ADA,1)
result
NOVA SBE NUNO
NOVA
LUDWIG SBE ANGELO
NOVA ADA CARCAVELOS NOVA MSC SBE
(SBE,1)
(NUNO,1)
(NOVA,1)
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1)
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)
Map: for each word, output its count.
(ANGELO,1)
(CARCAVELOS,1) (LUDWIG,1)
(MSC,1)
(NOVA,1)
(NOVA,1)
(NOVA,1)
(NOVA,1)
(NUNO,1)
(SBE,1)
(SBE,1)
(SBE,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)
(SBE,3)
Reduce: count the frequency per word.
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 8
WORD COUNT USING MAPREDUCE
map(key, value): // key: document name; value: text of the document for each word w in value:
emit(w, 1)
reduce(key, values): // key: a word; value: an iterator over counts result = 0
for each count v in values:
result += v
emit(key, result)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 9
MAPREDUCE MODEL
Input: a set of key-value pairs
Programmer specifies two methods:
• Map(k, v) → <k’, v’>*
• Takes a key-value pair and outputs a set of key-value pairs • E.g., key is the filename, value is a single line in the file
• Map is called for every (k,v) pair
• Reduce(k’, <v’>*) → <k’, v’’>*
• All values v’ with same key k’ are reduced together and
processed in v’ order
• Reduce is called for each unique key k’
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 10
EXAMPLE APPLICATION
Consider you have a huge text.
Goal: find out the words that appear more frequently in a text. Can be transformed into:
Goal 1: Count the number of times each word appears in the text.
Goal 2: Order the words by frequency.
Is this a useless example?
Not really… e.g. analyze web logs to find popular URLs, analyze social media posts to find trending topics, etc.
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 11
GOAL 2: ORDER THE WORDS BY FREQUENCY.
Can we sort the values of the reduce before returning them?
Reduce: collect values with the same key and produce
Reduce: collect values with the same key and produce
(ADA,1)
result (ADA,1)
result
NO !!!
Each reduce will be
processed independently (by a different machine).
Also bad idea because it requires storing potentially large amount of data.
(ANGELO,1)
(CARCAVELOS,1) (LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)
(SBE,3)
(ANGELO,1)
(CARCAVELOS,1) (LUDWIG,1)
(MSC,1)
(NUNO,1)
(NOVA,4)
(SBE,3)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 12
MAPREDUCE: EXAMPLE
Map: read the input
and produce
key,value pairs
Sort & shuffle: performed by the system
(1,ADA)
Reduce: collect values with the same key and produce result
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1) (LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)
(SBE,3)
(1,ADA)
(1,ANGELO)
(1,CARCAVELOS)
(1,LUDWIG)
(1,MSC)
(4,NOVA)
(1,NUNO)
(3,SBE)
Map: reverse order of pair.
(1,ANGELO)
(1,CARCAVELOS) (1,LUDWIG)
(1,MSC)
(1,NUNO)
(3,SBE)
(4,NOVA)
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NUNO,1)
(SBE,3)
(NOVA,4)
Reduce: reverse order of pair.
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 13
WORD COUNT SORT USING MAPREDUCE
map(key, value): // key: word; value: word count
emit(value, key)
reduce(key, values): // key: word count; value: word
for each v in values:
emit(v, key)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 14
MAPREDUCE
Programmer responsible for:
• Map function
• Reduce function
MapReduce system responsible for:
• Partitioning the input data
• Scheduling the program’s execution across a set of machines • Performing the sort by key & shuffle step
• Handling machine failures
• Managing required inter-machine communication
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 15
OUTLINE
Computing services
1. First generation batch processing: Map-reduce • Programming model
• Execution model
• Handling faults
2. Second generation batch processing: Spark 3. Stream processing
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 16
MAPREDUCE: LOGICAL EXECUTION…
Map: read the input [image:]
and produce
key,value pairs
Sort & shuffle:
performed by the
system
Reduce: collect
values with the same
key and produce
result
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 17
MAPREDUCE: DISTRIBUTED EXECUTION…
Map: read the input [image:]
and produce
key,value pairs
Sort & shuffle:
performed by the
system
Reduce: collect
values with the same
key and produce
result
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 18
MAPREDUCE: DISTRIBUTED EXECUTION…
Map: read the input [image:]
and produce
key,value pairs
Sort & shuffle:
performed by the
system
Reduce: collect
values with the same
key and produce result
Each phase is divided in
multiple tasks. Each task
is executed independently
on a different nodes.
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 19
MAPREDUCE ARCHITECTURE
2. Clients send
programs to the
master.
1. Input files stored in a distributed file system, and
divided into splits
3. Master asks
workers to run map tasks: process splits
(1) fork
in parallel, and...
(2)
assign
map
worker
User
Program (1) fork
Master
(1) fork
(2)
assign reduce
4. Master asks workers to run reduce tasks: reducers sort intermediate files before processing values for each key.
split 0 split 1 split 2
(3) read
(4) local write
(5) remote read
worker
 (6) write
output file 0
split 3 split 4
worker worker
worker output file 1
Input files
Map phase
Intermediate files
3. ...save
(on local disks)
intermediate results in multiple files by key Figure 1: Execution overview
range
Reduce phase
Output files
Inverted Index: The map function parses each docu ment, and emits a sequence of !word, document ID" pairs. The reduce function accepts all pairs for a given word, sorts the corresponding document IDs and emits a
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 20
large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:
(1) Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.
MAPREDUCE SYSTEM: MASTER NODE
Master node coordinates the
execution:
Task status: (idle, in-progress,
User
Program
completed)
(1) fork
(1) fork
(1) fork
Idle tasks get scheduled as
Master
workers become available
(2)
assign
(2)
reduce
assign
When a map task completes, it
map
sends the master the location and sizes of its intermediate files, one for each reducer
split 0 split 1 split 2
worker
(3) read
(5) remote read
(4) local write
worker
 (6) write
output file 0
Master pushes this info to reducers
split 3 split 4
worker worker
worker output file 1
Input
Map
Master pings workers periodically
files
phase
to detect failures
Intermediate files
(on local disks)
Figure 1: Execution overview
Reduce phase
Output files
Inverted Index: The map function parses each docu ment, and emits a sequence of !word, document ID" pairs. The reduce function accepts all pairs for a given word, sorts the corresponding document IDs and emits a
large clusters of commodity PCs connected together with switched Ethernet [4]. In our environment:
(1) Machines are typically dual-processor x86 processors running Linux, with 2-4 GB of memory per machine.
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 21
!word, list(document ID)" pair. The set of all output pairs forms a simple inverted index. It is easy to augment this computation to keep track of word positions.
Distributed Sort: The map function extracts the key from each record, and emits a !key, record" pair. The reduce function emits all pairs unchanged. This compu tation depends on the partitioning facilities described in Section 4.1 and the orderin roerties described in Sec
(2) Commodity networking hardware is used – typically either 100 megabits/second or 1 gigabit/second at the machine level, but averaging considerably less in over all bisection bandwidth.
(3) A cluster consists of hundreds or thousands of ma chines, and therefore machine failures are common.
(4) Storage is provided by inexpensive IDE disks at tached directly to individual machines. A distributed file
MAPREDUCE SYSTEM: WORKER
Worker node performs
map or reduce tasks, as
User
Program
requested by the
(1) fork
(1) fork
(1) fork
coordinator.
Master
(2)
assign
(2)
reduce
assign
map
worker
split 0
 (6) write
output
split 1 split 2
(3) read
(4) local write
(5) remote read
worker
file 0
split 3 split 4
worker worker
worker output file 1
Input files
Map phase
Intermediate files
(on local disks)
Figure 1: Execution overview
Reduce phase
Output files
Inverted Index: The map function parses each docu ment, and emits a sequence of !word, document ID" pairs. The reduce function accepts all pairs for a given word, sorts the corresponding document IDs and emits a
large clusters of commodity PCs connected together with switched Ethernet [4]. In our environment:
(1) Machines are typically dual-processor x86 processors running Linux, with 2-4 GB of memory per machine.
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 22
!word, list(document ID)" pair. The set of all output pairs forms a simple inverted index. It is easy to augment this computation to keep track of word positions.
Distributed Sort: The map function extracts the key from each record, and emits a !key, record" pair. The reduce function emits all pairs unchanged. This compu tation depends on the partitioning facilities described in Section 4.1 and the orderin roerties described in Sec
(2) Commodity networking hardware is used – typically either 100 megabits/second or 1 gigabit/second at the machine level, but averaging considerably less in over all bisection bandwidth.
(3) A cluster consists of hundreds or thousands of ma chines, and therefore machine failures are common.
(4) Storage is provided by inexpensive IDE disks at tached directly to individual machines. A distributed file
MAPREDUCE SYSTEM: HANDLING FAULTS Map worker failure
Upon detection of the failure of a worker, map tasks
restarted in different worker
Reduce worker failure Reduce task is restarted in
(1) fork
(2)
assign
reduce
split 0
(1) fork
(2)
assign
map
worker
User
Program
(1) fork
Master
 (6) write
output
other worker
split 1 split 2
(3) read
(5) remote read
(4) local write
worker
file 0
Stragglers (slow workers)
split 3 split 4
worker worker
worker output file 1
If a task is taking too long to complete, it is launched in other worker. First result used.
Input files
Map phase
Intermediate files
(on local disks)
Figure 1: Execution overview
Reduce phase
Output files
Inverted Index: The map function parses each docu ment, and emits a sequence of !word, document ID" pairs. The reduce function accepts all pairs for a given word, sorts the corresponding document IDs and emits a
large clusters of commodity PCs connected together with switched Ethernet [4]. In our environment:
(1) Machines are typically dual-processor x86 processors running Linux, with 2-4 GB of memory per machine.
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 23
!word, list(document ID)" pair. The set of all output pairs forms a simple inverted index. It is easy to augment this computation to keep track of word positions.
Distributed Sort: The map function extracts the key from each record, and emits a !key, record" pair. The reduce function emits all pairs unchanged. This compu tation depends on the partitioning facilities described in Section 4.1 and the orderin roerties described in Sec
(2) Commodity networking hardware is used – typically either 100 megabits/second or 1 gigabit/second at the machine level, but averaging considerably less in over all bisection bandwidth.
(3) A cluster consists of hundreds or thousands of ma chines, and therefore machine failures are common.
(4) Storage is provided by inexpensive IDE disks at tached directly to individual machines. A distributed file
MAPREDUCE SYSTEM: HANDLING FAULTS (2) Master failure
MapReduce task is aborted and client is notified
(1) fork
(2)
assign
reduce
split 0
(1) fork
(2)
assign
map
worker
User
Program
(1) fork
Master
 (6) write
output
split 1 split 2
(3) read
(4) local write
(5) remote read
worker
file 0
split 3 split 4
worker worker
worker output file 1
Input files
Map phase
Intermediate files
(on local disks)
Figure 1: Execution overview
Reduce phase
Output files
Inverted Index: The map function parses each docu ment, and emits a sequence of !word, document ID" pairs. The reduce function accepts all pairs for a given word, sorts the corresponding document IDs and emits a
large clusters of commodity PCs connected together with switched Ethernet [4]. In our environment:
(1) Machines are typically dual-processor x86 processors running Linux, with 2-4 GB of memory per machine.
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 24
!word, list(document ID)" pair. The set of all output pairs forms a simple inverted index. It is easy to augment this computation to keep track of word positions.
Distributed Sort: The map function extracts the key from each record, and emits a !key, record" pair. The reduce function emits all pairs unchanged. This compu tation depends on the partitioning facilities described in Section 4.1 and the orderin roerties described in Sec
(2) Commodity networking hardware is used – typically either 100 megabits/second or 1 gigabit/second at the machine level, but averaging considerably less in over all bisection bandwidth.
(3) A cluster consists of hundreds or thousands of ma chines, and therefore machine failures are common.
(4) Storage is provided by inexpensive IDE disks at tached directly to individual machines. A distributed file
OUTLINE
Computing services
1. First generation batch processing: Map-reduce • Programming model
• Execution model
• Handling faults
2. Second generation batch processing: Spark 3. Stream processing
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 25
MAPREDUCE: EXAMPLE Map: read the input
and produce
key,value pairs
Sort & shuffle: performed by the system
Reduce: collect values with the same key and produce
(NOVA,1)
(ADA,1)
(ADA,1)
result
NOVA SBE NUNO
NOVA
LUDWIG SBE ANGELO
NOVA ADA CARCAVELOS NOVA MSC SBE
(SBE,1)
(NUNO,1)
(NOVA,1)
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1)
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)
Map: for each word, output its count.
(ANGELO,1)
(CARCAVELOS,1) (LUDWIG,1)
(MSC,1)
(NOVA,1)
(NOVA,1)
(NOVA,1)
(NOVA,1)
(NUNO,1)
(SBE,1)
(SBE,1)
(SBE,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)
(SBE,3)
Reduce: count the frequency per word.
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 26
MAPREDUCE: EXAMPLE Map: read the input
and produce
key,value pairs
Sort & shuffle: performed by the system
Reduce: collect values with the same key and produce
(NOVA,1)
(ADA,1)
result
NOVA SBE NUNO
NOVA
LUDWIG SBE ANGELO
NOVA ADA CARCAVELOS NOVA MSC SBE
(SBE,1)
(NUNO,1)
(NOVA,1)
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1)
(CARCAVELOS,1) (NOVA,1)
(MSC,1)
(SBE,1)
[image:](ANGELO,1) (CARCAVELOS,1) [image:][image:][image:][image:]
(LUDWIG,1)
(MSC,1)
(NOVA,4)
[image:](NUNO,1) [image:][image:]
(SBE,3)
[image:]
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 27
MAPREDUCE: EXAMPLE Map: read the input
and produce
key,value pairs
Sort & shuffle: performed by the system
Reduce: collect values with the same key and produce
(NOVA,1)
(ADA,1)
result
NOVA SBE NUNO
NOVA
LUDWIG SBE ANGELO
NOVA ADA CARCAVELOS NOVA MSC SBE
(SBE,1)
(NUNO,1)
(NOVA,1)
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1)
(CARCAVELOS,1) (NOVA,1)
(MSC,1)
(SBE,1)
[image:](ANGELO,1) (CARCAVELOS,1) [image:][image:][image:][image:]
(LUDWIG,1)
(MSC,1)
(NOVA,4)
[image:](NUNO,1) [image:][image:]
(SBE,3)
[image:]
Mapper 1 sends two tuples
for NOVA !!
How to improve this?
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 28
IMPROVING MAPREDUCE: COMBINER
Combiner allows to pre
aggregate values in the
mapper.
Combine(k, <v>*) → <k, v’>
MapSort & shuffle
Reduce
All values v with same key k
are combined and processed
in v order
Combine is called at each
mapper for each unique key
k
Combiner function is usually the same as the reduce function.
NOVA SBE NUNO
NOVA
LUDWIG SBE ANGELO
NOVA ADA CARCAVELOS NOVA MSC SBE
(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1)
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1)
(CARCAVELOS,1) (NOVA,1)
(MSC,1)
(SBE,1)
[image:][image:][image:][image:][image:]
r
e
n
ib[image:][image:][image:]
m
o
C[image:]
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1) (LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)
(SBE,3)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 29
WHY WAS MAP-REDUCE SO POPULAR?
Distributed computation before MapReduce:
• how to divide the workload among multiple machines? • how to distribute data and program to other machines? • how to schedule tasks?
• what happens if a task fails while running?
• … and … and ...
Distributed computation after MapReduce
• how to write Map function?
• how to write Reduce function?
• systems to efficiently execute map-reduce jobs: Hadoop.Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 30
APACHE HADOOP 2.0
[image:]Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 31
OUTLINE
Computing services
1. First generation batch processing: Map-reduce 2. Second generation batch processing: Spark 3. Stream processing
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 32
MAPREDUCE: CHAINING PROGRAMS
MapReduce requires complex computations to be split into successive MapReduce jobs
These complex programs can experience high latency due to several factors, including:
• need to read and write files
• underlying filesystem replication (for writes)
• one job must finish before the next can be started…
Apache Spark tackles these limitations.
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 33
APACHE SPARK
Apache Spark provides in-memory, fault-tolerant distributed processing.
Key ideas:
• Spark programs comprise multiple chained data
transformations, using a high-level functional programming model;
• Spark defines a distributed collection data-structure : Resilient Distributed Dataset (RDD).
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 34
DATA MODEL AND APIS
RDDs are immutable data
• logically a RDD is an immutable collection of data tuples;
• physically distributed (partitioned) across many nodes;
• upon a failure (or cascade of failures), RDDs can be recreated automatically and efficiently from the dependencies.
Spark Dataframes
• DataFrames are distributed collections of data that is grouped into named columns.
• DataFrames can be seen as RDDs with a schema that names the fields of the underlying tuples.
Spark SQL
• SQL for specifying computations
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 35
SPARKSQL ARCHITECTURE
Programs using SQL/DataFrames are translated into Spark programs.
Programs are optimized to execute efficiently.
JDBC Console User Programs (Java, Scala, Python) [image:][image:][image:][image:][image:][image:]
Based on the techniques used in database systems.
Spark SQL
[image:]DataFrame API
Libraries for advanced analytics algorithms such as graph processing and machine learning.
Catalyst Optimizer
Spark [image:]
Resilient Distributed Datasets
Figure 1: Interfaces to Spark SQL, and interaction with Spark.
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 36 3.1 DataFrame API
The main abstraction in Spark SQL’s API is a DataFrame, a dis tributed collection of rows with a homogeneous schema. A DataFrais equivalent to a table in a relational database, and can also be
FIRST EXAMPLE
SparkSession.builder. …
• A SparkSession represents the entry point to submit programs to a Spark cluster. • master("local") : defines where the master Spark node is located – local means running on local mode, i.e., not connected to a cluster.
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.master("local") \
.appName("Simple test") \
.getOrCreate()
try:
df = spark.read.text("doc.txt")
df.printSchema()
df.show()
finally:
spark.stop()
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 37
FIRST EXAMPLE (2)
spark.stop()
• Shutdown the underlying SparkContext.
• You should stop a SparkContext in the end, as only a single SparkContext may exist – we are doing this in a finally clause to guarantee this.
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.master("local") \
.appName("Simple test") \
.getOrCreate()
try:
df = spark.read.text("doc.txt")
df.printSchema()
df.show()
finally:
spark.stop()
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 38
FIRST EXAMPLE: CREATING DATAFRAME FROM TEXT FILE
dataframe = spark.read.text(filename)
• Creates a Dataframe from a text file. The Dataframe includes a single column named “value”, and each line is a row of the DataFrame.
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.master("local") \
.appName("Simple test") \
.getOrCreate()
try:
df = spark.read.text("doc.txt")
df.printSchema()
df.show()
finally:
spark.stop()
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 39
FIRST EXAMPLE: DISTRIBUTED EXECUTION
CPU + GPU
df = spark.read.text("doc.txt")
File “doc.txt”
NOVA SBE
NUNO
NOVA
LUDWIG SBE
ANGELO
NOVA ADA
CARCAVELOS
NOVA MSC
SBE
disk
[“NOVA SBE”]
[“NUNO”]
[“NOVA”]
CPU + GPU
memory disk
IO, net, …
memory disk
IO, net, …
[“LUDWIG SBE”] [“ANGELO”]
[“NOVA ADA”] CPU + GPU
memory disk
IO, net, …
[“CARCAVELOS”] [“NOVA MSC”] [“SBE”]
CPU + GPU
memory disk
IO, net, …
df DataFrame is distributed across 3 machines Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 40
FIRST EXAMPLE: CREATING DATAFRAME FROM TEXT FILE
dataframe.show()
• Displays the contents of the DataFrame.
• To show the values of a DataFrame, it is necessary to collect them – remember that a DataFrme might be distributed over multiple machines, and your program is running in a single machine.
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.master("local") \
.appName("Simple test") \
.getOrCreate()
try:
df = spark.read.text("doc.txt")
df.printSchema()
df.show()
finally:
spark.stop()
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 41
FIRST EXAMPLE: DISTRIBUTED EXECUTION CPU + GPU
Value of
variable res [“NOVA SBE”, “NUNO”,
“NOVA”,
“LUDWIG SBE”, “ANGELO”,
“NOVA ADA”, “CARCAVELOS”, “NOVA MSC” “SBE”]
df.show()
[“NOVA SBE”]
[“NUNO”]
[“NOVA”]
CPU + GPU
memory disk
IO, net, …
memory disk
IO, net, …
[“LUDWIG SBE”] [“ANGELO”]
[“NOVA ADA”] CPU + GPU
memory disk
IO, net, …
[“CARCAVELOS”] [“NOVA MSC”] [“SBE”]
CPU + GPU
memory disk
IO, net, …
df DataFrame is distributed across 3 machinesCloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 42
PROGRAMMING MODEL
Spark Dataframe programs describe the flow of
transformations that creates a DataFrame from another, usually in several steps.
Spark programs, encode the dependencies among the various DataFrames (and underlying RDDs):
• this is known as the lineage graph
4
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 43
3
SECOND EXAMPLE
Count the number of occurrences of each word and print those that appear more than once.
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \
.count() \
.where(col("count") > 1)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 44
SECOND EXAMPLE: EXPLODE + SPLIT
split(column, delimeter)
• Divides the value of the column by delimiter, creating an array of values
explode(column).alias(name)
• Flattens the array, making each value an independent row, with name the result column.
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \
.count() \
.where(col("count") > 1)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 45
SECOND EXAMPLE: FLATMAP
(“NOVA SBE”) (“NUNO”)
(“NOVA”)
(“LUDWIG SBE”) (“ANGELO”)
(“NOVA ADA”)
(“CARCAVELOS”) (“NOVA MSC”) (“SBE”)
df2 = df.select(explode(split(col("value"), " ")).alias("word"))
(“NOVA”) (“SBE”)
(“NUNO”) (“NOVA”)
(“LUDWIG”) (“SBE”)
(“ANGELO”) (“NOVA”) (“ADA”)
(“CARCAVELOS”) (“NOVA”)
(“MSC”)
(“SBE”)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 46
SECOND EXAMPLE: GROUPBY
groupBy(column)
• Groups the rows using the value of the given column
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \
.count() \
.where(col("count") > 1)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 47
SECOND EXAMPLE: GROUPBY().COUNT()
groupBy(column).count()
• Counts the number of rows in the group, adding a column with name “column”.
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \
.count() \
.where(col("count") > 1)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 48
SECOND EXAMPLE: REDUCEBYKEY
(“NOVA”) (“SBE”)
(“NUNO”) (“NOVA”)
(“LUDWIG”) (“SBE”)
(“ANGELO”) (“NOVA”) (“ADA”)
(“CARCAVELOS”) (“NOVA”)
(“MSC”)
(“SBE”)
result = df2.groupBy(df2.word) \ .count() \
(“NOVA”,3) (“ANGELO”,1) (“NUNO”,1)
(“LUDWIG”,1) (“ADA”,1)
(“SBE”,4)
(“CARCAVELOS”,1) (“MSC”,1)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 49
SECOND EXAMPLE: WHERE
where (condition)
• Returns a DataFrame with the rows that satisfy the given condition.
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \
.count() \
.where(col("count") > 1)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 50
SECOND EXAMPLE: FILTER
(“NOVA”,3) (“ANGELO”,1) (“NUNO”,1)
(“LUDWIG”,1) (“ADA”,1)
(“SBE”,4)
(“CARCAVELOS”,1) (“MSC”,1)
.where(col("count") > 1)
(“NOVA”,3) (“SBE”,4)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 51
PROGRAMMING AND EXECUTION MODEL
DataFrame programs are converted into RDD programs, which involve:
• Transformations: RDD -> RDD
• Actions: RDD -> Result (directly available to the client application)
Execution consists in applying the transformations in all the partitions of an RDD in parallel
• Performance is best when a RDD partition result does not require data from input RDD partitions located in different nodes (i.e., avoids shuffles)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 52
FROM DATAFRAME TO RDDS
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \
.count() \
.where(col("count") > 1)
freq = doc.flatMap (lambda s: s.split(' ‘)
.map(lambda s: (s,1))
.reduceByKey (lambda v1,v2: v1+v2)
.filter(lambda t: t[1] > 1)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 53
FROM DATAFRAME TO RDDS (2)
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \
.count() \
.where(col("count") > 1)
freq = doc.flatMap (lambda s: s.split(' ‘)
.map(lambda s: (s,1))
.reduceByKey (lambda v1,v2: v1+v2)
.filter(lambda t: t[1] > 1)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 54
FROM DATAFRAME TO RDDS (2)
df2 = df.select(explode(split(col("value"), " ")).alias("word")) result = df2.groupBy(df2.word) \
.count() \
.where(col("count") > 1)
freq = doc.flatMap (lambda s: s.split(' ‘)
.map(lambda s: (s,1))
.reduceByKey (lambda v1,v2: v1+v2)
.filter(lambda t: t[1] > 1)
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 55
SECOND EXAMPLE: COMPLETE EXECUTION
freq = doc.flatMap (lambda s: s.split(' ‘)
.map(lambda s: (s,1))
.reduceByKey (lambda v1,v2: v1+v2)
.filter(lambda t: t[1] > 1)
flatMap
V1 V2 V3 flatMap
map
V4
V5
V6
map
reduceByKey
V7
V8 V9
reduceByKey
filter
V10 V11 V12 filter
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 56
APACHE SPARK: (SCALA) API EXCERPT
	Transformations
	map(f : T) U) : RDD[T]) RDD[U]
filter(f : T) Bool) : RDD[T]) RDD[T]
flatMap(f : T) Seq[U]) : RDD[T]) RDD[U]
sample(fraction : Float) : RDD[T]) RDD[T] (Deterministic sampling)
groupByKey() : RDD[(K, V)]) RDD[(K, Seq[V])]
reduceByKey(f : (V,V)) V) : RDD[(K, V)]) RDD[(K, V)]
union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]
cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]
mapValues(f : V) W) : RDD[(K, V)]) RDD[(K, W)] (Preserves partitioning) sort(c : Comparator[K]) : RDD[(K, V)]) RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)]) RDD[(K, V)]

	Actions
	count() : RDD[T]) Long
collect() : RDD[T]) Seq[T]
reduce(f : (T,T)) T) : RDD[T]) T
lookup(k : K) : RDD[(K, V)]) Seq[V] (On hash/range partitioned RDDs)
save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.
that searches for a hyperplane w that best separates two [image:][image:][image:][image:][image:][image:]
ranks0 input filemap
sets of points (e.g., spam and non-spam emails). The al gorithm uses gradient descent: it starts w at a random value, and on each iteration, it sums a function of w over the data to move w in a direction that improves it.
links
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 57 join [image:][image:]
contribs0
reduce + map
[image:][image:]ranks1
contribs
PROGRAMMING MODEL: DEPENDENCIES
Narrow Dependencies: Wide Dependencies:
Wide-Dependencies are
produced when an RDD
Sta
partition depends on
map, filter
multiple partitions stored on different nodes
groupBy, join
Expensive due to high cost of
groupByKey
C:
network bandwidth union
join with inputs co-partitioned
join with inputs not co-partitioned
St
Figure 4: Examples of narrow and wide dependencies. Each box is an RDD, with partitions shown as shaded rectangles.
Figure 5: with solid in black if t
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 58 G, we build
map to the parent’s records in its iterator method. union: Callin union on two RDDs returns an RDD
row transfoutput RD
PROGRAMMING MODEL: DEPENDENCIES (2)
Narrow-dependencies are produced when a RDD partition depends on data
Narrow Dependencies: Wide Depen
that is co-located (in the same node).
Filter (where), map
Fast as executed in the same
map, filter
join with inputs
groupB
machine.union
co-partitioned
join with inco-partit
Figure 4: Examples of narrow and wide dependenbox is an RDD, with partitions shown as shaded rect
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 59 map to the parent’s records in its iterator meth
union: Calling union on two RDDs returnswhose partitions are the union of those of th
FAULT-TOLERANCE
Sparks deals with node failures by recomputing lost
partitions, using lineage
V1 V2 V3 flatMap
information.
V4
map
V5
V6
Optimized by persisting
intermediate RDDs.
V7
V8 V9
reduceByKey
V10 V11 V12 filter
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 60
FAULT-TOLERANCE
Sparks deals with node failures by recomputing lost
partitions, using lineage
V1 V2 V3 flatMap
information.
V4
map
V5
V6
Optimized by persisting
intermediate RDDs.
V7
V8 V9
reduceByKey
V10 V11 V12 filter
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 61
FAULT-TOLERANCE
Sparks deals with node failures by recomputing lost
partitions, using lineage
V1 V2 V3 flatMap
information.
V4
map
V5
V6
Optimized by persisting
intermediate RDDs. In the example, if V9 is
V7
V8 V9
reduceByKey
persisted, lots of
recomputation would be saved.
V10 V11 V12 filter
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 62
EXERCISES
Consider the information about products, stored in file "shopdata.csv", with the following format (where elements are separated by a tab):
```store product price```, where elements are separated by a tab. 
6Ave Express LLC 13.3 MacBook Air (Mid 2017, Silver) 892.49 Amazon.com 13.3 MacBook Air (Mid 2017, Silver) 979 Best Buy 13.3 MacBook Air (Mid 2017, Silver) 899.99 bhphotovideo.com 13.3 MacBook Air (Mid 2017, Silver) 799
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 63 
LOAD CSV FILE 
dataframe = spark.read.csv(filename) 
• Creates a Dataframe from a CSV file. 
• Option “header” specifies if the first line is the header of the table. • Option “inferSchema” instructs Spark to infer data type for each column. 
df = spark.read.option("header", True) \ 
.option("inferSchema",True) \ 
.csv("shopdata.csv")
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 64 
REGISTER DATAFRAME AS SQL VIEW 
dataframe.createOrReplaceTempView( table_name) 
Registers a DataFrame as a SQL view / table. The table is available for  the SparkSession.  
After registering the table, it is possible to issue SQL statements.  
df = spark.read.option("header", True) \ 
.option("inferSchema",True) \ 
.csv("shopdata.csv") 
df.createOrReplaceTempView("products") 
result = spark.sql("SELECT * FROM products") 
result.show()
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 65 
EXECUTING SQL OPERATIONS 
dataframe = spark.sql( SQL statement) 
Execute SQL statement. The result is a DataFrame.  
df = spark.read.option("header", True) \ 
.option("inferSchema",True) \ 
.csv("shopdata.csv") 
df.createOrReplaceTempView("products") 
result = spark.sql("SELECT * FROM products") 
result.show()
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 66 
EXECUTING SQL OPERATIONS 
dataframe = spark.sql( SQL statement) 
Execute SQL statement. The result is a DataFrame.  
df = spark.read.option("header", True) \ 
.option("inferSchema",True) \ 
.csv("shopdata.csv") 
df.createOrReplaceTempView("products") 
result = spark.sql("SELECT * FROM products") 
result.show()
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 67 
EXECUTING SQL OPERATIONS 
dataframe = spark.sql( SQL statement) [image: ]
Execute SQL statement. The result is a DataFrame.  
df = spark.read.option("header", True) \ 
.option("inferSchema",True) \ 
.csv("shopdata.csv") 
df.createOrReplaceTempView("products") 
result = spark.sql("SELECT * FROM products") 
result.show()
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 68 
SIMPLE STATISTICS (1) 
Let’s assume data is registered under view name products. 
Find the minimum price for each product. 
result = spark.sql("""SELECT product, min(price) AS min_price FROM products  GROUP BY product""") 
result.show()
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 69 
SIMPLE STATISTICS (2) 
Find the average price for each product. 
result = spark.sql("""SELECT product, mean(price) AS avg_price FROM products  GROUP BY product""") 
result.show()
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 70 
SIMPLE STATISTICS (3) 
Find the minimum price and shop for each product. 
result = spark.sql("""SELECT m.product, p.shop, m.min_price FROM  (SELECT product, min(price) AS min_price FROM products GROUP BY product) m JOIN products p ON m.product = p.product AND m.min_price = p.price ORDER BY m.product""")
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 71 
OUTLINE 
Computing services 
1. First generation batch processing: Map-reduce 2. Second generation batch processing: Spark 3. Stream processing
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 83 
BIG DATA / BATCH PROCESSING 
All data known at the time of processing 
Goal: Execute computation over data and produce result 
Problem: what if new data arrives continuously, and new results should be  computed continuously? 
Source data [image: ]
Batch Processing  System  [image: ][image: ]
(e.g. Hadoop,  Spark) 
Results data[image: ]
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 84 
EXAMPLES OF BIG STREAMING DATA 
[image: ][image: ]
Producing information on 
traffic based on information 
collected from users’ 
mobile phones
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 85 
STREAMING PROCESSING: REQUIREMENTS 
Need to process data as it arrive (or at most with a very  small delay) 
Need to be able to process data from multiple sources Need to tolerate faults
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 86 
TWO PROCESSING MODELS (1) 
Continuous 
• Each tuple processed as it arrives 
• Processing system may keep state for executing  window computation and incremental computation 
[image: ]Stream Processing  
System  [image: ][image: ][image: ][image: ][image: ]
(e.g. Storm) 
[image: ]Results
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 87 
TWO PROCESSING MODELS (2) 
Mini-batches 
• Tuples received for each X ms grouped in a mini-batch • Process mini-batches 
• Processing system may keep state for executing window  computation and incremental computation 
Stream Processing  
System  [image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ]
(e.g. Spark  Streaming)
[image: ]Results 
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 88 
WINDOWING 
When doing stream processing, it is often interesting to compute results based on data  from a given interval, but compute results more frequently than the time interval — for  example, process data of last 3 minutes, but produce results every minutes. 
System for stream processing support the definition of sliding time windows. 
E.g. In SparkStreaming, s.window(“3s”) would output results comprising the records in intervals:  [0,3), [1,4), [2,5), … 
[image: ][image: ][image: ][image: ][image: ][image: ][image: ][image: ]
0 1 2 3 4 5 6 7 8 …
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 89 
SYSTEMS FOR STREAM PROCESSING 
Continuous processing 
• Apache Storm 
• Open sourced by Twitter 
• API: proprietary, SQL-like 
• Apache Flink 
• API: proprietary, table-based (similar to DataFrames), SQL-like 
Mini-batch processing 
• Spark streaming 
• API: proprietary, table-based, SQL-like
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 94 
SPARK STREAMING 
NOTE: slides with Spark Streaming intro are just for those  wanting to know a little more on this topic. 
Spark Streaming is an extension of the core Spark API to enable  scalable, high-throughput, fault-tolerant stream processing of live  data streams. 
Matei Zaharia, et. al. Discretized Streams: Fault-Tolerant Streaming  Computation at Scale. In Proc. SOSP’13. 
http://people.csail.mit.edu/matei/papers/2013/sosp_spark_streaming.pdf http://spark.apache.org/streaming/ 
Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA / 95 
95
image71.png




image53.png
K | avkay | kavksy | ki | kiviay

68509

e T e

Gro

Input

Intermediate | KIv klv k2

Output





image51.png
H Map Task | I V™ i
I " [ I
1 [ o I
. [ o \
1 [ [ !
. [ [ i
i I o I
H ereveern por [ rye aeryn O e e T
rrrr— R e N T

St md Goo.
vy | 5w





image58.png




image81.png




image86.png




image46.png




image85.png




image82.png




image44.png




image84.png




image52.png




image49.png




image50.png




image66.png




image61.png




image63.png




image72.png




image74.png




image68.png




image70.png




image78.png




image80.png




image77.png




image9.png




image11.png




image5.png




image7.png




image15.png




image17.png




image13.png




image14.png




image19.png




image20.png




image23.png




image29.png




image31.png




image27.png




image28.png




image34.png




image35.png




image32.png




image33.png




image36.png




image37.png




image38.png




image41.png




image42.png




image39.png




image40.png




image79.png




image47.png




image48.png




image43.png




image45.png




image60.png




image54.png




image59.png




image65.png




image67.png




image62.png




image75.png




image64.png




image73.png




image76.png




image69.png




image3.png




image4.png




image1.png




image2.png




image10.png




image12.png




image57.png
Each computation step is
composed of a map and a
reduce steps.




image6.png




image8.png




image16.png




image18.png




image21.png




image25.png




image26.png




image22.png




image24.png




image30.png




image55.png
A computation is a sequence of
map-reduce computations.




