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OUTLINE

Computing services

1. First generation batch processing: Map-reduce

2. Second generation batch processing: Spark

3. Stream processing
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OUTLINE

Computing services

1. First generation batch processing: Map-reduce
• Programming model
• Execution model

• Handling faults

2. Second generation batch processing: Spark

3. Stream processing
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MAPREDUCE

“A new abstraction that 
allows us to expresses 
simple computations we 
were trying to perform but 
hides the messy details
of parallelization, fault-
tolerance, data-distribution 
and load-balancing in a 
library”
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MAPREDUCE (2)

“A programming model and 
an associated 
implementation for 
processing large datasets.”

“Runs on a large cluster of 
commodity machines …  a 
typical … computation 
processes many terabytes of 
data on thousands of 
machines.”
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EXAMPLE APPLICATION

Consider you have a huge text.
Goal: find out the words that appear more frequently in a text.
Can be transformed into:
Goal 1: Count the number of times each word appears in the 
text.
Goal 2: Order the words by frequency.
Is this a useless example?
Not really… e.g. analyze web logs to find popular URLs, analyze 
social media posts to find trending topics, etc.
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MAPREDUCE: OVERVIEW

Sequentially read a lot of data
Map phase:

• Extract the important information

Group by key: Sort and Shuffle the output of the map 
phase
Reduce phase:

• Aggregate, summarize, filter or transform

Write the result

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 7

A computation is a sequence of 
map-reduce computations.

Each computation step is 
composed of a map and a 

reduce steps.
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MAPREDUCE: EXAMPLE

NOVA SBE
NUNO
NOVA 
LUDWIG SBE
ANGELO
NOVA ADA 
CARCAVELOS
NOVA MSC
SBE

Map: for each word, 
output its count.

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1) 
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1) 
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map: read the input 
and produce 

key,value pairs
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,1)
(NOVA,1) 
(NOVA,1)
(NOVA,1)
(NUNO,1)
(SBE,1)
(SBE,1)
(SBE,1)

Sort & shuffle: 
performed by the 

system
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect 
values with the same 

key and produce 
result

Reduce: count the 
frequency per word.
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WORD COUNT USING MAPREDUCE
map(key, value):  // key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values): // key: a word; value: an iterator over counts

result = 0

for each count v in values:

result += v

emit(key, result)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 9
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MAPREDUCE MODEL

Input: a set of key-value pairs

Programmer specifies two methods:
• Map(k, v) ® <k’, v’>*

• Takes a key-value pair and outputs a set of key-value pairs
• E.g., key is the filename, value is a single line in the file

• Map is called for every (k,v) pair
• Reduce(k’, <v’>*) ® <k’, v’’>*

• All values v’ with same key k’ are reduced together and 
processed in v’ order

• Reduce is called for each unique key k’

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 10
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EXAMPLE APPLICATION

Consider you have a huge text.
Goal: find out the words that appear more frequently in a text.
Can be transformed into:
Goal 1: Count the number of times each word appears in the 
text.
Goal 2: Order the words by frequency.
Is this a useless example?
Not really… e.g. analyze web logs to find popular URLs, analyze 
social media posts to find trending topics, etc.
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GOAL 2: ORDER THE WORDS BY FREQUENCY.

Can we sort the values of the 
reduce before returning 
them?

NO !!!
Each reduce will be 
processed independently (by 
a different machine).
Also bad idea because it 
requires storing potentially 
large amount of data.

(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect 
values with the same 

key and produce 
result (ADA,1)

(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NUNO,1)
(NOVA,4)

(SBE,3)

Reduce: collect 
values with the same 

key and produce 
result
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MAPREDUCE: EXAMPLE

(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)
(SBE,3)

Map: reverse order of 
pair.

Map: read the input 
and produce 

key,value pairs

Sort & shuffle: 
performed by the 

system

Reduce: collect 
values with the same 

key and produce 
result

Reduce: reverse order 
of pair.

(1,ADA)
(1,ANGELO)
(1,CARCAVELOS)
(1,LUDWIG)
(1,MSC)
(4,NOVA)
(1,NUNO)
(3,SBE)

(1,ADA)
(1,ANGELO)
(1,CARCAVELOS)
(1,LUDWIG)
(1,MSC)
(1,NUNO)
(3,SBE)
(4,NOVA)

(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NUNO,1)
(SBE,3)
(NOVA,4)
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WORD COUNT SORT USING MAPREDUCE
map(key, value):  // key: word; value: word count

emit(value, key)

reduce(key, values): // key: word count; value: word

for each v in values:

emit(v, key)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 14
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MAPREDUCE

Programmer responsible for:
• Map function
• Reduce function

MapReduce system responsible for:
• Partitioning the input data
• Scheduling the program’s execution across a set of machines
• Performing the sort by key & shuffle step
• Handling machine failures
• Managing required inter-machine communication

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 15
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OUTLINE

Computing services

1. First generation batch processing: Map-reduce
• Programming model
• Execution model

• Handling faults

2. Second generation batch processing: Spark

3. Stream processing
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MAPREDUCE: LOGICAL EXECUTION…

Map: read the input 
and produce 

key,value pairs

Sort & shuffle: 
performed by the 

system

Reduce: collect 
values with the same 

key and produce 
result
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MAPREDUCE: DISTRIBUTED EXECUTION…

Map: read the input 
and produce 

key,value pairs

Sort & shuffle: 
performed by the 

system

Reduce: collect 
values with the same 

key and produce 
result
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MAPREDUCE: DISTRIBUTED EXECUTION…

Map: read the input 
and produce 

key,value pairs

Sort & shuffle: 
performed by the 

system

Reduce: collect 
values with the same 

key and produce 
result

Each phase is divided in 
multiple tasks. Each task 
is executed independently 

on a different nodes.
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User
Program

Master

(1) fork

worker

(1) fork
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(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

  

output
file 0

    (6) write

worker
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worker

  
(4) local write

  

Map
phase

Intermediate files
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files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

MAPREDUCE ARCHITECTURE

1. Input files stored
in a distributed file 

system, and
divided into splits

3. Master asks
workers to run map
tasks: process splits 

in parallel, and...

3. ...save
intermediate results in 
multiple files by key 

range

4. Master asks workers to 
run reduce tasks: reducers

sort intermediate files before 
processing values for each 

key.

2. Clients send
programs to the

master.
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MAPREDUCE SYSTEM: MASTER NODE
Master node coordinates the 
execution:

Task status: (idle, in-progress, 
completed)
Idle tasks get scheduled as 
workers become available
When a map task completes, it 
sends the master the location and 
sizes of its intermediate files, one 
for each reducer
Master pushes this info to 
reducers

Master pings workers periodically 
to detect failures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 21
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Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3
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MAPREDUCE SYSTEM: WORKER

Worker node performs 
map or reduce tasks, as 
requested by the 
coordinator.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 22
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Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3
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MAPREDUCE SYSTEM: HANDLING FAULTS

Map worker failure
Upon detection of the failure 
of a worker, map tasks 
restarted in different worker

Reduce worker failure
Reduce task is restarted in 
other worker 

Stragglers (slow workers)
If a task is taking too long to 
complete, it is launched in 
other worker. First result used.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 23
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Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3
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MAPREDUCE SYSTEM: HANDLING FAULTS (2)

Master failure
MapReduce task is aborted 
and client is notified

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 24
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Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3
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OUTLINE

Computing services

1. First generation batch processing: Map-reduce
• Programming model
• Execution model

• Handling faults

2. Second generation batch processing: Spark

3. Stream processing
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MAPREDUCE: EXAMPLE

NOVA SBE
NUNO
NOVA 
LUDWIG SBE
ANGELO
NOVA ADA 
CARCAVELOS
NOVA MSC
SBE

Map: for each word, 
output its count.

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1) 
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1) 
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map: read the input 
and produce 

key,value pairs
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,1)
(NOVA,1) 
(NOVA,1)
(NOVA,1)
(NUNO,1)
(SBE,1)
(SBE,1)
(SBE,1)

Sort & shuffle: 
performed by the 

system
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect 
values with the same 

key and produce 
result

Reduce: count the 
frequency per word.
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MAPREDUCE: EXAMPLE

NOVA SBE
NUNO
NOVA 
LUDWIG SBE
ANGELO
NOVA ADA 
CARCAVELOS
NOVA MSC
SBE

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1) 
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1) 
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map: read the input 
and produce 

key,value pairs

Sort & shuffle: 
performed by the 

system
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect 
values with the same 

key and produce 
result
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MAPREDUCE: EXAMPLE

NOVA SBE
NUNO
NOVA 
LUDWIG SBE
ANGELO
NOVA ADA 
CARCAVELOS
NOVA MSC
SBE

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1) 
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1) 
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map: read the input 
and produce 

key,value pairs

Sort & shuffle: 
performed by the 

system
(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce: collect 
values with the same 

key and produce 
result

Mapper 1 sends two tuples 
for NOVA !!

How to improve this?
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IMPROVING MAPREDUCE: COMBINER

Combiner allows to pre-
aggregate values in the 
mapper.

Combine(k, <v>*) ® <k, v’>
All values v with same key k
are combined and processed 
in v order
Combine is called at each 
mapper for each unique key 
k

Combiner function is usually 
the same as the reduce 
function.

NOVA SBE
NUNO
NOVA 
LUDWIG SBE
ANGELO
NOVA ADA 
CARCAVELOS
NOVA MSC
SBE

(NOVA,1)
(SBE,1)
(NUNO,1)
(NOVA,1) 
(LUDWIG,1)
(SBE,1)
(ANGELO,1)
(NOVA,1)
(ADA,1) 
(CARCAVELOS,1)
(NOVA,1)
(MSC,1)
(SBE,1)

Map
Sort & 
shuffle

(ADA,1)
(ANGELO,1)
(CARCAVELOS,1)
(LUDWIG,1)
(MSC,1)
(NOVA,4)
(NUNO,1)

(SBE,3)

Reduce

Co
m
bi
ne

r
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WHY WAS MAP-REDUCE SO POPULAR?

Distributed computation before MapReduce:
• how to divide the workload among multiple machines?
• how to distribute data and program to other machines?
• how to schedule tasks?
• what happens if a task fails while running?
• … and … and ... 

Distributed computation after MapReduce
• how to write Map function?
• how to write Reduce function? 
• systems to efficiently execute map-reduce jobs: Hadoop.
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APACHE HADOOP 2.0
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OUTLINE

Computing services

1. First generation batch processing: Map-reduce

2. Second generation batch processing: Spark

3. Stream processing
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MAPREDUCE: CHAINING PROGRAMS

MapReduce requires complex computations to be split into 
successive MapReduce jobs

These complex programs can experience high latency 
due to several factors, including:
• need to read and write files
• underlying filesystem replication (for writes)
• one job must finish before the next can be started…

Apache Spark tackles these limitations.
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APACHE SPARK

Apache Spark provides in-memory, fault-tolerant 
distributed processing.

Key ideas:
• Spark programs comprise multiple chained data 

transformations, using a high-level functional programming 
model;

• Spark defines a distributed collection data-structure : 
Resilient Distributed Dataset (RDD).



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   35

DATA MODEL AND APIS
RDDs are immutable data

• logically a RDD is an immutable collection of data tuples;
• physically distributed (partitioned) across many nodes;
• upon a failure (or cascade of failures), RDDs can be recreated automatically 

and efficiently from the dependencies.

Spark Dataframes
• DataFrames are distributed collections of data that is grouped into named 

columns.
• DataFrames can be seen as RDDs with a schema that names the fields of the 

underlying tuples.

Spark SQL
• SQL for specifying computations
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SPARKSQL ARCHITECTURE

Programs using SQL/DataFrames are 
translated into Spark programs. 

Programs are optimized to execute 
efficiently.

Based on the techniques used in 
database systems.

Libraries for advanced analytics 
algorithms such as graph 
processing and machine 
learning.

Spark SQL 

Resilient Distributed Datasets 

Spark 

JDBC Console User Programs 
(Java, Scala, Python) 

Catalyst Optimizer 

DataFrame API 

Figure 1: Interfaces to Spark SQL, and interaction with Spark.

3.1 DataFrame API

The main abstraction in Spark SQL’s API is a DataFrame, a dis-
tributed collection of rows with a homogeneous schema. A DataFrame
is equivalent to a table in a relational database, and can also be
manipulated in similar ways to the “native” distributed collections
in Spark (RDDs).1 Unlike RDDs, DataFrames keep track of their
schema and support various relational operations that lead to more
optimized execution.

DataFrames can be constructed from tables in a system cata-
log (based on external data sources) or from existing RDDs of
native Java/Python objects (Section 3.5). Once constructed, they
can be manipulated with various relational operators, such as where
and groupBy, which take expressions in a domain-specific language
(DSL) similar to data frames in R and Python [32, 30]. Each
DataFrame can also be viewed as an RDD of Row objects, allowing
users to call procedural Spark APIs such as map.2

Finally, unlike traditional data frame APIs, Spark DataFrames
are lazy, in that each DataFrame object represents a logical plan to
compute a dataset, but no execution occurs until the user calls a spe-
cial “output operation” such as save. This enables rich optimization
across all operations that were used to build the DataFrame.

To illustrate, the Scala code below defines a DataFrame from a
table in Hive, derives another based on it, and prints a result:

ctx = new HiveContext()
users = ctx.table("users")
young = users.where(users("age") < 21)
println(young.count())

In this code, users and young are DataFrames. The snippet
users("age") < 21 is an expression in the data frame DSL, which
is captured as an abstract syntax tree rather than representing a
Scala function as in the traditional Spark API. Finally, each DataFrame
simply represents a logical plan (i.e., read the users table and filter
for age < 21). When the user calls count, which is an output opera-
tion, Spark SQL builds a physical plan to compute the final result.
This might include optimizations such as only scanning the “age”
column of the data if its storage format is columnar, or even using
an index in the data source to count the matching rows.

We next cover the details of the DataFrame API.

3.2 Data Model

Spark SQL uses a nested data model based on Hive [19] for ta-
bles and DataFrames. It supports all major SQL data types, includ-
ing boolean, integer, double, decimal, string, date, and timestamp,
1We chose the name DataFrame because it is similar to structured data li-
braries in R and Python, and designed our API to resemble those.
2These Row objects are constructed on the fly and do not necessarily rep-
resent the internal storage format of the data, which is typically columnar.

as well as complex (i.e., non-atomic) data types: structs, arrays,
maps and unions. Complex data types can also be nested together
to create more powerful types. Unlike many traditional DBMSes,
Spark SQL provides first-class support for complex data types in
the query language and the API. In addition, Spark SQL also sup-
ports user-defined types, as described in Section 4.4.2.

Using this type system, we have been able to accurately model
data from a variety of sources and formats, including Hive, rela-
tional databases, JSON, and native objects in Java/Scala/Python.

3.3 DataFrame Operations

Users can perform relational operations on DataFrames using a
domain-specific language (DSL) similar to R data frames [32] and
Python Pandas [30]. DataFrames support all common relational
operators, including projection (select), filter (where), join, and
aggregations (groupBy). These operators all take expression ob-
jects in a limited DSL that lets Spark capture the structure of the
expression. For example, the following code computes the number
of female employees in each department.

employees
.join(dept, employees("deptId") === dept("id"))
.where(employees("gender") === "female")
.groupBy(dept("id"), dept("name"))
.agg(count("name"))

Here, employees is a DataFrame, and employees("deptId") is
an expression representing the deptId column. Expression ob-
jects have many operators that return new expressions, including
the usual comparison operators (e.g., === for equality test, > for
greater than) and arithmetic ones (+, -, etc). They also support ag-
gregates, such as count("name"). All of these operators build up an
abstract syntax tree (AST) of the expression, which is then passed
to Catalyst for optimization. This is unlike the native Spark API
that takes functions containing arbitrary Scala/Java/Python code,
which are then opaque to the runtime engine. For a detailed listing
of the API, we refer readers to Spark’s official documentation [6].

Apart from the relational DSL, DataFrames can be registered as
temporary tables in the system catalog and queried using SQL. The
code below shows an example:

users.where(users("age") < 21)
.registerTempTable("young")

ctx.sql("SELECT count(*), avg(age) FROM young")

SQL is sometimes convenient for computing multiple aggregates
concisely, and also allows programs to expose datasets through JD-
BC/ODBC. The DataFrames registered in the catalog are still un-
materialized views, so that optimizations can happen across SQL
and the original DataFrame expressions. However, DataFrames can
also be materialized, as we discuss in Section 3.6.

3.4 DataFrames versus Relational Query Languages

While on the surface, DataFrames provide the same operations as
relational query languages like SQL and Pig [29], we found that
they can be significantly easier for users to work with thanks to
their integration in a full programming language. For example,
users can break up their code into Scala, Java or Python functions
that pass DataFrames between them to build a logical plan, and
will still benefit from optimizations across the whole plan when
they run an output operation. Likewise, developers can use control
structures like if statements and loops to structure their work. One
user said that the DataFrame API is “concise and declarative like
SQL, except I can name intermediate results,” referring to how it is
easier to structure computations and debug intermediate steps.

To simplify programming in DataFrames, we also made API an-
alyze logical plans eagerly (i.e., to identify whether the column
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FIRST EXAMPLE
SparkSession.builder. …
• A SparkSession represents the entry point to submit programs to a Spark cluster. 
• master("local") : defines where the master Spark node is located – local means running on 

local mode, i.e., not connected to a cluster.

from pyspark.sql import SparkSession

spark = SparkSession.builder \
.master("local") \
.appName("Simple test") \
.getOrCreate()

try:
df = spark.read.text("doc.txt")

df.printSchema()
df.show()

finally:
spark.stop()
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FIRST EXAMPLE (2)
spark.stop()
• Shutdown the underlying SparkContext.
• You should stop a SparkContext in the end, as only a single SparkContext may exist – we 

are doing this in a finally clause to guarantee this.

from pyspark.sql import SparkSession

spark = SparkSession.builder \
.master("local") \
.appName("Simple test") \
.getOrCreate()

try:
df = spark.read.text("doc.txt")

df.printSchema()
df.show()

finally:
spark.stop()
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FIRST EXAMPLE: CREATING DATAFRAME FROM TEXT FILE

dataframe = spark.read.text(filename)
• Creates a Dataframe from a text file. The Dataframe includes a single column named 

“value”, and each line is a row of the DataFrame.

from pyspark.sql import SparkSession

spark = SparkSession.builder \
.master("local") \
.appName("Simple test") \
.getOrCreate()

try:
df = spark.read.text("doc.txt")

df.printSchema()
df.show()

finally:
spark.stop()
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CPU + GPU

memory disk
IO, net, …

FIRST EXAMPLE: DISTRIBUTED EXECUTION

NOVA SBE
NUNO
NOVA 
LUDWIG SBE
ANGELO
NOVA ADA 
CARCAVELOS
NOVA MSC
SBE

File “doc.txt” 
df = spark.read.text("doc.txt")

CPU + GPU

memory disk
IO, net, …

CPU + GPU

memory disk
IO, net, …

CPU + GPU

memory disk
IO, net, …

[“CARCAVELOS”]
[“NOVA MSC”]
[“SBE”]

[“LUDWIG SBE”]
[“ANGELO”]
[“NOVA ADA”] 

[“NOVA SBE”]
[“NUNO”]
[“NOVA”] 

df DataFrame is distributed across 3 machines
disk
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FIRST EXAMPLE: CREATING DATAFRAME FROM TEXT FILE

dataframe.show()
• Displays the contents of the DataFrame.
• To show the values of a DataFrame, it is necessary to collect them – remember that a 

DataFrme might be distributed over multiple machines, and your program is running in a 
single machine.

from pyspark.sql import SparkSession

spark = SparkSession.builder \
.master("local") \
.appName("Simple test") \
.getOrCreate()

try:
df = spark.read.text("doc.txt")

df.printSchema()
df.show()

finally:
spark.stop()
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CPU + GPU

memory disk
IO, net, …

FIRST EXAMPLE: DISTRIBUTED EXECUTION
df.show()

CPU + GPU

memory disk
IO, net, …

CPU + GPU

memory disk
IO, net, …

CPU + GPU

memory disk
IO, net, …

[“CARCAVELOS”]
[“NOVA MSC”]
[“SBE”]

[“LUDWIG SBE”]
[“ANGELO”]
[“NOVA ADA”] 

[“NOVA SBE”]
[“NUNO”]
[“NOVA”] 

[“NOVA SBE”,
“NUNO”,
“NOVA”, 
“LUDWIG SBE”,
“ANGELO”,
“NOVA ADA”, 
“CARCAVELOS”,
“NOVA MSC”
“SBE”]

Value of 
variable res

df DataFrame is distributed across 3 machines
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PROGRAMMING MODEL

Spark Dataframe programs describe the flow of 
transformations that creates a DataFrame from another, 
usually in several steps.

Spark programs, encode the dependencies among the 
various DataFrames (and underlying RDDs):

• this is known as the lineage graph

4
3
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SECOND EXAMPLE

Count the number of occurrences of each word and print those that 
appear more than once.

df2 = df.select(explode(split(col("value"), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \

.where(col("count") > 1)
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SECOND EXAMPLE: EXPLODE + SPLIT
split( column, delimeter)
• Divides the value of the column by delimiter, creating an array of values

explode( column).alias(name)
• Flattens the array, making each value an independent row, with name the result column.

df2 = df.select(explode(split(col("value"), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \

.where(col("count") > 1)
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SECOND EXAMPLE: FLATMAP
(“CARCAVELOS”)
(“NOVA MSC”)
(“SBE”)

(“LUDWIG SBE”)
(“ANGELO”)
(“NOVA ADA”) 

(“NOVA SBE”)
(“NUNO”)
(“NOVA”) 

df2 = df.select(explode(split(col("value"), " ")).alias("word"))

(“CARCAVELOS”)
(“NOVA”)
(“MSC”)
(“SBE”)

(“LUDWIG”)
(“SBE”)
(“ANGELO”)
(“NOVA”) 
(“ADA”) 

(“NOVA”)
(“SBE”)
(“NUNO”)
(“NOVA”) 
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SECOND EXAMPLE: GROUPBY

groupBy( column)
• Groups the rows using the value of the given column

df2 = df.select(explode(split(col("value"), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \

.where(col("count") > 1)
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SECOND EXAMPLE: GROUPBY().COUNT()

groupBy( column).count()
• Counts the number of rows in the group, adding a column with name 

“column”.

df2 = df.select(explode(split(col("value"), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \

.where(col("count") > 1)
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SECOND EXAMPLE: REDUCEBYKEY

(“CARCAVELOS”,1)
(“MSC”,1)

(“LUDWIG”,1)
(“ADA”,1)
(“SBE”,4)

(“NOVA”,3)
(“ANGELO”,1)
(“NUNO”,1)

(“CARCAVELOS”)
(“NOVA”)
(“MSC”)
(“SBE”)

(“LUDWIG”)
(“SBE”)
(“ANGELO”)
(“NOVA”) 
(“ADA”) 

(“NOVA”)
(“SBE”)
(“NUNO”)
(“NOVA”) 

result = df2.groupBy(df2.word) \
.count() \
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SECOND EXAMPLE: WHERE

where ( condition)
• Returns a DataFrame with the rows that satisfy the given condition.

df2 = df.select(explode(split(col("value"), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \

.where(col("count") > 1)
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SECOND EXAMPLE: FILTER

.where(col("count") > 1)       

(“SBE”,4)(“NOVA”,3)

(“CARCAVELOS”,1)
(“MSC”,1)

(“LUDWIG”,1)
(“ADA”,1)
(“SBE”,4)

(“NOVA”,3)
(“ANGELO”,1)
(“NUNO”,1)
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PROGRAMMING AND EXECUTION MODEL

DataFrame programs are converted into RDD programs, which
involve:

• Transformations: RDD -> RDD
• Actions: RDD -> Result (directly available to the client 

application)

Execution consists in applying the transformations in all the 
partitions of an RDD in parallel

• Performance is best when a RDD partition result does not 
require data from input RDD partitions located in different nodes 
(i.e., avoids shuffles)
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FROM DATAFRAME TO RDDS
df2 = df.select(explode(split(col("value"), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \

.where(col("count") > 1)

freq = doc.flatMap (lambda s: s.split(' ‘)
.map(lambda s: (s,1))
.reduceByKey (lambda v1,v2: v1+v2)
.filter(lambda t: t[1] > 1)
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FROM DATAFRAME TO RDDS (2)
df2 = df.select(explode(split(col("value"), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \

.where(col("count") > 1)

freq = doc.flatMap (lambda s: s.split(' ‘)
.map(lambda s: (s,1))
.reduceByKey (lambda v1,v2: v1+v2)
.filter(lambda t: t[1] > 1)
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FROM DATAFRAME TO RDDS (2)
df2 = df.select(explode(split(col("value"), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \

.where(col("count") > 1)

freq = doc.flatMap (lambda s: s.split(' ‘)
.map(lambda s: (s,1))
.reduceByKey (lambda v1,v2: v1+v2)
.filter(lambda t: t[1] > 1)
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SECOND EXAMPLE: COMPLETE EXECUTION
freq = doc.flatMap (lambda s: s.split(' ‘)

.map(lambda s: (s,1))

.reduceByKey (lambda v1,v2: v1+v2)

.filter(lambda t: t[1] > 1)

V4

V7

V5

V9V8

V6

V1 V2 V3 flatMap

map

reduceByKey

V10 V11 V12 filter

reduceByKey

flatMap

map

filter
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APACHE SPARK: (SCALA) API EXCERPT

Transformations

map( f : T ) U) : RDD[T] ) RDD[U]
filter( f : T ) Bool) : RDD[T] ) RDD[T]

flatMap( f : T ) Seq[U]) : RDD[T] ) RDD[U]
sample(fraction : Float) : RDD[T] ) RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)] ) RDD[(K, Seq[V])]
reduceByKey( f : (V,V)) V) : RDD[(K, V)] ) RDD[(K, V)]

union() : (RDD[T],RDD[T])) RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])) RDD[(T, U)]

mapValues( f : V ) W) : RDD[(K, V)] ) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)] ) RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)] ) RDD[(K, V)]

Actions

count() : RDD[T] ) Long
collect() : RDD[T] ) Seq[T]

reduce( f : (T,T)) T) : RDD[T] ) T
lookup(k : K) : RDD[(K, V)] ) Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)
.map(parsePoint).persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)
w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20⇥ speedup, as we show in Section 6.1.

3.2.2 PageRank
A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to a/N + (1 � a)Âci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map 

contribs0 

ranks1 

contribs1 

ranks2 

contribs2 

links 
join 

reduce + map 

.  .  . 

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap {
(url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)
}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.
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PROGRAMMING MODEL: DEPENDENCIES

Wide-Dependencies are 
produced when an RDD 
partition depends on 
multiple partitions stored on 
different nodes

groupBy, join
Expensive due to high cost of 
network bandwidth

union 

groupByKey 

join with inputs not 
co-partitioned 

join with inputs 
co-partitioned 

map, filter 

Narrow Dependencies: Wide Dependencies: 

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.
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Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.
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PROGRAMMING MODEL: DEPENDENCIES (2)
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are produced when a RDD 
partition depends on data 
that is co-located (in the 
same node).

Filter (where), map
Fast as executed in the same 
machine.

union 
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join with inputs not 
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join with inputs 
co-partitioned 
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Narrow Dependencies: Wide Dependencies: 

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
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pendency on the corresponding parent.7
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with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
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inherited from the parents or a default hash partitioner).
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We have implemented Spark in about 14,000 lines of
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ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling
Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.
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sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.
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FAULT-TOLERANCE

Sparks deals with node failures 
by recomputing lost 
partitions, using lineage 
information.

Optimized by persisting 
intermediate RDDs.
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FAULT-TOLERANCE

Sparks deals with node failures 
by recomputing lost 
partitions, using lineage 
information.

Optimized by persisting 
intermediate RDDs.
In the example, if V9 is 
persisted, lots of 
recomputation would be 
saved.
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EXERCISES

Consider the information about products, stored in file "shopdata.csv", 
with the following format (where elements are separated by a tab):

```store product price```, where elements are separated by a tab.

6Ave Express LLC 13.3 MacBook Air (Mid 2017, Silver) 892.49
Amazon.com 13.3 MacBook Air (Mid 2017, Silver) 979
Best Buy 13.3 MacBook Air (Mid 2017, Silver) 899.99
bhphotovideo.com 13.3 MacBook Air (Mid 2017, Silver) 799
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LOAD CSV FILE

dataframe = spark.read.csv(filename)
• Creates a Dataframe from a CSV file.
• Option “header” specifies if the first line is the header of the table.
• Option “inferSchema” instructs Spark to infer data type for each column.

df = spark.read.option("header", True) \
.option("inferSchema",True) \
.csv("shopdata.csv")
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REGISTER DATAFRAME AS SQL VIEW
dataframe.createOrReplaceTempView( table_name)
Registers a DataFrame as a SQL view / table. The table is available for 
the SparkSession. 
After registering the table, it is possible to issue SQL statements. 

df = spark.read.option("header", True) \
.option("inferSchema",True) \
.csv("shopdata.csv")

df.createOrReplaceTempView("products")

result = spark.sql("SELECT * FROM products")
result.show()
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EXECUTING SQL OPERATIONS

dataframe = spark.sql( SQL statement)

Execute SQL statement. The result is a DataFrame. 

df = spark.read.option("header", True) \
.option("inferSchema",True) \
.csv("shopdata.csv")

df.createOrReplaceTempView("products")

result = spark.sql("SELECT * FROM products")
result.show()
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EXECUTING SQL OPERATIONS
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EXECUTING SQL OPERATIONS
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SIMPLE STATISTICS (1)

Let’s assume data is registered under view name products.

Find the minimum price for each product.

result = spark.sql("""SELECT product, min(price) AS min_price FROM products 
GROUP BY product""")

result.show()
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SIMPLE STATISTICS (2)

Find the average price for each product.

result = spark.sql("""SELECT product, mean(price) AS avg_price FROM products 
GROUP BY product""")

result.show()
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SIMPLE STATISTICS (3)

Find the minimum price and shop for each product.

result = spark.sql("""SELECT m.product, p.shop, m.min_price FROM 
(SELECT product, min(price) AS min_price FROM products GROUP BY product) m

JOIN products p ON m.product = p.product AND m.min_price = p.price
ORDER BY m.product""")
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OUTLINE

Computing services

1. First generation batch processing: Map-reduce

2. Second generation batch processing: Spark

3. Stream processing
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BIG DATA / BATCH PROCESSING
All data known at the time of processing

Goal: Execute computation over data and produce result

Problem: what if new data arrives continuously, and new results should be 
computed continuously?

Source
data

Batch Processing 
System 

(e.g. Hadoop, 
Spark)

Results
data
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EXAMPLES OF BIG STREAMING DATA

Producing information on
traffic based on information
collected from users’
mobile phones
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STREAMING PROCESSING: REQUIREMENTS

Need to process data as it arrive (or at most with a very 
small delay)

Need to be able to process data from multiple sources

Need to tolerate faults
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TWO PROCESSING MODELS (1)

Continuous
• Each tuple processed as it arrives
• Processing system may keep state for executing 

window computation and incremental computation

Stream Processing 
System 

(e.g. Storm)
Results
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TWO PROCESSING MODELS (2)

Mini-batches
• Tuples received for each X ms grouped in a mini-batch
• Process mini-batches
• Processing system may keep state for executing window 

computation and incremental computation

Results

Stream Processing 
System 

(e.g. Spark 
Streaming)
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WINDOWING
When doing stream processing, it is often interesting to compute results based on data 
from a given interval, but compute results more frequently than the time interval — for 
example, process data of last 3 minutes, but produce results every minutes.

System for stream processing support the definition of sliding time windows.

E.g. In SparkStreaming, s.window(“3s”) would output results comprising the records in intervals: 
[0,3), [1,4), [2,5), …

0 1 2 3 4 5 6 7 8 …
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SYSTEMS FOR STREAM PROCESSING

Continuous processing
• Apache Storm

• Open sourced by Twitter
• API: proprietary, SQL-like

• Apache Flink
• API: proprietary, table-based (similar to DataFrames), SQL-like

Mini-batch processing
• Spark streaming

• API: proprietary, table-based, SQL-like
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SPARK STREAMING

NOTE: slides with Spark Streaming intro are just for those 
wanting to know a little more on this topic.
Spark Streaming is an extension of the core Spark API to enable 
scalable, high-throughput, fault-tolerant stream processing of live 
data streams.

Matei Zaharia, et. al. Discretized Streams: Fault-Tolerant Streaming 
Computation at Scale. In Proc. SOSP’13.
http://people.csail.mit.edu/matei/papers/2013/sosp_spark_streaming.pdf

http://spark.apache.org/streaming/

95
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OUTLINE

Computing services

1. First generation batch processing: Map-reduce

2. Second generation batch processing: Spark

3. Stream processing

Computing services @ Azure
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ANALYTICS @ AZURE



Cloud Computing System 21/22 – Nuno Preguiça – DI/FCT/NOVA  /   128

AZURE HDINSIGHT

Azure HDInsight is a managed open-source analytics 
service.

Azure HDInsight is a cloud distribution of Hadoop 
components.

Open-source frameworks available: Hadoop, Apache 
Spark, Apache Hive, LLAP, Apache Kafka, Apache Storm, 
R, and more.
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AZURE HDINSIGHT CLUSTER

To use HDInsight, a user needs to create a cluster.

A cluster is comprised by a set of machines: head nodes + 
worker nodes.
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SPARK @ HDINSIGHT : ARCHITECTURE
Spark applications run as independent 
sets of processes on a cluster.

The SparkContext in the main program 
connects to a YARN cluster manager, 
which allocate resources across 
applications

Once connected, Spark acquires 
executors on workers nodes in the 
cluster.

Spark sends the application code to the 
executors. Finally, SparkContext sends 
tasks to the executors to run.
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AZURE DATABRICKS
“Azure Databricks is an Apache Spark-
based analytics platform optimized for the 
Microsoft Azure cloud services platform. 
Designed with the founders of Apache 
Spark, Databricks is integrated with Azure to 
provide one-click setup, streamlined 
workflows, and an interactive workspace 
that enables collaboration between data 
scientists, data engineers, and business 
analysts.”
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AZURE COGNITIVE SEARCH
Azure Cognitive Search is a search-as-a-service cloud solution.

• Text, Images, etc.

• Image recognition, OCR, etc.

Applications invoke data ingestion (indexing) to create and load an index. Optionally, it 
is possible to add cognitive skills to apply AI processes during indexing.
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TO KNOW MORE
J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing on Large 
Clusters, OSDI’04.

M. Zaharia, et. al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction 
for In-Memory Cluster Computing. NSDI’12.

M. Zaharia, et. al. Discretized Streams: Fault-Tolerant Streaming Computation 
at Scale. SOSP’13.

https://spark.apache.org/

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-overview

https://spark.apache.org/
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-overview
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