
©rev, DI-FCT-UNL, 2018/2019 Access Control 1

•  Access Control
•  Operating System Security

DI-FCT-UNL
Segurança de Redes e Sistemas de Computadores

Mestrado Integrado em Engenharia Informática
2º Semestre, 2018/2019

>

©rev, DI-FCT-UNL, 2018/2019 Access Control 2

Outline

•  Access control
–  Principles of Access Control Models
–  Access Control Policy Models: MAC, DAC, RBAC, ABAC

•  Operating System Security
–  OS security background
–  Case study: Linux, Windows
–  Virtual machines

©rev, DI-FCT-UNL, 2018/2019 Access Control 3

Access Control
•  Topics

–  Principles of Access Control Models
–  Access Control Policy Models: MAC, DAC, RBAC, ABAC
–  Mandatory Access Control (MAC)
–  Discretionary Access Control (DAC)

•  Case Study Example: Unix File System
•  setUID programs

–  Role Based Access Model (RBAC)
•  Case Study Example: RBAC in a Banking System

–  Attribute-Based Access Control (ABAC)

©rev, DI-FCT-UNL, 2018/2019 Access Control 4

Outline

•  Access control topics
–  Principles of Access Control Models
–  Access Control Policy Models: MAC, DAC, RBAC, ABAC
–  Mandatory Access Control (MAC)
–  Discretionary Access Control (DAC)

•  Case: Unix File System
–  Role Based Access Model (RBAC)

•  Example: RBAC in a Banking System
–  Attribute-Based Access Control (ABAC)

©rev, DI-FCT-UNL, 2018/2019 Access Control 5

What is Access Control ?
•  “The prevention of unauthorized use of a

resource, including the prevention of use of a
resource in an unauthorized manner“

•  Or (as defined in RFC 4949): “The measures that

implement and assure security services in a
computer system, particularly those that assure
access control service.”

•  A central mechanism of computer security

–  Related to the materialization of the Access-Control
Security Property

–  (Remember the OSI X.800 Framework and Security
Services and Mechanisms Typology)

©rev, DI-FCT-UNL, 2018/2019 Access Control 6

Access Control: Assumptions
•  Assume principals, subjects or users (Principals –

PrincipalIDs, SubjectIDs, UserIDs, …) or groups
(aggregated Principals or Subjects as GroupIDs)
–  Authenticate to system

•  Access control is applied over (supposed)
authenticated subjects or principals

–  Relates to the need of Authentication Services
•  But … authentication and access control are two

different security services (separation of concerns)
use very different mechanisms !!!

•  Implemented by different processes (ex.,
different machines in a Data Center)

©rev, DI-FCT-UNL, 2018/2019 Access Control 7

Access Control: Assumptions
•  Access control services: assignment of access

rights (or permissions) to access certain
resources on system

•  Permission to access a resource is also called
authorization

•  An Access Control Service requires the definition of
Access Control Policies

•  Verification and enforcement made via an Access-
Control Service Reference Monitor

–  Set and verification of access control enforcements (as
access-control policy definitions) providing the related control
guarantees

–  Access-Control Reference Monitor: a trusted process that
verify/monitors/apply the access control enforcements

»  allowing or denying the access
»  for the execution of specific operations (OPi) on

resources (Rj) intended by well-defined (and previously
authenticated) principals (SujectIDs)

©rev, DI-FCT-UNL, 2018/2019 Access Control 8

Access Control Principles

Access Control Policy Definition:
Subjects vs. Objects vs. Access Permissions

Authentication
function

Authentication

Auditing

Figure 4.1 Relationship Among Access Control and Other Security Functions

System resources

Authorization
database

Security administrator

User

Access control

Access
control

function

ACS
Access Control

Service

AS
Authentication

Service

SubjectID

Resources

Access Control Auditing

A
ut

ho
ri

ze
d

O
pe

ra
tio

ns

©rev, DI-FCT-UNL, 2018/2019 Access Control 9

Access Control Elements
•  Subjects (or Principals), Objects and Access

Rights or Permissions

Subject (or
principal)

An entity
capable of
accessing
objects

Ex. of classes:
•  Object

Owner
•  Group
•  World (All)

Object

A resource to
which access is

controlled

Entity used to
contain and/or

receive
information

Access right
(Permission)

Describes the way in
which a subject may

access an object

Operations,
could include:
•  Read
•  Write
•  Execute
•  Delete
•  Create
•  Search E

x:
 C

on
cr

et
iz

at
io

n

Files – Data or Binary Files, DIRs,
Data Records,
KVS entries,
DB Tables, Columns, Lines, …
Devices ,…

©rev, DI-FCT-UNL, 2018/2019 Access Control 10

Design criteria in Access Control Requirements (1)
•  Base Access control design principles:

©rev, DI-FCT-UNL, 2018/2019 Access Control 11

Possible Access Control Drawbacks
•  Important issue: possible limitations of coarse-

grain access control enforcements
–  Devices / Sensors / Data in smartphones, tablets (ex.,

Android Access Control Ecosystem)
•  Two only permissions: ALL or NOTHING

•  What about involved SubjectIDs vs. Users
•  Only one user: USER is also the SYS ADMIN
•  Can do everything ! She/he installs and executes

everything and access to a large number (or all)
resources

•  Access Control Monitoring Level (in a TCB at
Application-level or Middleware Level, out of the
Base OS Foundations or HW)

©rev, DI-FCT-UNL, 2018/2019 Access Control 12

Issues in smartphones/tablets …
•  Problem: Are current smartphones/tablets ready to be used

in BYOD paradigms, running sensitive and no-sensitive apps in
the same execution eco-system ?

•  Different issues involved, but access control is one of the
most prevalent problems

•  Lack of proper TRUSTED EXECUTION ENVIRONMENT and
complete approach of Access Control System Design
Principles

•  Lack of Fine-Grain Access Control
•  No separation of roles: SYSADMIN and USER
•  Too High Level Trust Computing Base Assumptions:

–  Ex. in ANDROID Devices: OS, Device Drivers, Delvik VM,
Application Level Support Libraries

•  A situation where “the user” … can be easily “the adversary” !

©rev, DI-FCT-UNL, 2018/2019 Access Control 13

Relevant Design Principles in Designing
Access Control Services

©rev, DI-FCT-UNL, 2018/2019 Access Control 14

PoLP – Principle of the least privilege
•  Also known as the principle of the minimum privilege or least

minimum authority
–  Requires that in a particular abstraction layer of a computing

environment, every module (interface, endpoint, process,
program, named user) depending on the subject or principal
level) must be able to access only the information, processing
or resources hat are strictly necessary for its legitimate
purpose and nor much than this

–  Default: (the minimum privileges) for a certain level of
principal authentcation

©rev, DI-FCT-UNL, 2018/2019 Access Control 15

Non Escalading Privileges
•  The principle of non-escalading privileges with

the same authentication proofs and subject
security level
–  Escalation of privileges must require the control

and scrutiny of improved authentication level
guarantees associated to the improvement of the
security level of the involved subject

©rev, DI-FCT-UNL, 2018/2019 Access Control 16

Deputy Attacks Avoidance
•  The principle of avoidance of deputy attacks

–  Privileges are applied to specific subjects and cannot be
associated to other subjects without the proper delegation
control

©rev, DI-FCT-UNL, 2018/2019 Access Control 17

Proper Course Grain Control
•  The principle of the proper course grain

granularity
–  Privileges must be scrutinized and controlled at the

proper level of well-defined granularity
•  Fine grain access control … is better

©rev, DI-FCT-UNL, 2018/2019 Access Control 18

Violation of base principles
•  Important issue: limitations of coarse-grain access control

enforcements combined with privilege escalading problems due to
the violation of the discussed principles

•  Consequences:
•  Lots of access control problems
•  Confused Deputy Problem: a computer program that is

innocently fooled by some other party into misusing its
authority.

–  Ex., Use of the Video Camera. Microphone, GPS location, SD card,
etc. … by a App with given authorization as resources that will be
used illicitly by another installed App without authorization for that

»  One of the more prevalent attacks on current ANDROID OS
devices

–  All are examples of the violation/limitation of the PRINCIPLE OF
THE LEAST PRIVILEGE in Access Control System Design
Assumptions !

©rev, DI-FCT-UNL, 2018/2019 Access Control 19

Access control must be established by design

> See also bibliography for more details

•  Fine and coarse specifications
–  Grain of Access Control Enforcements
–  Fine-grained specifications allow access regulated at the level of

individual fields / records in files, etc;
–  Each individual access by a user rather than a sequence of

accesses.
–  System administrators should also be able to choose coarse-grain

specification for classes of resource access
•  Segmentation and delimitation of the operations scope

•  Principle of Least Privilege specifications
–  Relevant to define the default settings for each authorization

level
–  Tends to limit damage that can be caused by an accident, error,

or unauthorized act, as a default-behavior

©rev, DI-FCT-UNL, 2018/2019 Access Control 20

Design criteria in Access Control Requirements

•  Other relevant design criteria for access control
specifications by design

©rev, DI-FCT-UNL, 2018/2019 Access Control 21

Reliable Inputs and Separation of Duties

•  Reliable input
–  Assumes that a user is authentic (previously authenticated);

thus, an authentication mechanism is needed as a front end to an
access control system.

–  Any user inputs to the access control system must also be
reliable (and supposed that are inputs originated by
authenticated correct users)

•  Separation of duty
–  Should divide steps in a system function among different

individuals, so as to keep a single individual from subverting the
process.

©rev, DI-FCT-UNL, 2018/2019 Access Control 22

Default settings: Open vs Closed Access Control Policies

•  Open vs. closed policies (and security vs. usability
tradeoffs)
–  A closed policy only allows accesses that are specifically

(strictly) authorized: better for security
–  An open policy allows all accesses (everything is authorized)

except those expressly prohibited: better for usability

©rev, DI-FCT-UNL, 2018/2019 Access Control 23

Other design issues
•  Policy combinations, consistency and conflict

resolution
–  May apply multiple policies to a given class of resources
–  Need a consistent well-defined procedure for solving conflicts

between non-consistent policies

•  Administrative enforcement policies and cardinality
of targeted subjects
–  To specify who can add, delete, or modify authorization rules,

and also need access control and other control mechanisms to
enforce these administrative policies.

©rev, DI-FCT-UNL, 2018/2019 Access Control 24

Access Control vs. Auditing
•  Auditing is a relevant function related to Access

Control Policy Enforcement and Management
•  Allows for performing posteriori analysis of all

authorized or no-authorized requests and access
activities of subjects in a system

•  All operation requests and activities on resources
must be logged for:
–  Acting as a deterrent
–  Identifying/Detection attempted or actual violations
–  Identifying/Detection of flaws
–  Preventing authorized users from attempted or actual

violations and misusing privileges
–  For other management functions: alarmist-functions,

statistics, security forensics, …

©rev, DI-FCT-UNL, 2018/2019 Access Control 25

Outline

•  Access control topics
–  Principles of Access Control Models
–  Access Control Policy Models: MAC, DAC, RBAC, ABAC
–  Mandatory Access Control (MAC)
–  Discretionary Access Control (DAC)

•  Case: Unix File System
–  Role Based Access Model (RBAC)

•  Example: RBAC in a Banking System
–  Attribute-Based Access Control (ABAC)

©rev, DI-FCT-UNL, 2018/2019 Access Control 26

Base Access Control Policies
•  Role-based access control

(RBAC)
–  Controls access based on the

roles that users have within the
system and on rules stating what
accesses are allowed to users in
given roles

•  Attribute-based access control
(ABAC)
–  Controls access based on attributes

of the user, the resource to be
accessed, and current environmental
conditions

–  Access rights are granted to users
through the use of policies which
evaluate possible combined
attributes (user attributes, resource
attributes and environment
conditions)

•  Discretionary access control
(DAC)
–  Controls access based on the

identity of the requestor and on
access rules (authorizations)
stating what requestors are (or
are not) allowed to do

–  the data owner determines who
can access specific resources.

•  Mandatory access control

(MAC)
–  Controls access based on

comparing security labels with
security clearances

©rev, DI-FCT-UNL, 2018/2019 Access Control 27

Outline

•  Access control topics
–  Principles of Access Control Models
–  Access Control Policy Models: MAC, DAC, RBAC, ABAC
–  Mandatory Access Control (MAC)
–  Discretionary Access Control (DAC)

•  Case: Unix File System
–  Role Based Access Model (RBAC)

•  Example: RBAC in a Banking System
–  Attribute-Based Access Control (ABAC)
–  Complementary issues

©rev, DI-FCT-UNL, 2018/2019 Access Control 28

MAC Policy
•  Access control enforcement under the rigid

control of the system

•  MLS (Multi Level Security) Model: perhaps the
most popular mandatory access control approach:
–  Access fully controlled based on security levels

assigned to objets and subjets
• Objects have fixed security levels
•  Subjects have fixed security levels
• MLS provide “oneway” flow relations in the

lattice of security levels

©rev, DI-FCT-UNL, 2018/2019 Access Control 29

MAC Policy Enforcement
•  MAC Level Enforcement:

–  Example of OS access control policies and
separation of duties:

•  Kernel-Based Mandatory Access Control
–  Only code running in supervised mode can access/manage OS level

system resources
–  Access only possible by code executed beyond the System Calls (Calls

from running Processes, executing with system-level privilege)

–  Could we consider MAC policies as appropriate at user space
level (ex., Permissions in a File-System Service) ?

–  In a MAC policy, users couldn’t have much freedom to
determine who can access to their own files.

©rev, DI-FCT-UNL, 2018/2019 Access Control 30

MAC policy concretizations: OS (1)
•  Refers to a type of access control by which an OS constrains

the ability of a subject or initiator to access or generally
perform some sort of operation on an object or target, directly
controlled by the OS kernel in supervised running model

•  In practice, a subject is usually a process or thread; objects
are constructs such as files, directories, TCP/UDP ports,
shared memory segments, IO devices, etc.

•  Subjects and objects each have a set of security attributes.

•  Operation

–  Whenever a subject attempts to access an object, an
authorization rule directly defined and enforced by the
operating system kernel examines these security attributes
and decides whether the access can take place.

–  Any operation by any subject on any object is tested against
the set of authorization rules (aka OS policy) to determine
if the operation is allowed

©rev, DI-FCT-UNL, 2018/2019 Access Control 31

MAC policy concretizations: DBMS (2)
•  A DBMS (Data Base Management System) in its

access control service, can apply mandatory access
control;

•  Implemented by the DBMS runtime support
environment

•  In this case, the objects are tables, views,
procedures, etc. with certain operations only
accessible by pre-defined DB administrator subjects

•  But, what if we want to support users in defining
access-control delegation policies on “owned” tables,
attributes, etc …
–  Lack of flexibility for other users accessing the DB

©rev, DI-FCT-UNL, 2018/2019 Access Control 32

Another MAC based model approach
•  Use of security labels (corresponding to

classifications of security levels) reflecting the
sensitivity of information contained in an object
–  Examples:
TOP SECRET (TS), SECRET (S), CONFIDENTIAL (C),
UNCLASSIFIES (U) forming an ordered SET: TS > S > C > U
Each level is set to dominate itself and all the other levels
below in the SET HIERARCHY

•  Use of clearances: security levels associated to

subjects, reflecting:
•  The user’s trustworthiness not to disclose sensitive

information to other users that are not cleared to
access it

©rev, DI-FCT-UNL, 2018/2019 Access Control 33

Outline

•  Access control topics
–  Principles of Access Control Models
–  Access Control Policy Models: MAC, DAC, RBAC, ABAC
–  Mandatory Access Control (MAC)
–  Discretionary Access Control (DAC)

•  Case: Unix File System
•  setUID programs

–  Role Based Access Model (RBAC)
•  Example: RBAC in a Banking System

–  Attribute-Based Access Control (ABAC)

©rev, DI-FCT-UNL, 2018/2019 Access Control 34

DAC policy
•  DAC level Enforcement:

–  The data owner determines who can access specific
resources.

–  For example, a system administrator may create a
hierarchy of files to be accessed based on certain default
permissions for certain users, groups of users and allowed
operations. Then owners can rewrite these permissions

–  We say that this access control model is under the
discretion of the user

•  More flexible and popular than the MAC policy enforcement model
•  But DAC doesn't’t address real assurance on the flow if information in

the system because DAC models don’t impose any restriction on the
usage of information/resources if the user has the right privilege

–  Opens the door for possible easy bypass practices under the user
freedom, for example if a user can read an object she/he can
pass (copy) it to another user not having the read privilege overt
the same object

©rev, DI-FCT-UNL, 2018/2019 Access Control 35

DAC policy and Unix File System
•  Example of UNIX File system permissions:

–  Read, Write, Execute Permissions
–  Principals: Owner Principals (UserIDs), GroupIDs and All

(Others)

–  DAC definitions: defined and managed by the resource

owners and owners can pass the owning to other principals

–  Permissions scrutiny by a Kernel-Based Access Control

Monitor (running as Module in supervised mode), deciding on
each operation that a process (running with a correspondent
efective UID - eUID) intends to apply on a resource (files,
directories, device-drivers, sockets, message-queues, etc)

•  Remember: in UNIX everything (all the resources) are
accessed as “file-system descriptors containing the
access control attributes)

©rev, DI-FCT-UNL, 2018/2019 Access Control 36

DAC concretization
•  By different schemes in which an owner entity may

enable another entity to access some resource to
perform some operation

•  For example, can be provided using an access
control matrix

–  One dimension consists of identified subjects that may
attempt data access to the resources

–  The other dimension lists the objects that may be
accessed

•  Each entry in the matrix indicates the access
rights of a particular subject for a particular
object

©rev, DI-FCT-UNL, 2018/2019 Access Control 37

DAC and Access Control Matrix

Own
Read
Write

Read
Write

Own
Read
Write

Own
R
W

AFile 1

•

Read

Read

Write Read

Own
Read
Write

Own
Read
Write

User A

User BSUBJECTS

OBJECTS

User C

File 2File 1

(a) Access matrix

Figure 4.2 Example of Access Control Structures

(b) Access control lists for files of part (a)

(c) Capability lists for files of part (a)

File 3 File 4

R

B

•

R
W

C

File 1User C

•

R

File 2

•

R
W

File 4

File 1User B

•

R W

File 2

• •

File 3 File 4
Own

R
W

BFile 2

•

R

C

Own
R
W

Own
R
W

Own
R
W

Own
R
W

File 1User A

•

File 3

Own
R
W

AFile 3

•

W

B

Own
R
W

B

R

File 4

•

C

R

Access Control Matrix represents a conceptual model
specifying rights (authorizations or permissions) that each
subject possesses to access (to operate) each object
•  Clearly separates Authentication from Access Control
•  The defined access control enforcements are then ensured

by special processes: reference monitors
•  See the Access Control Matrix as a “private” data-

structure only managed by the Reference Monitor

©rev, DI-FCT-UNL, 2018/2019 Access Control 38

Access control matrix
•  Example access rights/modes:

–  For files: read, write, execute, own
•  Typically implemented by the OS File System

functions
–  For Bank accounts: inquiry, debit, credit,

profile, …
•  Typically implemented at application-level

•  Typically the access control matrix is sparsed and
hence not implemented as a real matrix, but as:
–  Access control lists
–  Capabilities

©rev, DI-FCT-UNL, 2018/2019 Access Control 39

Access control lists
•  Each object associated to an ACL, corresponding to store

the access matrix by column
•  Looking at an object’s ACL, it easy to determine the modes

of access (corresponding to allowed operations and
permissions for the defined subjects)

•  Easy to revoke permissions

•  Example: in UNIX we can create ACLs on files or folders
(directories) in the file system
–  System calls: getfacl(), setfacl()

•  Problem: for scalability purposes will be difficult to find all
accesses (permissions) established for a certain subject

•  To reduce list lengths, we can use groups (as a subject
entity) instead of using individual subjects and then we can
apply permissions to subject-groups

©rev, DI-FCT-UNL, 2018/2019 Access Control 40

Capabilities
•  The capability model is a dual approach to ACLs

–  Each subject is associated with a list (the
capability list)

–  The capability list of a subject has the list of
objects for which the subject has some kind of
permission access

•  Advantage: easy to find permissions for the given
subjects or to revoke permissions for subjects

•  Drawback: difficult to find all subjects that have
permissions for a given object

=> Typical Operating System Strategies are based
in ACLs

©rev, DI-FCT-UNL, 2018/2019 Access Control 41

ACLs vs Capability Lists

Own
Read
Write

Read
Write

Own
Read
Write

Own
R
W

AFile 1

•

Read

Read

Write Read

Own
Read
Write

Own
Read
Write

User A

User BSUBJECTS

OBJECTS

User C

File 2File 1

(a) Access matrix

Figure 4.2 Example of Access Control Structures

(b) Access control lists for files of part (a)

(c) Capability lists for files of part (a)

File 3 File 4

R

B

•

R
W

C

File 1User C

•

R

File 2

•

R
W

File 4

File 1User B

•

R W

File 2

• •

File 3 File 4
Own

R
W

BFile 2

•

R

C

Own
R
W

Own
R
W

Own
R
W

Own
R
W

File 1User A

•

File 3

Own
R
W

AFile 3

•

W

B

Own
R
W

B

R

File 4

•

C

R

Own
Read
Write

Read
Write

Own
Read
Write

Own
R
W

AFile 1

•

Read

Read

Write Read

Own
Read
Write

Own
Read
Write

User A

User BSUBJECTS

OBJECTS

User C

File 2File 1

(a) Access matrix

Figure 4.2 Example of Access Control Structures

(b) Access control lists for files of part (a)

(c) Capability lists for files of part (a)

File 3 File 4

R

B

•

R
W

C

File 1User C

•

R

File 2

•

R
W

File 4

File 1User B

•

R W

File 2

• •

File 3 File 4
Own

R
W

BFile 2

•

R

C

Own
R
W

Own
R
W

Own
R
W

Own
R
W

File 1User A

•

File 3

Own
R
W

AFile 3

•

W

B

Own
R
W

B

R

File 4

•

C

R

Access Control Lists Capability Lists

Example:
Object: Files
Subjects: Users

©rev, DI-FCT-UNL, 2018/2019 Access Control 42

Protection Domains
•  A protection domain is a set of objects with

associated access rights
•  In access matrix view, each row defines a protection

domain
–  Not necessarily just a user
–  May be a limited subset of user’s rights
–  Applied to a more restricted process

•  The association between a process and a domain may
be static or dynamic
–  Ex., during a process execution it may require different

access rights for each procedure
–  In general: minimization of access rights overtime (controlled

in each protection domain)

©rev, DI-FCT-UNL, 2018/2019 Access Control 43

Access
Control
Function

File
system

Memory
addressing
hardware

Process
manager

Terminal
& device
manager

Instruction
decoding
hardware

Access
matrix

monitor

Access
matrixwrite read

Files

Segments
& pages

Processes

Terminal
& devices

Instructions

delete G from Sp, Y (Sm, delete, G, Sp, Y)

(Sk, grant, F, Sn, X)grant F to Sn, X

Sm

wakeup P (Sj, wakeup, P)Sj

read F

Subjects Access control mechanisms

Figure 4.4 An Organization of the Access Control Function

Objects

(Si, read, F)Si

Sk

System intervention

©rev, DI-FCT-UNL, 2018/2019 Access Control 44

DAC and UNIX File System Concepts
•  UNIX files administered using inodes

–  Control structure with key info on file
•  Attributes, permissions of a single file

–  May have several names for same inode
–  Have inode table / list for all files on a disk

•  Copied to memory when disk mounted

•  Directories form a hierarchical tree
–  May contain files or other directories
–  Are a file of names and inode numbers

©rev, DI-FCT-UNL, 2018/2019 Access Control 45

UNIX File Access Control
•  Expression of DAC in the UNIX File System

Figure 4.5 UNIX File Access Control

(a) Traditional UNIX approach (minimal access control list)

rw- r-- ---
Owner

cla
ss

Grou
p cl

ass

Other
cla

ss

user: :rw-
group::r--
other::---

(b) Extended access control list

masked
entries

rw- rw- ---
Owner

cla
ss

Grou
p cl

ass

Other
cla

ss

user: :rw-
user:joe:rw-
group::r--
mask::rw-
other::---

Ex., mode: 0640

6
0

4
0

©rev, DI-FCT-UNL, 2018/2019 Access Control 46

Extended File Access Control
•  Expression of DAC in the UNIX File System

Figure 4.5 UNIX File Access Control

(a) Traditional UNIX approach (minimal access control list)

rw- r-- ---
Owner

cla
ss

Grou
p cl

ass

Other
cla

ss

user: :rw-
group::r--
other::---

(b) Extended access control list

masked
entries

rw- rw- ---
Owner

cla
ss

Grou
p cl

ass

Other
cla

ss

user: :rw-
user:joe:rw-
group::r--
mask::rw-
other::---

Base Classes

©rev, DI-FCT-UNL, 2018/2019 Access Control 47

UNIX File Access Control

•  “set user ID”(SetUID) or “set group
ID”(SetGID)
–  The system temporarily uses rights of the file

owner / group in addition to the real user’s rights
when making access control decisions

–  Enables privileged programs to access files /
resources not generally accessible

•  Sticky bit
–  on directory limits rename/move/delete to owner

•  Superuser
–  is exempt from usual DAC restrictions

©rev, DI-FCT-UNL, 2018/2019 Access Control 48

Examples
•  See chown and chgrp in UNIX file system
•  chown -- change file owner and group

–  chown [-fhv] [-R [-H | -L | -P]] owner[:group]
file ...

–  chown [-fhv] [-R [-H | -L | -P]] :group file …
•  chgrp -- change group

–  chgrp [-fhv] [-R [-H | -L | -P]] group file …

©rev, DI-FCT-UNL, 2018/2019 Access Control 49

Examples
•  See chmod in UNIX file system

–  chmod [-fv] [-R [-H | -L | -P]] mode file ...
–  chmod [-fv] [-R [-H | -L | -P]] [-a | +a | =a] ACE file ...
–  chmod [-fhv] [-R [-H | -L | -P]] [-E] file ...
–  chmod [-fhv] [-R [-H | -L | -P]] [-C] file ...
–  chmod [-fhv] [-R [-H | -L | -P]] [-N] file ...

•  Access control modes (can combine them):
–  Modes: 4000, 2000, 1000

•  for setting eUID on owner, group and sticky-bit respectively
–  Modes: 0400, 0200, 0100 for w r x to the owner
–  Modes: 0040, 0020, 0010 for w r x to the group
–  Modes: 0004, 0002, 0001 for w r x for others

©rev, DI-FCT-UNL, 2018/2019 Access Control 50

Extensions: UNIX Access Control Lists
•  Many UNIX-based distributions support ACLs as

extended mechanism
–  Can specify any number of additional users / groups and

associated rwx permissions
–  ACLs are optional extensions to the standard permissions
–  Group permissions also set max ACL permissions

•  When access is required
–  Select most appropriate ACL

•  owner, named users, owning / named groups, others
–  Check if have sufficient permissions for access

©rev, DI-FCT-UNL, 2018/2019 Access Control 51

MAC and DAC Enhanced Linux Distributions
•  See more on different MAC evolved mechanisms for security

enhanced implementations on UNIX/LINUX distributions,
SUSE Linux-App Armor, Tomoyo Linux, Trusted Solaris,
Windows (since 2008), Mac OS-X and others

•  Ex., summary on:
•  https://en.wikipedia.org/wiki/Mandatory_access_control

©rev, DI-FCT-UNL, 2018/2019 Access Control 52

Outline

•  Access control topics
–  Principles of Access Control Models
–  Access Control Policy Models: MAC, DAC, RBAC, ABAC
–  Mandatory Access Control (MAC)
–  Discretionary Access Control (DAC)

•  Case: Unix File System
–  Role Based Access Model (RBAC)

•  Example: RBAC in a Banking System
–  Attribute-Based Access Control (ABAC)

©rev, DI-FCT-UNL, 2018/2019 Access Control 53

RBAC based policies
•  Neither DAC nor MAC approaches satisfy the

need of “organizational or business” models, that
require more flexibility for access control
management:
–  MAC: rise form rigid environments, like those

of strict hierarchies, like those of military
hierarchies

–  DAC: rise from cooperative yet environments
with user autonomy (ex., academic users/
researchers)

©rev, DI-FCT-UNL, 2018/2019 Access Control 54

RBAC (Role Based Access Control) policy
•  ROLE: a set of actions and responsibilities

associated to a particular organizational activity
Instead of specifying all the permissions for each subject (ex., a single
user), the permissions are specified for ROLES

•  Then, RBAC allows access based on the defined
roles (ex., job titles or organizational job
functions)
–  Require an implicit controlled mapping (association) between subjects

and such roles, as organizational responsibilities
–  Users are given authorization to adopt roles (may or may not be allowed

to play with more than one role) but in each access she/he is playing
with one specific role

–  A user playing in a certain role is allowed to execute operations with the
permissions for which the role is authorized

–  Usually, the mappings must be defined by previously defined subjects or
roles, following the principle of non-escalading privileges

©rev, DI-FCT-UNL, 2018/2019 Access Control 55

RBAC Advantages
•  RBAC largely eliminates discretion when providing

access to objects. For example, a human resources
specialist should not have permissions to create
network accounts; this should be a role reserved
for network administrators.

•  In some sense we have the best of the MAC and
DAC models:
–  Allow the specification of permissions to be granted to

users (or groups) on objects, like in the DAC model

–  But we also have the possibility to specify restrictions

(like in the MAC model) on the assignment or on the use
of such restrictions

©rev, DI-FCT-UNL, 2018/2019 Access Control 56

RBAC in summary
•  Simplification of authorization management

•  Hierarchical roles further simplify by allowing
generalization and specialization

•  Allows for a proper adaptation of different roles
to operate at the least privilege

•  Promotes the principle of separation of duties,
preventing the misuse of the system

•  Can be used with more flexibility, by allowing eh
specification of permissions over object classes
and not only to individual objects

©rev, DI-FCT-UNL, 2018/2019 Access Control 57

Outline

•  Access control topics
–  Principles of Access Control Models
–  Access Control Policy Models: MAC, DAC, RBAC, ABAC
–  Mandatory Access Control (MAC)
–  Discretionary Access Control (DAC)

•  Case: Unix File System
–  Role Based Access Model (RBAC)

•  Example: RBAC in a Banking System
–  Attribute-Based Access Control (ABAC)

©rev, DI-FCT-UNL, 2018/2019 Access Control 58

ABAC (Attribute Based Access Control)
•  An access control model whereby access rights

are granted to users through the use of policies
which evaluate attributes (user attributes,
resource attributes and environment conditions)
–  We can imagine context-aware attributed for specific

ABAC models: Time-leasing conditions, Location Validity,
Operation-Flow Controls, Behavioral Biometric Usage
Conditions, …

©rev, DI-FCT-UNL, 2018/2019 Access Control 59

Other AC policies (1)
•  Possible variants are sometimes defined with other designations

(classified by different authors as access control policy models).
Examples include:
–  HBAC – History Based Access Control

•  Access is granted or declined based on the real-time evaluation of a
history of activities of the inquiring party, e.g. behavior, time between
requests, content of requests or state-machine of operation-flows.

–  IBAC – Identity Based Access Control
•  In such policies network administrators can more effectively manage

activity and access based on specific individual needs.
–  OrBAC – Organization-Based Access Control

•  OrBAC model allows the policy designer to define a security policyfor
organizational or business functions independently of the implementation.
Usually, we can map on designed RBAC and ABAC restrictions

–  Context-Based Access Control (particular instances of
ABAC)

•  When permissions are identified by usage context (ex., determined by
temporal, spatial, device-access type or contextual profiling context
factors, or a combination of such type of factors)

©rev, DI-FCT-UNL, 2018/2019 Access Control 60

Other AC policies (2)
•  Possible variants are sometimes defined with other

designations (classified by different authors as access
control policy models). Examples include:
–  RAC - Rule Based Access Control

•  RAC methods are defined largely as context-based access control.
Example of this would be only allowing students to use the labs
during a certain time of day.

•  Some overlaps with ABAC and/or RBAC
–  ResBAC – Responsibility Based Access Control

•  Information is accessed based on the responsibilities assigned to an
actor or a business role

•  Some overlaps ABAC and/or RBAC and/or OrBAC

©rev, DI-FCT-UNL, 2018/2019 Access Control 61

Multiple policy models
•  AC policies are not necessarily exclusive in a

system design
–  Can be combined for a more suitable (and

complex) protection system
–  In such combinations, permissions are usually

applied by determining the defined
interceptions

Interception of multiple
combined access
control models

©rev, DI-FCT-UNL, 2018/2019 Access Control 62

AC administration
•  Ruled by Administrative policies that determine

who is authorized to create, modify or remove the
allowed access permissions

–  In a MAC model: by a security administrator

–  In DAC or RBAC models: there are possibly

many types of administrative policies under
different administrative entities

•  Ex., by the segregation of administrative domains and
segregated system administrators

©rev, DI-FCT-UNL, 2018/2019 Access Control 63

Conclusions

•  Discussed access control topics
–  Principles of Access Control Models
–  Access Control Policy Models: MAC, DAC, RBAC, ABAC
–  Mandatory Access Control (MAC)
–  Discretionary Access Control (DAC)

•  Case: Unix File System
–  Role Based Access Model (RBAC)

•  Example: RBAC in a Banking System
–  Attribute-Based Access Control (ABAC)

Suggested reading: W, Stallings and L. Brown,
Computer Security – Principles and Practice, 3rd Ed., Prentice Hall, 2015

 Chap 4

©rev, DI-FCT-UNL, 2018/2019 Access Control 64

•  OS Level Security

©rev, DI-FCT-UNL, 2018/2019 Access Control 65

SO Security Background
•  Computer client and server systems are central components of

the IT infrastructure for most organizations.
–  The client systems provide access to organizational data and applications,

supported by the servers housing those data and applications.

•  Given that most large software systems will almost certainly
have a number of potential security weaknesses (SW
vulnerabilities, installation of malicious software, …
–  it is currently necessary to manage the installation and continuing

operation of these systems to provide appropriate levels of security
despite the expected presence of these potential vulnerabilities.

–  SW Security requires a “by design approach”: more on the MIEI Software
Security Course

•  But we may be able to use SW systems with SO Security

baseline assumptions

©rev, DI-FCT-UNL, 2018/2019 Access Control 66

SO Security Background

•  But we may be able to use SW systems with SO Security
baseline assumptions, …

•  Answering to these questions:
–  How to provide systems security as a hardening process

that includes:
•  Planning
•  installation,
•  configuration,
•  update,
•  And maintenance
of the operating system and the OS packaged key
applications in use

©rev, DI-FCT-UNL, 2018/2019 Access Control 67

SO Security Background

•  Approach detailed in [NIST08] and summarized in the
provided course bibliography

Covered issues:

•  A set of OS relevant topics

–  Illustrative aspects on Linux and Windows systems in particular
–  We conclude with a discussion on securing virtualized systems, where

multiple virtual machines may execute on the one physical system.

©rev, DI-FCT-UNL, 2018/2019 Access Control 68

Topics

•  Base OS Security
–  OS Security Layers

•  Typical measures in OS Security Management
–  Security Maintenance
–  Linux/Unix Security Issues
–  Windows Security Issues
–  Role of Virtualization

©rev, DI-FCT-UNL, 2018/2019 Access Control 69

Topics

•  Base OS Security
–  OS Security Layers

•  Typical measures in OS Security Management
–  Security Maintenance
–  Linux/Unix Security Issues
–  Windows Security Issues
–  Role of Virtualization

©rev, DI-FCT-UNL, 2018/2019 Access Control 70

Process model

§ Access to hardware and SO
resources only through
system calls

§ OS code runs in CPU kernel
mode; applications and system
utilities in User Mode

§ Only privileged instructions
allow
§  Programming the MMU
§  Programming the I/O

controllers
§  Programming the clock

User Applications and
System Utilities

OS Kernel

BIOS / SMM

Physical HW

©rev, DI-FCT-UNL, 2018/2019 Access Control 71

Operating System and Security Layers

§ Each layer of code needs
measures in place to
provide appropriate
security services

§ Each layer is vulnerable to
attacks:
§  from below
§ If the lower layers are

not secured appropriately

User Applications and
System Utilities

OS Kernel

BIOS / SMM

Physical HW

©rev, DI-FCT-UNL, 2018/2019 Access Control 72

Security Measures
•  The 2010 Australian Defense Signals Directorate (DSD) list

the “Top 35 Mitigation Strategies”
–  See the bibliography

•  Over 70% of the targeted cyber intrusions investigated by
DSD in 2009 could have been prevented the top four measures
for prevention are:
–  patch operating systems and applications using auto-update
–  patch third-party applications
–  restrict admin privileges to users who need them
–  white-list approved applications

•  Among other security approches:
–  SW Security and Security by Design !

©rev, DI-FCT-UNL, 2018/2019 Access Control 73

Operating System Security

•  Possible for a system to be compromised during the
installation process before it can install the latest
patches

•  Building and deploying a system should be a planned
process designed to counter this threat

•  Process must:
–  assess risks and plan the system deployment
–  secure the underlying operating system and then the key

applications
–  ensure any critical content is secured
–  ensure appropriate network protection mechanisms are used
–  ensure appropriate processes are used to maintain security

Security in the installation process …
And (important !) Security Maintenance and Auditing

©rev, DI-FCT-UNL, 2018/2019 Access Control 74

Topics

•  Base OS Security
–  OS Security Layers

•  Typical measures in OS Security Management
–  Security Maintenance
–  Linux/Unix Security Issues
–  Windows Security Issues
–  Role of Virtualization

©rev, DI-FCT-UNL, 2018/2019 Access Control 75

Security Maintenance Issues

•  Summary of relevant issues:
–  System Security Planning / Planning Processes
–  OS Security Hardening
–  Initial Setup and Patching Management
–  Secure Configuration of Applications and Utilities
–  Encryption Technology
–  Security Maintenance

•  Logging, Auditing, Backup/Archiving

©rev, DI-FCT-UNL, 2018/2019 Access Control 76

System Security Planning

The first step in deploying a
new system is planning

Planning should
include a wide

security assessment
of the organization

Aim is to maximize
security while

minimizing costs

Planning process needs to
determine security

requirements for the system,
applications, data, and users

Plan needs to identify
appropriate personnel and

training to install and
manage the system

©rev, DI-FCT-UNL, 2018/2019 Access Control 77

System Security Planning Process

The purpose of the system,
the type of information

stored, the applications and
services provided, and their

security requirements

The categories of users of the
system, the privileges they

have, and the types of
information they can access

How the users are
authenticated

How access to the
information stored on the

system is managed

What access the system has
to information stored on

other hosts, such as file or
database servers, and how

this is managed

Who will administer the
system, and how they will

manage the system (via local
or remote access)

Any additional security
measures required on the

system, including the use of
host firewalls, anti-virus or
other malware protection
mechanisms, and logging

Ex., NIST Defined Issues for System Security Planning

©rev, DI-FCT-UNL, 2018/2019 Access Control 78

Operating Systems Hardening
•  First critical step in securing a system is … to

secure the base operating system
•  Basic relevant steps: IHCT Sequence

•  Install and patch the operating system
• Harden and configure the operating system to

adequately address the identified security
needs of the system

•  Configure trustable installed additional security
controls, such as anti-virus, host-based
firewalls, and intrusion detection system (IDS)

•  Test the security of the basic operating system
to ensure that the steps taken adequately
address its security needs

©rev, DI-FCT-UNL, 2018/2019 Access Control 79

Initial Setup and Patching (1)

System security
begins with the
installation of
the operating

system

Ideally new systems
should be

constructed on a
protected network

Full installation and
hardening process

should occur before
the system is

deployed to its
intended location

Initial installation
should install the

minimum
necessary for the
desired system

Overall boot process
must also be secured

The integrity and
source of any

additional device
driver code must be
carefully validated

Hardening

Secure Configurations
and Resource Control

Security
Assessment and Validation
For operation stage

Installation

©rev, DI-FCT-UNL, 2018/2019 Access Control 80

Initial Setup and Patching (1)

Critical that the
system be kept up
to date, with all
critical security
related patches
installed

Should stage and
validate all patches
on the test systems
before deploying
them in production

Operation
Life Cycle

End of Operation
Life Cycle

New Installation
(Vers./Releas. or
 new Technology)

Auditing and
Patching

Security
Auditing

©rev, DI-FCT-UNL, 2018/2019 Access Control 81

Hardening Principle

•  If fewer software
packages are available to
run the risk is reduced

•  System planning process
should identify what is
actually required for a
given system

•  When performing the initial
installation the supplied
defaults should not be used

–  Default configuration is set
to maximize ease of use and
functionality rather than
security

–  If additional packages are
needed later they can be
installed when they are
required

•  Remove Unnecessary Services, Applications,
and Protocols

©rev, DI-FCT-UNL, 2018/2019 Access Control 82

Security Configurations: User-Setup

•  Not all users with access to
a system will have the same
access to all data and
resources on that system

•  Elevated privileges should
be restricted to only those
users that require them, and
then only when they are
needed to perform a task

•  Minimal Privileges as
Necessary

•  System planning process should
consider:

–  Categories of users on the system

–  Privileges they have

–  Types of information they can access

–  How and where they are defined and
authenticated

•  Default accounts included as
part of the system installation
should be secured

–  Those that are not required should be
either removed or disabled

–  Policies that apply to authentication
credentials configured

•  Configure Users, Groups, and Authentication

©rev, DI-FCT-UNL, 2018/2019 Access Control 83

Security Configurations: Resource Control

•  Once the users and groups
are defined, appropriate
permissions can be set on
data and resources

•  Many of the security
hardening guides provide
lists of recommended
changes to the default
access configuration

•  Further security possible by
installing and configuring
additional security tools:
–  Anti-virus software
–  Host-based firewalls
–  IDS or IPS software
–  Application white-listing

Configuration of Resource-Controls
Installation of Additional Reosurce Controls

©rev, DI-FCT-UNL, 2018/2019 Access Control 84

Security Assessment

•  Final step in the process of
initially securing the base
operating system is security
testing

•  goal:
–  Ensure the previous

security configuration
steps are correctly
implemented

–  Identify any possible
vulnerabilities

•  Checklists are included in security
hardening guides

•  There are programs specifically designed
to:
–  Review a system to ensure that a

system meets the basic security
requirements

–  Scan for known vulnerabilities and
poor configuration practices

•  Should be done following the initial
hardening of the system

•  Repeated periodically as part of the
security maintenance process

–  => Security Auditing Process

•  Test the System Security

©rev, DI-FCT-UNL, 2018/2019 Access Control 85

Application Configuration
•  May include:

–  Creating and specifying appropriate data storage areas
for application

–  Making appropriate changes to the application or service
default configuration details

•  Important !!! Some applications or services may include:
–  Default data
–  Scripts / Default Scripts, Examples, etc. …
–  Default User accounts
–  Permissions

•  Review all this: Hardening + Application Resources +
Reduction of Permissions (Least Privilege Principle)

•  Of particular concern with remotely accessed services such
as Web and File Transfer Services
–  Risk from this form of attack is reduced by ensuring that

most of the files can only be read, but not written, by
the server

©rev, DI-FCT-UNL, 2018/2019 Access Control 86

Encryption

A key enabling
technology that may be

used to secure data
both in transit and

when stored

But must be
configured and

appropriate
cryptographic keys
created, signed, and

secured

if secure network
services are

provided using
TLS or IPsec

suitable public and
private keys must
be generated for

each of them

If secure network
services are

provided using
SSH, appropriate
server and client

keys must be
created

Cryptographic File
Systems are

another use of
encryption

Maintenance of Cryptographic Keys: Better in dedicated Secure Crypto Devices
Carefully Management of Permissions when Secrecy Material is in the File Systems

Some critical examples:

©rev, DI-FCT-UNL, 2018/2019 Access Control 87

Security Maintenance
•  Process of maintaining security is continuous

–  Security as a Process (not an End)
•  Security maintenance includes:

–  Monitoring and analyzing logging information
–  Performing regular backups
–  Recovering from security compromises
–  Regularly testing system security

•  AUDITING
–  Using appropriate software maintenance processes

to patch and update all critical software, and to
monitor and revise configuration as needed

©rev, DI-FCT-UNL, 2018/2019 Access Control 88

Logging
Can only inform
you about bad

things that have
already happened

In the event of a system breach
or failure, system administrators
can more quickly identify what

happened

Key is to ensure you capture
the correct data and then

appropriately monitor and
analyze this data

Information can be
generated by the

system, network and
applications

Range of data acquired
should be determined

during the system planning
stage

Generates significant volumes of
information and it is important
that sufficient space is allocated

for them

Automated
analysis is
preferred

©rev, DI-FCT-UNL, 2018/2019 Access Control 89

Data Backup and Archive
•  Performing regular backups of data is a critical

control that assists with maintaining the integrity of
the system and user data
–  May be … legal, ethical, or operational compliance

requirements for the retention of data will be necessary to
analyze and to address

©rev, DI-FCT-UNL, 2018/2019 Access Control 90

Data Backup and Archive
Backup:
•  Process of making copies

of data at regular
intervals

•  Incremental vs. Total
Backups

Archive:
The process of retaining
copies of data over
extended periods of time
in order to meet legal and
operational requirements
to access past data

Concerns:
The needs and the policy
requirements relating to backup and
archive should be determined during
the system planning stage

•  kept online or offline

•  Options: stored locally or
transported to one or more
remote sites (physically
different)
•  Trade-offs include ease of

implementation and cost
versus greater security and
robustness against different
threats

©rev, DI-FCT-UNL, 2018/2019 Access Control 91

Topics

•  Base OS Security
–  OS Security Layers

•  Typical measures in OS Security Management
–  Security Maintenance
–  Linux/Unix Security Issues
–  Windows Security Issues
–  Role of Virtualization

©rev, DI-FCT-UNL, 2018/2019 Access Control 92

Linux Security

•  Linux has evolved into one of the most popular
and versatile operating systems

•  many features mean broad attack surface
•  can create highly secure Linux systems
•  will review:

–  Discretionary Access Controls
–  typical vulnerabilities and exploits in Linux
–  best practices for mitigating those threats
–  new improvements to Linux security model

©rev, DI-FCT-UNL, 2018/2019 Access Control 93

Linux/Unix Security
•  Patch management

–  keeping security patches up to date is a widely
recognized and critical control for maintaining
security

–  Application and service configuration
–  Most commonly implemented using separate text files for

each application and service
–  Generally located either in the /etc directory or in the

installation tree for a specific application
–  Individual user configurations that can override the system

defaults are located in hidden “dot” files in each user’s home
directory

–  Most important changes needed to improve system security
are to disable services and applications that are not required

©rev, DI-FCT-UNL, 2018/2019 Access Control 94

Linux Security Model
•  Linux’s traditional security model is:

–  people or proceses with “root” privileges
can do anything

–  other accounts can do much less
•  hence attacker’s want to get root

privileges
•  can run robust, secure Linux systems
•  crux of problem is use of
Discretionary Access Controls (DAC)

©rev, DI-FCT-UNL, 2018/2019 Access Control 95

Linux Security Transactions

©rev, DI-FCT-UNL, 2018/2019 Access Control 96

File System Security
•  in Linux everything as a file

–  e.g. memory, device-drivers, named
pipes, and other system resources

–  hence why filesystem security is so
important

•  I/O to devices is via a “special” file
–  e.g. /dev/cdrom

•  have other special files like named
pipes
–  a conduit between processes / programs

©rev, DI-FCT-UNL, 2018/2019 Access Control 97

Users and Groups

•  a user-account (user)
–  represents someone capable of using files
–  associated both with humans and processes

•  a group-account (group)
–  is a list of user-accounts
–  users have a main group
– may also belong to other groups

•  users & groups are not files

©rev, DI-FCT-UNL, 2018/2019 Access Control 98

Users and Groups
•  user's details are kept in /etc/password

maestro:x:200:100:Maestro Edward
Hizzersands:/home/maestro:/bin/bash

•  additional group details in /etc/group
conductors:x:100:

pianists:x:102:maestro,volodya

•  use useradd, usermod, userdel to alter

©rev, DI-FCT-UNL, 2018/2019 Access Control 99

File Permissions
•  files have two owners: a user & a

group
•  each with its own set of permissions
•  with a third set of permissions for

other
•  permissions are to read/write/

execute in order user/group/other,
cf.
-rw-rw-r-- 1 maestro user 35414
Mar 25 01:38 baton.txt

•  set using chmod command

©rev, DI-FCT-UNL, 2018/2019 Access Control 100

Directory Permissions
•  read = list contents
•  write = create or delete files in directory
•  execute = use anything in or change

working directory to this directory
•  e.g.

$ chmod g+rx extreme_casseroles
$ ls -l extreme_casseroles
 drwxr-x--- 8 biff drummers 288 Mar
25 01:38 extreme_casseroles

©rev, DI-FCT-UNL, 2018/2019 Access Control 101

Sticky Bit
•  originally used to lock file in memory

(obsolete now)
•  now used on directories to limit delete

–  if set must own file or dir to delete
–  other users cannot delete even if have write

•  set using chmod command with +t flag, e.g.
chmod +t extreme_casseroles

•  directory listing includes t or T flag
drwxrwx--T 8 biff drummers 288 Mar
25 01:38 extreme_casseroles

•  only apply to specific directory not child dirs

©rev, DI-FCT-UNL, 2018/2019 Access Control 102

SetUID and SetGID

•  setuid bit means program "runs as" owner
–  no matter who executes it

•  setgid bit means run as a member of the
group which owns it
–  again regardless of who executes it

•  "run as" = "run with same privileges as”
•  are very dangerous if set on file owned by

root or other privileged account or group
–  only used on executable files, not shell

scripts

©rev, DI-FCT-UNL, 2018/2019 Access Control 103

SetGID and Directories
•  setuid has no effect on directories
•  setgid does and causes any file

created in a directory to inherit the
directory's group

•  useful if users belong to other groups
and routinely create files to be
shared with other members of those
groups
–  instead of manually changing its group

©rev, DI-FCT-UNL, 2018/2019 Access Control 104

Numeric File Permissions

©rev, DI-FCT-UNL, 2018/2019 Access Control 105

Kernel vs User Space

•  Kernel space
–  refers to memory used by the Linux kernel and its

loadable modules (e.g., device drivers)
•  User space

–  refers to memory used by all other processes
•  since kernel enforces Linux DAC and security

critical to isolate kernel from user
–  so kernel space never swapped to disk
–  only root may load and unload kernel modules

©rev, DI-FCT-UNL, 2018/2019 Access Control 106

setuid root Vulnerabilities

•  a setuid root program runs as root
–  no matter who executes it

•  used to provide unprivileged users with access to
privileged resources

•  must be very carefully programmed
•  if can be exploited due to a software bug

–  may allow otherwise-unprivileged users to use it to wield
unauthorized root privileges

•  distributions now minimise setuid-root programs
•  system attackers still scan for them!

©rev, DI-FCT-UNL, 2018/2019 Access Control 107

Set-UID Privileged Programs

Need for Privileged Programs : Password
Dilemma

–  Permissions of /etc/shadow File:

– How would normal users change their
password?

©rev, DI-FCT-UNL, 2018/2019 Access Control 108

Two-Tier Approach
•  Implementing fine-

grained access control in
operating systems make
OS over complicated.

•  OS relies on extension

to enforce fine-grained
access control

•  Privileged programs are

such extensions

©rev, DI-FCT-UNL, 2018/2019 Access Control 109

Types of Privileged Programs

•  Daemons
–  Computer program that runs in the

background
– Needs to run as root or other privileged

users

•  Set-UID Programs

– Widely used in UNIX systems
–  Program marked with a special bit

©rev, DI-FCT-UNL, 2018/2019 Access Control 110

Set-UID Concept

•  Allow user to run a program with the
program owner’s privilege.

•  Allow users to run programs with
temporary elevated privileges

•  Example: the passwd program
	$	ls	-l	/usr/bin/passwd	

	-rwsr-xr-x	1	root	root	41284	Sep	12		2012	/usr/bin/passwd	

©rev, DI-FCT-UNL, 2018/2019 Access Control 111

Set-UID Concept

•  Every process has two User IDs.
•  Real UID (RUID): Identifies real owner of process
•  Effective UID (EUID): Identifies privilege of a

process
–  Access control is based on EUID

•  When a normal program is executed, RUID = EUID,
they both equal to the ID of the user who runs the
program

•  When a Set-UID is executed, RUID ≠ EUID. RUID
still equal to the user’s ID, but EUID equals to the
program owner’s ID.
–  If the program is owned by root, the program runs with

the root privilege.

©rev, DI-FCT-UNL, 2018/2019 Access Control 112

Turn a Program into Set-UID

•  Change the owner
of a file to root :

•  Before Enabling

Set-UID bit:

•  After Enabling

the Set-UID bit :

©rev, DI-FCT-UNL, 2018/2019 Access Control 113

How it Works

A Set-UID program is just like any
other program, except that it has a
special marking, which a single bit called
Set-UID bit

©rev, DI-FCT-UNL, 2018/2019 Access Control 114

Example of Set UID

  Not a privileged program

  Become a privileged
program

  It is still a privileged
program, but not the
root privilege

©rev, DI-FCT-UNL, 2018/2019 Access Control 115

How is Set-UID Secure?

•  Allows normal users to escalate
privileges
–  This is different from directly giving the

privilege (sudo command)
–  Restricted behavior

•  Unsafe to turn all programs into Set-

UID
–  Example: /bin/sh
–  Example: vi

©rev, DI-FCT-UNL, 2018/2019 Access Control 116

Attack Surfaces of Set-UID Programs

©rev, DI-FCT-UNL, 2018/2019 Access Control 117

Attacks via User Inputs

User Inputs: Explicit Inputs

–  Buffer Overflow : Overflowing a buffer to
run malicious code

–  Format String Vulnerability
•  Changing program behavior using user inputs as

format strings

©rev, DI-FCT-UNL, 2018/2019 Access Control 118

Attacks via System Inputs

System Inputs

–  Race Condition

•  Symbolic link to privileged file from an
unprivileged file

•  Influence programs
• Writing inside world writable folder

©rev, DI-FCT-UNL, 2018/2019 Access Control 119

Attacks via Environment Variables

•  Behavior can be influenced by inputs
that are not visible inside a program.

•  Environment Variables : These can be
set by a user before running a
program.

©rev, DI-FCT-UNL, 2018/2019 Access Control 120

Attacks via Environment Variables
•  PATH Environment Variable

–  Used by shell programs to locate a
command if the user does not provide
the full path for the command

–  system(): call /bin/sh first
–  system(“ls”)

•  /bin/sh uses the PATH environment variable
to locate “ls”

•  Attacker can manipulate the PATH variable
and control how the “ls” command is found

©rev, DI-FCT-UNL, 2018/2019 Access Control 121

Capability Leaking
•  In some cases, Privileged programs downgrade themselves

during execution
•  Example: The su program

–  This is a privileged Set-UID program
–  Allows one user to switch to another user (say user1 to

user2)
–  Program starts with EUID as root and RUID as user1
–  After password verification, both EUID and RUID

become user2’s (via privilege downgrading)
•  Such programs may lead to capability leaking

–  Programs may not clean up privileged capabilities before
downgrading

©rev, DI-FCT-UNL, 2018/2019 Access Control 122

Attacks via Capability Leaking: An Example

The /etc/zzz file is
only writable by root

File descriptor is
created
(the program is a root-
owned Set-UID
program) The privilege is

downgraded

Invoke a shell program,
so the behavior
restriction on the
program is lifted

©rev, DI-FCT-UNL, 2018/2019 Access Control 123

Attacks via Capability Leaking (Continued)

The program
forgets to close
the file, so the
file descriptor
is still valid.

How to fix the program?
Destroy the file descriptor before downgrading the privilege
(close the file)

Capability Leak

©rev, DI-FCT-UNL, 2018/2019 Access Control 124

Invoking Programs
•  Invoking external commands from inside a

program
•  External command is chosen by the Set-UID

program
– Users are not supposed to provide the command (or it is

not secure)
•  Attack:

– Users are often asked to provide input data to the
command.

–  If the command is not invoked properly, user’s input
data may be turned into command name. This is
dangerous.

©rev, DI-FCT-UNL, 2018/2019 Access Control 125

Invoking Programs : Unsafe Approach

•  The easiest way to invoke
an external command is
the system() function.

•  This program is supposed
to run the /bin/cat
program.

•  It is a root-owned Set-
UID program, so the
program can view all files,
but it can’t write to any
file.

©rev, DI-FCT-UNL, 2018/2019 Access Control 126

Invoking Programs : Unsafe Approach (Cont.)

We can get a
root shell with
this input

Problem: Some
part of the data
becomes code
(command name)

©rev, DI-FCT-UNL, 2018/2019 Access Control 127

Invoking Programs Safely: using execve()

Command name
is provided
here (by the
program)

execve(v[0], v, 0)

Input data are
provided here
(can be by
user)

Why is it safe?
Code (command name) and data are clearly separated; there is no
way for the user data to become code

©rev, DI-FCT-UNL, 2018/2019 Access Control 128

Invoking Programs Safely (Continued)

The data are still treated as data, not code

©rev, DI-FCT-UNL, 2018/2019 Access Control 129

Additional Consideration
•  Some functions in the exec() family

behave similarly to execve(), but may
not be safe
–  execlp(), execvp() and execvpe()

duplicate the actions of the shell. These
functions can be attacked using the
PATH Environment Variable

©rev, DI-FCT-UNL, 2018/2019 Access Control 130

Principle of Isolation

Principle: Don’t mix code and data.

Attacks due to violation of this
principle :

–  system() code execution
–  Buffer Overflow attacks
–  …

©rev, DI-FCT-UNL, 2018/2019 Access Control 131

Principle of Least Privilege

•  A privileged program should be given the power
which is required to perform it’s tasks.

•  Disable the privileges (temporarily or
permanently) when a privileged program doesn’t
need those.

•  In Linux, seteuid() and setuid() can be used to
disable/discard privileges.

•  Different OSes have different ways to do that.

©rev, DI-FCT-UNL, 2018/2019 Access Control 132

Linux System Hardening
•  consider how to mitigate Linux

security risks at system and
application levels

•  first look at OS-level security tools
and techniques that protect the
entire system

©rev, DI-FCT-UNL, 2018/2019 Access Control 133

OS Installation
•  security begins with O/S installation
•  especially what software is run

–  since unused applications liable to be left in
default, un-hardened and un-patched state

•  generally should not run:
–  X Window system, RPC services, R-services, inetd,

SMTP daemons, telnet etc
•  also have some initial system s/w

configuration:
–  setting root password
–  creating a non-root user account
–  setting an overall system security level
–  enabling a simple host-based firewall policy
–  enabling SELinux

©rev, DI-FCT-UNL, 2018/2019 Access Control 134

Patch Management
•  installed server applications must be:

–  configured securely
–  kept up to date with security patches

•  patching can never win “patch rat-race”
•  have tools to automatically download and

install security updates
–  e.g. up2date, YaST, apt-get
–  note should not run automatic updates on

change-controlled systems without testing

©rev, DI-FCT-UNL, 2018/2019 Access Control 135

Network Access Controls

•  network a key attack vector to secure
•  TCP wrappers a key tool to check access

–  originally tcpd inetd wrapper daemon
–  before allowing connection to service checks

•  if requesting host explicitly in hosts.allow is ok
•  if requesting host explicitly in hosts.deny is blocked
•  if not in either is ok

–  checks on service, source IP, username
–  now often part of app using libwrappers

©rev, DI-FCT-UNL, 2018/2019 Access Control 136

Network Access Controls

•  also have the very powerful netfilter Linux
kernel native firewall mechanism
–  and iptables user-space front end

•  as useful on firewalls, servers, desktops
•  direct config tricky, steep learning curve
•  do have automated rule generators
•  typically for “personnal” firewall use will:

–  allow incoming requests to specified services
–  block all other inbound service requests
–  allow all outbound (locally-originating) requests

•  if need greater security, manually config

©rev, DI-FCT-UNL, 2018/2019 Access Control 137

User Management

•  guiding principles in user-account security:
–  need care setting file / directory permissions
–  use groups to differentiate between roles
–  use extreme care in granting / using root privs

•  commands: chmod, useradd/mod/del, groupadd/
mod/del, passwd, chage

•  info in files /etc/passwd & /etc/group
•  manage user’s group memberships
•  set appropriate password ages

©rev, DI-FCT-UNL, 2018/2019 Access Control 138

Root Delegation
•  have "root can to anything, users do little” issue
•  “su” command allows users to run as root

–  either root shell or single command
–  must supply root password
–  means likely too many people know this

•  SELinux RBAC can limit root authority, complex
•  “sudo” allows users to run as root

–  but only need their password, not root password
–  /etc/sudoers file specifies what commands allowed

•  or configure user/group perms to allow, tricky

©rev, DI-FCT-UNL, 2018/2019 Access Control 139

Logging

•  effective logging a key resource
•  Linux logs using syslogd or Syslog-NG

–  receive log data from a variety of sources
–  sorts by facility (category) and severity
–  writes log messages to local/remote log files

•  Syslog-NG preferable because it has:
–  variety of log-data sources / destinations
– much more flexible “rules engine” to

configure
–  can log via TCP which can be encrypted

•  should check and customized defaults

©rev, DI-FCT-UNL, 2018/2019 Access Control 140

Log Management
•  balance number of log files used

–  size of few to finding info in many
•  manage size of log files

– must rotate log files and delete old
copies

–  typically use logrotate utility run by cron
–  to manage both system and application

logs
•  must also configure application logging

©rev, DI-FCT-UNL, 2018/2019 Access Control 141

Application Security

•  this is a large topic (other course –
Software Security)

•  many security features are implemented
in similar ways across different
applications

•  will review issues such as:
–  running as unprivileged user/group
–  running in chroot jail
– modularity
–  encryption
–  logging

©rev, DI-FCT-UNL, 2018/2019 Access Control 142

Running in chroot Jail

•  chroot confines a process to a subset of /
– maps a virtual “/” to some other directory
–  useful if have a daemon that should only

access a portion of the file system, e.g. FTP
–  directories outside the chroot jail aren’t

visible or reachable at all
•  contains effects of compromised daemon
•  complex to configure and troubleshoot

– must mirror portions of system in chroot jail

©rev, DI-FCT-UNL, 2018/2019 Access Control 143

Modularity
•  applications running as a single, large,

multipurpose process can be:
– more difficult to run as an unprivileged user
–  harder to locate / fix security bugs in source
–  harder to disable unnecessary functionality

•  hence modularity a highly prized feature
–  providing a much smaller attack surface

•  cf. postfix vs sendmail, Apache modules

©rev, DI-FCT-UNL, 2018/2019 Access Control 144

Encryption

•  sending logins & passwords or application data
over networks in clear text exposes them to
network eavesdropping attacks

•  hence many network applications now support
encryption to protect such data
–  often using OpenSSL library

•  may need own X.509 certificates to use
–  can generate/sign using openssl command
– may use commercial/own/free CA

©rev, DI-FCT-UNL, 2018/2019 Access Control 145

Logging
•  applications can usually be configured

to log to any level of detail (debug to
none)

•  need appropriate setting
•  must decide if use dedicated file or

system logging facility (e.g. syslog)
–  central facility useful for consistent use

•  must ensure any log files are rotated

©rev, DI-FCT-UNL, 2018/2019 Access Control 146

Mandatory Access Controls

•  Linux uses a DAC security model
•  but Mandatory Access Controls (MAC) impose

a global security policy on all users
–  users may not set controls weaker than policy
–  normal admin done with accounts without authority

to change the global security policy
–  but MAC systems have been hard to manage

•  Novell’s SuSE Linux has AppArmor
•  RedHat Enterprise Linux has SELinux
•  pure SELinux for high-sensitivity, high-

security

©rev, DI-FCT-UNL, 2018/2019 Access Control 147

SELinux

•  is NSA's powerful implementation of
mandatory access controls for Linux

•  Linux DACs still applies, but if it allows the
action SELinux then evaluates it against its
own security policies

•  "subjects" are processes (run user cmds)
•  actions are "permissions”
•  objects not just files & dirs
•  to manage complexity SELinux has:

–  "that which is not expressly permitted, is denied”
–  groups of subjects, permissions, and objects

©rev, DI-FCT-UNL, 2018/2019 Access Control 148

Topics

•  Base OS Security
–  OS Security Layers

•  Typical measures in OS Security Management
–  Security Maintenance
–  Linux/Unix Security Issues
–  Windows Security Issues
–  Role of Virtualization

©rev, DI-FCT-UNL, 2018/2019 Access Control 149

Windows 8/10 Security Design Principles

–  Access control lists (ACLs) – both attribute-based and
claim-based

–  Rudimentary capabilities functionally called integrity levels
–  File system and communication encryption

–  Exploit mitigations – address-space layout
randomization (ASLR), Data Execution
Prevention (DEP) …

–  Several digital signature facilities

©rev, DI-FCT-UNL, 2018/2019 Access Control 150

Windows 8/10 Security Design Principles

•  Security is based on user accounts
–  Each user has unique security ID
–  Login to ID creates security access token

•  Includes security ID for user, for user’s groups, and
special privileges

•  Every process gets copy of token
•  System checks token to determine if access allowed or

denied
•  Uses a subject model to ensure access security

–  A subject tracks and manages permissions for each program
that a user runs

•  Each object in Windows has a security attribute defined by a
security descriptor
–  For example, a file has a security descriptor that indicates the

access permissions for all users

©rev, DI-FCT-UNL, 2018/2019 Access Control 151

Windows 8/10 Security Design Principles
•  Win added mandatory integrity controls – assigns

integrity label to each securable object and subject
–  Subject must have access requested in discretionary

access-control list to gain access to object
•  Security attributes described by security descriptor

–  Owner ID, group security ID, discretionary access-
control list, system access-control list

•  Objects are either container objects (containing other
objects, for example a file system directory) or
noncontainer objects
–  By default an object created in a container inherits

permissions from the parent object

©rev, DI-FCT-UNL, 2018/2019 Access Control 152

Topics

•  Base OS Security
–  OS Security Layers

•  Typical measures in OS Security Management
–  Security Maintenance
–  Linux/Unix Security Issues
–  Windows Security Issues
–  Role of Virtualization

©rev, DI-FCT-UNL, 2018/2019 Access Control 153

Virtualization
•  Technology that provides an abstraction of the

resources used by some software which runs in a
simulated environment called a virtual machine (VM)

•  Benefits include:
–  better efficiency in the use of the physical system

resources
–  provides support for multiple distinct operating

systems and associated applications on one physical
system

–  And (last but not the least !!!!): raises additional
security concerns

©rev, DI-FCT-UNL, 2018/2019 Access Control 154

Virtualization Approaches

Application-Oriented Virtualization

Allows
applications
written for

one
environment

to execute
on some

other
operating

system

Full virtualization

Multiple
full

operating
system

instances
execute in
parallel

virtual machine monitor
(VMM)

Hypervisor
Coordinates access between
each of the guests and the
actual physical hardware

resources

©rev, DI-FCT-UNL, 2018/2019 Access Control 155

Native Virtualization Security Layers

Figure 12.2 Native Virtualization Security Layers

Physical Hardware

Hypervisor/ VMM

User Apps

BIOS / SMM

Guest O/S 1

Kernel

User Apps

Guest O/S n

Kernel

User Apps

Guest O/S 2

Kernel

...

Native Virtualization Security Layers

©rev, DI-FCT-UNL, 2018/2019 Access Control 156

Hosted Virtualization Security Layers

Figure 12.3 Hosted Virtualization Security Layers

Physical Hardware

Host Operating System Kernel

Other

User Apps

BIOS / SMM

User Apps

Guest O/S n

Kernel

User Apps

Guest O/S 1

Kernel

...

Hypervisor/ VMM

Native Virtualization Security Layers

©rev, DI-FCT-UNL, 2018/2019 Access Control 157

Security issues in Virtualization

•  Security concerns include different
levels of approach:
–  Guest OS isolation

•  To ensuring that programs executing within a
guest OS may only access and use the resources
allocated to it and nothing more

–  Guest OS monitoring by the hypervisor
• Which has privileged access to the programs

and data in each guested OS
–  Virtualized environment security

•  Particularly image and snapshot management
which attackers may attempt to view or modify

©rev, DI-FCT-UNL, 2018/2019 Access Control 158

Securing Virtualization Systems
Security issues that must be addressed when
virtualization is used.

–  Carefully plan the security of the virtualized system

–  Secure all elements of a full virtualization solution and
maintain their security

–  Ensure that the hypervisor is properly secured

–  Restrict and protect administrator access to the
virtualization solution

©rev, DI-FCT-UNL, 2018/2019 Access Control 159

Hypervisor Security
•  The Hypervisor should be

–  Secured using a process similar to securing an operating
system

–  Initially installed in an isolated environment
–  Configured so that it is updated automatically
–  Monitored for any signs of compromise
–  Accessed only by authorized administration

•  May support both local and remote administration so
must be configured appropriately

•  Remote administration access should be considered
and secured in the design of any network firewall and
IDS capability in use

•  Ideally administration traffic should use a separate
network with very limited access provided from
outside the organization

©rev, DI-FCT-UNL, 2018/2019 Access Control 160

Virtualization
Infrastructure
Security Basics

Systems manage
access to
hardware
resources

Access must
be limited to

just the
appropriate

guest

Access to VM
image and

snapshots must
be carefully
controlled

©rev, DI-FCT-UNL, 2018/2019 Access Control 161

Security of virtualized resources (1)
•  Virtualized systems manage access to hardware

resources such as disk storage and network
interfaces.

•  This access must be limited to just the appropriate
guest OSs that use any resource.
–  As we noted, the configuration of network interfaces and use

of an internal virtual network may present issues for
organizations that wish to monitor all network traffic
between systems. This should be designed and handled as
needed.

•  Access to VM images and snapshots must be carefully
controlled, since these are another potential point of
attack.

©rev, DI-FCT-UNL, 2018/2019 Access Control 162

Security of virtualized resources (2)
•  Hosted virtualized systems, as typically used on client

systems, pose some additional security concerns.
–  These result from the presence of the host OS under, and

other host applications beside, the hypervisor and its guest
OSes.

–  Hence there are yet more layers to secure !

–  Further, the users of such systems often have full access to

configure the hypervisor, and to any VM images and
snapshots.

•  In this case, the use of virtualization is more to provide additional
features, and to support multiple operating systems and applications,
than to isolate these systems and data from each other, and from the
users of these systems.

©rev, DI-FCT-UNL, 2018/2019 Access Control 163

Security of virtualized resources (3)
•  It is possible to design a host system and

virtualization solution that is more protected from
access and modification by the users.
–  This approach may be used to support well-secured guest OS

images used to provide access to enterprise networks and
data, and to support central administration and update of
these images.

•  However, there will remain security concerns from

possible compromise of the underlying host OS,
unless it is adequately secured and managed.

©rev, DI-FCT-UNL, 2018/2019 Access Control 164

Suggested readings (bibliography)

•  W. Stallings, L. Brown, Computer Systems Security
Chap. 12

See also for Linux Security and Windows Security
Chap. 25 – Linux Security
Chap 26 – Windows and Windows Vista Secruity

* Ver material disponibilizado (CLIP)

