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OUTLINE

Computing services
1. First generation batch processing: Map-reduce
2. Second generation batch processing: Spark

3. Stream processing
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MAPREDUCE

“A new abstraction that
allows us to expresses
simple computations we
were trying to perform but
hides the messy details
of parallelization, fault-
tolerance, data-distribution
and load-balancing in a
library”

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine

ication. This allows p without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of hines. Pra

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
ified map and reduce operations allows us to paral-

find the system easy to use: hundreds of MapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure
of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

To appear in OSDI 2004

lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.

Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance

of our impl ion for a variety of
tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis
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MAPREDUCE (2)

“A programming model and
an associated
implementation for
processing large datasets.”

“Runs on a large cluster of
commodity machines ... a

pical ... computation
processes many terabytes of
data on thousands of
machines.”

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine

icati This allows p without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers
find the system easy to use: hundreds of MapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure
of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

To appear in OSDI 2004

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-
lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.

Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance
measurements of our implementation for a variety of
tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis
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EXAMPLE APPLICATION

Consider you have a huge text.
Goal: find out the words that appear more frequently in a text.
Can be transformed into:

Goal 1: Count the number of times each word appears in the
text.

Goal 2: Order the words by frequency.
Is this a useless example?

Not really... e.g. analyze web logs to find popular URLs, analyze
social media posts to find trending topics, etc.
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MAPREDUCE: OVERVIEW

Sequentially read a lot of data

Map phase:
Extract the important information

Each computation step is
composed of a map and a
reduce steps.

Group by key: Sort and Shuffle the output of the map

phase

Reduce phase:

Aggregate, summarize, filter or transform

Write the result

A computation is a sequence of
map-reduce computations.
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MAPREDUCE:

NOVA SBE
NUNO
NOVA

Map: read the input

and produce
key,value pairs

(NOVA, 1)
(SBE,1)

(NUNO,1)
(NOVA, 1)

LUDWIG SBE
ANGELO
NOVA ADA

CARCAVELOS
NOVA MSC
SBE

(LUDWIG, 1)
(SBE,1)
(ANGELO, 1)
(NOVA, 1)
(ADA,1)

(CARCAVELOS, 1)
(NOVA, 1)
(MSC,1)

(SBE,1)

Sort & shuffle:

performed by the
SSE

(ADA,1)
(ANGELO, 1)
(CARCAVELOS, 1)
(LUDWIG, 1)
(MSC,1)

(NOVA, 1)
(NOVA, 1)
(NOVA, 1)
(NOVA, 1)
(NUNO,1)

(SBE,1)
(SBE,1)
(SBE,1)

Map: for each word,
output its count.

Reduce: collect
values with the same
key and produce

(ADA,1)
(ANGELO, 1)
(CARCAVELOS, 1)
(LUDWIG, 1)
(MSC,1)

(NOVA, 4)
(NUNO,1)

(SBE,3)

Reduce: count the
frequency per word.

Cloud Computing System 21/22 — Nuno Prequica — DI/FCT/NOVA / 8




WORD COUNT USING MAPREDUCE

map(key, value): // key: document name; value: text of the document
for each word w in value:

emit(w, 1)

reduce(key, values): // key: a word; value: an iterator over counts
result = 0
for each count v in values:
result += v

emit(Ckey, result)
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MAPREDUCE MODEL

Input: a set of key-value pairs

Programmer specifies two methods:

Map(k, v) — <k’, v'>*

Takes a key-value pair and outputs a set of key-value pairs
E.g., key is the filename, value is a single line in the file

Map is called for every (k,v) pair

Reduce(k’, <v’>*) — <k’, v’>*
All values v’with same key k”are reduced together and
processed in v’order

Reduce is called for each unique key &’
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EXAMPLE APPLICATION

Consider you have a huge text.
Goal: find out the words that appear more frequently in a text.
Can be transformed into:

Goal 1: Count the number of times each word appears in the
text.

Goal 2: Order the words by frequency.
Is this a useless example?

Not really... e.g. analyze web logs to find popular URLs, analyze
social media posts to find trending topics, etc.
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GOAL 2: ORDER THE WORDS BY FREQUENCY.

. values with the same values with the same
reduce before retu rnmg key and produce key and produce
them? (ADA,1) (ADA,1)

(ANGELO, 1) (ANGELO, 1)
NO I11 (CARCAVELOS, 1) (CARCAVELOS, 1)
(LUDWIG, 1) (LUDWIG, 1)
I (MSC,1) (MSC,1)
Each reduce will be NOvA NGRS D
processed independently (by | (nuno,1) (NOVA 4)

a different machine).

Also bad idea because it
requires storing potentially
large amount of data.

(SBE,3) (SBE,3)
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MAPREDUCE: EXAMPLE

Map: read the input

Sort & shuffle:
performed by the

Reduce: collect

values with the same

and produce
key,value pairs

SSE

key and p_roduce

(ADA,1) (1,ADA) (1,ADA) (ADA,1)
(ANGELO, 1) (1,ANGELO) (1,ANGELO) (ANGELO,1)
(CARCAVELOS, 1) (1,CARCAVELOS) | | (1,CARCAVELOS) (CARCAVELOS,1)
(LUDWIG, 1) (1,LUDWIG) (1,LUDWIG) (LUDWIG, 1)
(MSC,1) (1,MSC) (1,MSC) (MSC,1)

(NOVA 4) (4,NOVA) (1,NUNO) (NUNO,1)
(NUNO,1) (1,NUNO) (3,SBE) (SBE, 3)

(SBE,3) (3,SBE) (4,NOVA) (NOVA,4)

Map: reverse order of

pair.

Reduce: reverse order

of pair.
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WORD COUNT SORT USING MAPREDUCE

map(key, value): // key: word; value: word count

emit(value, key)
reduce(key, values): // key: word count; value: word

for each v in values:

emit(v, key)
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MAPREDUCE

Programmer responsible for:

Map function
Reduce function

MapReduce system responsible for:

Partitioning the input data

Scheduling the program’s execution across a set of machines
Performing the sort by key & shuffle step

Handling machine failures

Managing required inter-machine communication
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OUTLINE

Computing services

1. First generation batch processing: Map-reduce

Programming model

Execution model
Handling faults

2. Second generation batch processing: Spark

3. Stream processing
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MAPREDUCE: LOGICAL EXECUTION...

Input

v

I
e e @ @@? @? @ »

Map: read the input

Intermediate | kl:v kl:v k2:v k3:v kd:v k4:v k5:v kd:v | kl:vk3:v

F

Sort & shuffle:
performed by the [[Gm“*’ by Keyj]
system

Grouped [kl:v,v,v,v|k2:v |k3:v,v | k4:v,v,v [k5:v

Reduce: collect

values with the same
key and produce

O
O
o
O

@

Output
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MAPREDUCE: DISTRIBUTED EXECUTION...

Map: read the input

and produce
key,value pairs

Sort & shuffle:

performed by the
system

Reduce: collect
values with the same
key and produce

Map Task 1

kl:v kl:v k2

Partitioning Function

EXT

— e - - - — o - o ]

Sort and Group
k2:v | kd:v vy | k5:v

568

Reduce Task 1

Map Task 2

© ¢

k3:v kd:v | kd:v kS:v

Partitioning Function

b e e e e e e e e -

- J_ A
Sort and Group
klvyvyvy I k3:v,v

59

Reduce Task 2
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MAPREDUCE: DISTRIBUTED EXECUTION...

Map: read the input

and produce
key,value pairs

Sort & shuffle:

performed by the
system

Reduce: collect
values with the same
key and produce

Map Task |

Map Task 2

kl:vkl:wvk2:wv

k3:v kd:v | kd:v kS:v

Partitioning Functlon

X1

e

Partitioning Function

Sort and Group

k2:v I kd:v vy | k5:v

——————— -
Map Task 3 I

|

|

|

|

|

|

k4 v kl:v k3w |
P'lmtlonmg Function I
-4

Sort and Group
klvyvvy I k3:v .y

§o¢

Reduce Task 1

Each phase is divided in
multiple tasks. Each task
is executed independently

on a different nodes.

E@@i
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MAPREDUCE ARCHITECTU [Easiiaheiy

programs to the
ENGE

3. Master asks User
workers to run map Program
tasks: process splits

. in parallel, and... JASEEGLS e 4. Master asks workers to

1. Input files stored : run reduce tasks: reducers
in a distributed file PN sort intermediate files before

system, and a;jigl" IV processing values for each

divided into splits

map

Spllt 0 (6) write output
split 1 (5) remote read worker file O
split 2 | (3) read (4) local write

worker
. output
i file 1

worker

split 4

00 ¢

Input Map 3 save Reduce Output
files phase B phase files

intermediate results in
multiple files by key

Cloud Computing System 21/22 — Nuno Prequica — DI/FCT/NOVA / 20




MAPREDUCE SYSTEM: MASTER NODE

Master node coordinates the
execution:

Task status: (idle, in-progress,
completed)

Idle tasks get scheduled as
workers become available

When a map task completes, it

sends the master the location and
sizes of its intermediate files, one -
for each reducer
Master pushes this info to —

reducers

Input Map Intermediate files Reduce Output
1 S

Master ping_s workers periodically o ol ik
to detect failures
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MAPREDUCE SYSTEM: WORKER

Worker node performs
map or reduce tasks, as

Program

I‘equeSted by the “i_ff’,‘.k-“ e ”-<1.>_ff>.rtk»
coordinator.

ssign d
o map I

split O

- output
Spllt 1 file O
Split 2 (4) local write

q output
split 3 file 1
split 4
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files
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MAPREDUCE SYSTEM: HANDLING FAULTS

Map worker failure

Upon detection of the failure
of a worker, map tasks
restarted in different worker

Reduce worker failure

Reduce task is restarted in
other worker

Stragglers (slow workers)

If a task is taking too long to
complete, it is launched in

other worker. First result used.

split O

output

Split 1 file O

Split 9] 3) read

output

split 3 file 1

split 4
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MAPREDUCE SYSTEM: HANDLING FAULTS (2)

Master failure

MapReduce task is aborted
and client is notified

N .4 ?2)
N ssign ..
N _assign reduce . "
- .

split O
- output
Spllt 1 file O
split 2
q output
split 3 file 1
split 4
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files
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OUTLINE

Computing services

1. First generation batch processing: Map-reduce

Programming model

Execution model
Handling faults

2. Second generation batch processing: Spark

3. Stream processing
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MAPREDUCE:

NOVA SBE
NUNO
NOVA

Map: read the input

and produce
key,value pairs

(NOVA, 1)
(SBE,1)

(NUNO,1)
(NOVA, 1)

LUDWIG SBE
ANGELO
NOVA ADA

CARCAVELOS
NOVA MSC
SBE

(LUDWIG, 1)
(SBE,1)
(ANGELO, 1)
(NOVA,1)
(ADA,1)

(CARCAVELOS, 1)
(NOVA, 1)
(MSC,1)

(SBE,1)

Sort & shuffle:

performed by the
SSE

(ADA,1)
(ANGELO, 1)
(CARCAVELOS, 1)
(LUDWIG, 1)
(MSC,1)

(NOVA, 1)
(NOVA, 1)
(NOVA, 1)
(NOVA, 1)
(NUNO,1)

(SBE,1)
(SBE,1)
(SBE,1)

Map: for each word,
output its count.

Reduce: collect
values with the same
key and produce

(ADA,1)
(ANGELO, 1)
(CARCAVELOS, 1)
(LUDWIG, 1)
(MSC,1)

(NOVA, 4)
(NUNO,1)

(SBE,3)

Reduce: count the
frequency per word.
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MAPREDUCE:

Map: read the input Sort & shuffle: Reduce: collect
and produce performed by the values with the same
key,value pairs SSE key and produce
(NOVA, 1) (ADA,1)
NOVA SBE (SBE,1) (ANGELO, 1)
NUNO (NUNO, 1) (CARCAVELOS, 1)
(NOVA,1) (LUDWIG, 1)
NOVA (LUDWIG, 1) (MSC,1)
LUDWIG SBE (SBE, 1) (NOVA, 4)
ANGELO » (ANGELO, 1) (NUNO, 1)
NOVA ADA ENOVAI)D
ADA, 1
CARCAVELOS (CARCAVELOS, 1)
NOVA MSC (NOVA,1) (SBE,3)
SBE , (MSC,1)
(SBE, 1)
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MAPREDUCE:

Map: read the input Sort & shuffle: Reduce: collect
and produce performed by the values with the same
key,value pairs SSE key and produce
(NOVA,1) (ADA,1)
NOVA SBE (SBE,1) (ANGELO, 1)
NUNO (NUNO,1) (CARCAVELOS, 1)
(NOVA, 1) (LUDWIG, 1)
NOVA (LUDWIG, 1) (MSC,1)
LUDWIG SBE (SBE, 1) (NOVA, 4)
ANGELO » (ANGELO, 1) (NUNO,1)
NOVA ADA ENOVAI)D
ADA, 1
CARCAVELOS (CARCAVELOS, 1)
NOVA MSC (NOVA,1) (SBE,3)
SBE , (MSC,1)
(SBE, 1)

Mapper 1 sends two tuples
for NOVA !
How to improve this?
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IMPROVING MAPREDUCE: COMBINER

Combiner allows to pre-
aggregate values in the

mapper.
Combine(k, <v>*) - <k, v'>
All values v with same key & now ot |2y o (ancelo.1
are combined and processed e nows T >< i
in vorder LOWGSBE |, |(wen) [ (Wova
Combine is called at each rvillng wons M e
?apper for each unique key Eg;iﬁvfsios g E))’ S >< -
(SBE,1)

Combiner function is usually
the same as the reduce
function.
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WHY WAS MAP-REDUCE SO POPULAR?

Distributed computation before MapReduce:
how to divide the workload among multiple machines?
how to distribute data and program to other machines?
how to schedule tasks?
what happens if a task fails while running?
...and ... and ...

Distributed computation after MapReduce
how to write Map function?
how to write Reduce function?
systems to efficiently execute map-reduce jobs: Hadoop.
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APACHE HADOOP 2.0

Multi Purpose
(batch + streaming, etc.)

HADOOP 2.0

YARN
(cluster resource management)

HDFS 2
(redundant, reliable storage, highly-available)
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OUTLINE

Computing services
1. First generation batch processing: Map-reduce
2. Second generation batch processing: Spark

3. Stream processing
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MAPREDUCE: CHAINING PROGRAMS

MapReduce requires complex computations to be split into
successive MapReduce jobs

These complex programs can experience high latency
due to several factors, including:

need to read and write files
underlying filesystem replication (for writes)
one job must finish before the next can be started...

Apache Spark tackles these limitations.
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APACHE SPARK

Apache Spark provides in-memory, fault-tolerant
distributed processing.

Key ideas:

Spark programs comprise multiple chained data

transformations, using a high-level functional programming
model;

Spark defines a distributed collection data-structure :
Resilient Distributed Dataset (RDD).

Cloud Computing System 21/22 — Nuno Prequica — DI/FCT/NOVA / 34



DATA MODEL AND APIS

RDDs are immutable data
logically a RDD is an immutable collection of data tuples;
physically distributed (partitioned) across many nodes;

upon a failure (or cascade of failures), RDDs can be recreated automatically
and efficiently from the dependencies.

Spark Dataframes

DataFrames are distributed collections of data that is grouped into named
columns.

DataFrames can be seen as RDDs with a schema that names the fields of the
underlying tuples.

Spark SQL
SQL for specifying computations
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SPARKSQL ARCHITECTURE

Programs using SQL/DataFrames are
translated into Spark programs.

Programs are optimized to execute JDBC | | Console User Programs
. . (Java, Scala, Python)
efficiently.
. . v v v
Based on the techniques used in
database systems. Spark SQL DataFrame API
Catalyst Optimizer
Libraries for advanced analytics v v
Spark

algorithms such as graph

Resilient Distributed Datasets

processing and machine

learning.
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FIRST EXAMPLE

SparkSession.builder. ...
A SparkSession represents the entry point to submit programs to a Spark cluster.

master("local") : defines where the master Spark node is located — local means running on
local mode, i.e., not connected to a cluster.

from pyspark.sql import SparkSession

spark = SparkSession.builder \
.master("local™) \
.appName("Simple test") \
.getOrCreate()

try:
df = spark.read.text("doc.txt")

df .printSchema()

df.show(Q)
finally:

spark.stop()
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FIRST EXAMPLE (2)

spark.stop()
Shutdown the underlying SparkContext.

You should stop a SparkContext in the end, as only a single SparkContext may exist — we
are doing this in a finally clause to guarantee this.

from pyspark.sql import SparkSession

spark = SparkSession.builder \
.master("local™) \
.appName("Simple test") \
.getOrCreate()

try:
df = spark.read.text("doc.txt")

df .printSchema()

df.show(Q)
finally:

spark.stop()
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FIRST EXAMPLE: CREATING DATAFRAME FROM TEXT FILE

dataframe = spark.read.text(filename)

Creates a Dataframe from a text file. The Dataframe includes a single column named
“value”, and each line is a row of the DataFrame.

from pyspark.sql import SparkSession

spark = SparkSession.builder \
.master("local™) \
.appName("Simple test") \
.getOrCreate()

try:
df = spark.read.text("doc.txt")

df .printSchema()

df.show(Q)
finally:

spark.stop()
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FIRST EXAMPLE: DISTRIBUTED EXECUTION

File “doc.txt”

NOVA SBE
NUNO

NOVA
LUDWIG SBE
ANGELO
NOVA ADA
CARCAVELOS
NOVA MSC
SBE

disk

[“NOVA SBE”]
[“NUNO”]
[NNOVAH]

10, net, ...

GPU |

df = spark.read.text("doc.txt") fo,

CPU + GPU

ﬁmory

o net, ...

[“LUDWIG SBE”"]

[“ANGELO”]
[“NOVA ADA”]

CPU + GPU

memory

10,1 |, ..

L

[“CARCAVELOS”]
[“NOVA MSC”]
[ IlS B E” ]

CPU + GPU -

memory disk
IOl/Q_et,

df DataFrame is distributed across 3 machines
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FIRST EXAMPLE: CREATING DATAFRAME FROM TEXT FILE

dataframe.show()
- Displays the contents of the DataFrame.

To show the values of a DataFrame, it is necessary to collect them — remember that a
DataFrme might be distributed over multiple machines, and your program is running in a

single machine.

from pyspark.sql import SparkSession

spark = SparkSession.builder \
.master("local™) \
.appName("Simple test") \
.getOrCreate()

try:
df = spark.read.text("doc.txt")

df .printSchema()

df.show()
Ffinally:

spark.stop()
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FIRST EXAMPLE: DISTRIBUTED EXECUTION

—

Value of
variable res
[*"NOVA SBE”,
“NUNO”, AN
“"NOVA”,
“"LUDWIG SBE”, [“NOVA SBE”] [“LUDWIG, |E”] RCAVELOS”]
“ANGELO”, ["NUNO”] [“ANGELOL, [“NOVA MSC”]
“NOVA ADA”, [“NOVA”] [“NOVA ADA”] [“SBE”]
“CARCAVELOS" CPU+GPU | [CPU+GPU | —— EEEr—
“NOVA MSC”
“SBE"]

df DataFrame is distributed across 3 machines
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PROGRAMMING MODEL

Spark Dataframe programs describe the flow of
transformations that creates a DataFrame from another,

usually in several steps.

Spark programs, encode the dependencies among the
various DataFrames (and underlying RDDs):
this is known as the lineage graph
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SECOND EXAMPLE

Count the number of occurrences of each word and print those that
appear more than once.

df2 = df.select(explode(split(col("value™), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \

.where(col("count™) > 1)
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SECOND EXAMPLE: EXPLODE + SPLIT

split( column, delimeter)
Divides the value of the column by delimiter, creating an array of values

explode( column).alias(name)
Flattens the array, making each value an independent row, with name the result column.

df2 = df.select(explode(split(col("value™), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \

.where(col("count™) > 1)
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(“NOVA SBE”)
(“NUNO”)
(IINOVAH)

SECOND EXAMPLE: FLATMAP

(“LUDWIG SBE”)
(“ANGELO”)
(“NOVA ADA”)

(“CARCAVELOS”)
(“NOVA MSC”)
(IISBE” )

(“LUDWIG”)
(“SBE”)
(“ANGELO”)
(“NOVA”)
(“ADA”)

(“CARCAVELOS”)
(“NOVA”)
(“MSC”)

(“SBE”)
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SECOND EXAMPLE: GROUPBY

groupBy( column)
Groups the rows using the value of the given column

df2 = df.select(explode(split(col("value™), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \

.where(col("count™) > 1)
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SECOND EXAMPLE: GROUPBY().COUNT()

groupBy( column).count()

Counts the number of rows in the group, adding a column with name
“column”.

df2 = df.select(explode(split(col("value™), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \

.where(col("count™) > 1)
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SECOND EXAMPLE: REDUCEBYKEY

(“NOVA”) (“LUDWIG”) (“CARCAVELQOS”)
(IISBEH) (”SBE”) (HNOVAM)
(“NUNO”) (“ANGELO”) (“MSC”)
(MNOVAH) (”NOVA”) (IISBEH)

(IIADAH)

result = df2.groupBy(dfZ2.word) \

.count() \
(“NOVA”,3) (“LUDWIG”,1) (“CARCAVELOS” 1)
(“ANGELO”,1) (“ADA”,1) (“MSC”,1)
(“NUNO”,1) (“SBE” 4)
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SECOND EXAMPLE: WHERE

where ( condition)
Returns a DataFrame with the rows that satisfy the given condition.

df2 = df.select(explode(split(col("value™), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \

.where(col("count") > 1)
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SECOND EXAMPLE: FILTER

(“NOVA”,3) (“LUDWIG”,1) (“CARCAVELQOS” 1)
(“ANGELO”,1) (“ADA”,1) (“MSC”,1)
(“NUNO”,1) (“SBE”,4)

(“NOVA”,3) (“SBE”,4)
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PROGRAMMING AND EXECUTION MODEL

DataFrame programs are converted into RDD programs, which
involve:
- Transformations: RDD -> RDD

.- Actions: RDD -> Result (directly available to the client
application)

Execution consists in applying the transformations in all the
partitions of an RDD in parallel

- Performance is best when a RDD partition result does not
require data from input RDD partitions located in different nodes
(i.e., avoids shuffles)
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FROM DATAFRAME TO RDDS

df2 = df.select(explode(split(col("value™), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \
.where(col("count™) > 1)

freq = doc.flatMap (lambda s: s.split(' ¢)
.map(lambda s: (s,1))
.reduceByKey (lambda v1,vZ2: vl1+v2)
.filter(lambda t: t[1] > 1)
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FROM DATAFRAME TO RDDS (2)

df2 = df.select(explode(split(col("value™), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \
.where(col("count™) > 1)

freq = doc.flatMap (lambda s: s.split(' ¢)
.map(lambda s: (s,1))
.reduceByKey (lambda v1,vZ2: vl1+v2)
.filter(Lambda t: t[1] > 1)
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FROM DATAFRAME TO RDDS (2)

df2 = df.select(explode(split(col("value™), " ")).alias("word"))
result = df2.groupBy(df2.word) \

.count() \
.where(col("count™) > 1)

freq = doc.flatMap (lambda s: s.split(' ¢)
.map(lambda s: (s,1))
.reduceByKey (lambda v1,vZ2: vl1+v2)
filter(lambda t: t[1] > 1)
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SECOND EXAMPLE: COMPLETE EXECUTION
freq = doc.flatMap (lambda s: s.split(' )

.map(lambda s: (s,1))
.reduceByKey (lambda v1,vZ2: vl1+v2)
.filter(lambda t: t[1] > 1)

;

flatMap

£
VAV
!

ma

Al

reduceByKey

O

filter
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APACHE SPARK: (SCALA) API EXCERPT

)
filter(f : T = Bool)
flatMap(f : T = Seq[U])
sample(fraction : Float)
groupByKey()

reduceByKey(f : (V,V) = V)
union/()
)

)

)

)

1)

1)

RDD[T] = RDD[U]

RDD[T] = RDDI[T]

RDD[T] = RDD[U]

RDDI[T] = RDDIT] (Deterministic sampling)
RDDI(K, V)] = RDD[(K, Seq[V])]

RDDI[(K, V)] = RDDI[(K, V)]

Transformations (RDD[T],RDDI[T]) = RDDIT]
join( (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup( (RDD[(K, V)],RDD[(K, W)]) = RDDI[(K, (Seq[V], Seq[W1]))]
crossProduct( (RDDI[T],RDD[U]) = RDD[(T, U)]
mapValues(f : V=W RDDI[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K RDDI[(K, V)] = RDDI[(K, V)]
partitionBy(p : Partitioner[K : RDDI[(K, V)] = RDD[(K, V)]
count() RDDI[T] = Long
collect() RDDI[T] = Seq[T]
Actions reduce(f : (T, T) =T) RDD[T] =T
lookup(k : K) RDDI(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.
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PROGRAMMING MODEL: DEPENDENCIES

Wide-Dependencies are
produced when an RDD
partition depends on
multiple partitions stored on
different nodes
groupBy, join
Expensive due to high cost of
network bandwidth

groupByKey

join with inputs not
co-partitioned
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PROGRAMMING MODEL: DEPENDENCIES (2)

Narrow-dependencies

are produced when a
partition depends on ¢

RDD
ata

that is co-located (in t

same node).
Filter (where), map

Fast as executed in the same

machine.

ne

2

map, filter

L1

—f@
—i
i
—

(LI(T]

union

CLO)(TT]

join with inputs
co-partitioned
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FAULT-TOLERANCE

Sparks deals with node failures oo }
by recomputing lost flatMap |
partitions, using lineage !
information. map
Optimized by persisting i ——
intermediate RDDs. reduceByKey |
filter |

R R
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FAULT-TOLERANCE

Sparks deals with node failures
by recomputing lost
partitions, using lineage
information.
Optimized by persisting
intermediate RDDs.
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FAULT-TOLERANCE

Sparks deals with node failures
by recomputing lost
partitions, using lineage
information.
Optimized by persisting
intermediate RDDs.
In the example, if Vq is
persisted, lots of

recomputation would be
saved.
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EXERCISES

Consider the information about products, stored in file "shopdata.csv”,
with the following format (where elements are separated by a tab):

" “store product price’ ", where elements are separated by a tab.

6Ave Express LLC 13.3 MacBook Air (Mid 2017, Silver) 892.49
Amazon.com 13.3 MacBook Air (Mid 2017, Silver) 979
Best Buy 13.3 MacBook Air (Mid 2017, Silver) 899.99
bhphotovideo.com 13.3 MacBook Air (Mid 2017, Silver) 799
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LOAD CSV FILE

dataframe = spark.read.csv(filename)
Creates a Dataframe from a CSV file.
Option “header” specifies if the first line is the header of the table.
Option “inferSchema” instructs Spark to infer data type for each column.

= spark.read.option("header", True) \
.option("inferSchema",True) \
.csv("shopdata.csv")
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REGISTER DATAFRAME AS SQL VIEW

dataframe.createOrReplaceTempView( table_name)

Registers a DataFrame as a SQL view / table. The table is available for
the SparkSession.

After registering the table, it is possible to issue SQL statements.

df = spark.read.option("header"”, True) \
.option("inferSchema",True) \
.csv("shopdata.csv")

df .createOrReplaceTempView("products™)

result = spark.sql("SELECT * FROM products™)
result.show()
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EXECUTING SQL OPERATIONS

dataframe = spark.sql( SQL statement)

Execute SQL statement. The result is a DataFrame.

df = spark.read.option("header", True) \
.option("inferSchema",True) \
.csv("shopdata.csv")

df.createOrReplaceTempView("products")

result = spark.sql("SELECT * FROM products™)
result.show()

Cloud Computing System 21/22 — Nuno Prequica — DI/FCT/NOVA / 66



EXECUTING SQL OPERATIONS

dataframe = spark.sql( SQL statement)

Execute SQL statement. The result is a DataFrame.

df = spark.read.option("header", True) \
.option("inferSchema",True) \
.csv("shopdata.csv")

df.createOrReplaceTempView("products")

result = spark.sql("SELECT * FROM products")
result.show()
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EXECUTING SQL OPERATIONS

try:
datafr df = spark.read.option("header", True).option("inferSchema",True).csv("shopdata.csv")
df.createOrReplaceTempView( "products")
Execut{
result = spark.sql("SELECT * FROM products")
result.show()

finally:
spark.stop()

N S I , +
| shop | product| price|

df.crea{ ,_______ " °77 o e e e i

| [AIM USA]|Spartan - 3-Targe...| 310.79|
| [AIM USA]|Spartan - 3-Targe...| 329.36|
result ; | [AIM USA]|Spartan - 3-Targe...| 399.0]|
result.y | [AIM USA]|Spartan - 3-Targe...| 307.62]
| SaveTronix - Walm...|SanDisk - Ultra 3... 1120 |
| 1 SHOP DIRECT|JBL Clip2 Portabl...| 44.99]|
I

1 Stop Electronic...|Hisense - 55 Clas...| 916.4]
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SIMPLE STATISTICS (1)

Let’'s assume data is registered under view name products.

Find the minimum price for each product.

result = spark.sql("""SELECT product, min(price) AS min_price FROM products
GROUP BY product""")

result.show()

Cloud Computing System 21/22 — Nuno Prequica — DI/FCT/NOVA / 69



SIMPLE STATISTICS (2)

Find the average price for each product.

result = spark.sql("""SELECT product, mean(price) AS avg_price FROM products
GROUP BY product""")

result.show()
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SIMPLE STATISTICS (3)

Find the minimum price and shop for each product.

result = spark.sql("""SELECT m.product, p.shop, m.min_price FROM
(SELECT product, min(price) AS min_price FROM products GROUP BY product) m
JOIN products p ON m.product = p.product AND m.min_price = p.price
ORDER BY m.product""")
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OUTLINE

Computing services
1. First generation batch processing: Map-reduce
2. Second generation batch processing: Spark

3. Stream processing
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BIG DATA / BATCH PROCESSING

All data known at the time of processing
Goal: Execute computation over data and produce result

Problem: what if new data arrives continuously, and new results should be
computed continuously?

Source Results

data data
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EXAMPLES OF BIG STREAMING DATA

~x
! “Hop Overlay Cloud Infrastructure
. .

Producing information on
traffic based on information
collected from users’
mobile phones

Cloud Computing System 21/22 — Nuno Prequica — DI/FCT/NOVA / 85



STREAMING PROCESSING: REQUIREMENTS

Need to process data as it arrive (or at most with a very
small delay)
Need to be able to process data from multiple sources

Need to tolerate faults
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TWO PROCESSING MODELS (1)

Continuous

Each tuple processed as it arrives

Processing system may keep state for executing
window computation and incremental computation

Stream Processing
| Sy. m
(e.g. Storm)
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TWO PROCESSING MODELS (2)

Mini-batches

Tuples received for each X ms grouped in a mini-batch
Process mini-batches

Processing system may keep state for executing window
computation and incremental computation

Stream Processing
St~

(e.g. spark
Streaming)
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WINDOWING

When doing stream processing, it is often interesting to compute results based on data
from a given interval, but compute results more frequently than the time interval — for
example, process data of last 3 minutes, but produce results every minutes.

System for stream processing support the definition of sliding time windows.

E.g. In SparkStreaming, s.window(“3s”) would output results comprising the records in intervals:

[0,3), [1,4), [2,5), ...

5 6 7 8
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SYSTEMS FOR STREAM PROCESSING

Continuous processing

Apache Storm
Open sourced by Twitter
API: proprietary, SQL-like
Apache Flink
API: proprietary, table-based (similar to DataFrames), SQL-like

Mini-batch processing

Spark streaming
API: proprietary, table-based, SQL-like
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SPARK STREAMING

NOTE: slides with Spark Streaming intro are just for those
wanting to know a little more on this topic.

Spark Streaming is an extension of the core Spark API to enable
scalable, high-throughput, fault-tolerant stream processing of live
data streams.

Matei Zaharia, et. al. Discretized Streams: Fault-Tolerant Streaming
Computation at Scale. In Proc. SOSP’13.
http://people.csail.mit.edu/matei/papers/2013/sosp_spark_streaming.pdf

http://spark.apache.org/streaming/
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OUTLINE

Computing services

1. First generation batch processing: Map-reduce
2. Second generation batch processing: Spark

3. Stream processing

Computing services @ Azure
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ANALYTICS @ AZURE

IF YOU WANT...

Limitless analytics service with unmatched time to insight (formerly SQL Data Warehouse)

A fully managed, fast, easy and collaborative Apache® Spark™ based analytics platform optimized for Azure
A fully managed cloud Hadoop and Spark service backed by 99.9% SLA for your enterprise

A data integration service to orchestrate and automate data movement and transformation

Open and elastic Al development spanning the cloud and the edge

Real-time data stream processing from millions of loT devices

A fully managed on-demand pay-per-job analytics service with enterprise-grade security, auditing, and support
Enterprise grade analytics engine as a service

A hyper-scale telemetry ingestion service that collects, transforms, and stores millions of events

Fast and highly scalable data exploration service

A simple and safe service for sharing big data with external organizations

USE THIS

Azure Synapse Analytics

Azure Databricks

HDInsight

Data Factory

Machine Learning

Azure Stream Analytics

Data Lake Analytics

Azure Analysis Services

Event Hubs

Azure Data Explorer

Azure Data Share
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AZURE HDINSIGHT
Azure HDInsight is a managed open-source analytics
service.

Azure HDInsight is a cloud distribution of Hadoop
components.

Open-source frameworks available: Hadoop, Apache

Spark, Apache Hive, LLAP, Apache Kafka, Apache Storm,
R, and more.
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AZURE HDINSIGHT CLUSTER

To use HDInsight, a user needs to create a cluster.

A cluster is comprised by a set of machines: head nodes +
worker nodes.
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SPARK @ HDINSIGHT : ARCHITECTURE

Head node

Spark applications run as independent
sets of processes on a cluster.

Driver program
SparkContext

1

The SparkContext in the main program
connects to a YARN cluster manager,
which allocate resources across
applications

Worker node Worker node Worker node

Once connected, Spark acquires

|
executors on workers nodes in the
cluster

Spark sends the application code to the Read
executors. Finally, SparkContext sends
tasks to the executors to run.

Read

Cloud Computing System 21/22 — Nuno Prequica — DI/FCT/NOVA / 130



AZURE DATABRICKS

“Azure Databricks is an Apache Spark-
based analytics platform optimized for the
Microsoft Azure cloud services platform.
Designed with the founders of Apache
Spark, Databricks is integrated with Azure to
provide one-click setup, streamlined
workflows, and an interactive workspace
that enables collaboration between data
scientists, data engineers, and business
analysts.”

> & Azure Databricks —fieE

Data Science Deep Learning/ML

a &

Data Engineering Databricks Workspace Databricks Workflows Streaming
-ty
l/\l/l Databricks Runtime ‘/4‘)
LnelofiBumncss Databricks I/0 (DBIO) Databricks Serverless DataiWateliousing
r I
7 e
and many others... S‘p"‘o’”r Power BI

i)

and many others...

Databricks Enterprise Security (DBES)

Azure Blob Azure Data Azure SQL Data Apache Hadoop
Storage Lake Store Warehouse Kafka Storage

B N 2 @

kafka
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AZURE COGNITIVE SEARCH

Azure Cognitive Search is a search-as-a-service cloud solution.
- Text, Images, etc.
- Image recognition, OCR, etc.

Applications invoke data ingestion (indexing) to create and load an index. Optionally, it
is possible to add cognitive skills to apply Al processes during indexing.

S

Your data Azure Cognitive Search Requests Your app E
Index and Query engines (REST or .NET) ,
Fq o m < 1. Collects user input
= Q Indexing = Indexes 2. Formulates and sends requests
(in the cloud or > (Standard or ¥ and other = > 3. Handles responses
ekl & el Al-enriched) structures esponses |
ehind a firewa (REST or .NET) a result set

a single document
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TO KNOW MORE

J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters, OSDI'04.

M. Zaharia, et. al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing. NSDI'12.

M. Zaharia, et. al. Discretized Streams: Fault-Tolerant Streaming Computation
at Scale. SOSP’13.
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https://spark.apache.org/
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-overview

ACKNOWLEDGMENTS

Some text and images from Microsoft Azure online
documentation and AWS online documentation.

Cloud Computing System 21/22 — Nuno Prequica — DI/FCT/NOVA / 135



