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In last lecture
• Foundations and details for the use of Symmetric 

Cryptographic Methods and Algorithms
– Security concerns, applicability, padding and modes of 

operation
– Important issues
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Symmetric Cryptography: Issues (1)
• Shared Keys and/or Related Shared Secrecy Parameters

– If a shared key is disclosed communications will be compromised 
(NDA of keys between principals involved). 
• Particularly delicate aspect of group-shared keys or long-

term key reuse in multiple contexts (the same for secret 
association parameters or passwords, for ex.)

• Dangers of key-exposure in large-scale sharing context

• No base assumptions for peer-authentication and non-
repudiation principles
– Does not protect sender from receiver forging a message & 

claiming is sent by sender (or vice versa)
• Ex., No Peer-Authentication arguments when using Message 

Authentication Codes (CMACs and also HMACs)
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Symmetric Cryptography: Issues (2)
• Limitations for Perfect Secrecy Guarantees

– PFS (Perfect Forward Secrecy) or PBS (Perfect Backward 
Secrecy) conditions

• Danger of compromising permanent (or long-term) shared 
keys (sometimes refereed as Master Keys)
– Long-term keys (as Master Keys) protecting short-term keys 

(ex., Session Keys)
• Key Distribution/Rekeying Processes (for short-term or 

session keys distributed under the protection of master 
keys as long duration shared keys)
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Symmetric Cryptography: Issues (3)
– Other issues: quality of key generation
• Secure key maintenance control and non-disclosure conditions 

under the responsibility of KDCs (KEY DISTRIBUTION 
CENTERS) acting as central trusted parties

– No control by principals (trustees)
– No “Verifiable Contributive Key-Generation and Establishment 

Processes”
– Furthermore, KDCs can be central points of failure or central 

targets for attacks
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In this lecture …
• Asymmetric Cryptography

– Also known as Public-Key Cryptography

• Outline:
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA 
– ECC
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Outline

• Asymmetric cryptography
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA 
– ECC

- - - - - - - - - - - - - -
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Public-Key Cryptography
• Probably most significant advance in 3000 years of 

history of cryptography …
– https://en.wikipedia.org/wiki/RSA_(cryptosystem)
– https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange
– https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

• J.Ellis, M. Williamson, Clifford Cocks (British Intelligence/GCHQ
first in 1973, declassif. In 1997)

• Whitfield Diffie & Martin Hellman, Stanford University (1976)
• Ron Rivest, Adi Shamir, Leonard Adleman (1978) (RSA)
• Neal Koblitz (1985) and Victor Miller (1985)  (ECC)
• Emergent Public-Key Crrypto: Homomorphic and Quantum Crypto

https://en.wikipedia.org/wiki/RSA_(cryptosystem
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
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Some Public-Key Cryptography Pioneers

Ron Rivest, 
Adi Shamir and 
Leonard Adleman

Taher A. Elgamal
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Some Public-Key Cryptography Pioneers

Neal Koblitz

Whitfield Diffie and Martin Helman (Touring Award 2015)

Victor Miller

Diffie-Hellman

Elliptic-Curves
Cryptography
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Homomorphic Cryptography

Craig Gentry

Fully
Homomorphic
Cryptography

Partial
Homomorphic
Cryptography

Pascal Paillier
Shafi Goldwasser and
Silvio Micalli

Josh Benaloh



© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 12

Some Quantum Crypto Pioneers

Stephen Wiesner Gilles Brassard Charles Bennet David Deutsh

Quantum Cryptography
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Public-Key Cryptography
• Foundations: 

– Number theory concepts and functions (D-H, RSA, DSA, 
ElGamal), Factorization and Prime Number Properties, Modular 
Arithmetic

– Algebraic structures of elliptic curves over finite fields (ECC)

Note: Asymmetric Crypto computations more complex (slow) than 
symmetric encryption and hash processing

– See, ex (benchmarks): 

$ openssl speed rsa dsa ecdsa ecdh des-ede3  blowfish aes sha1 sha256
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Comparative Performance of crypto methods

RSA Encryption >>>>>>  SHA256 > SHA1 : ~106 – 107

RSA Sig Verif. > Sig : ~10
RSA >>>> >>  3DES >  DES >  BF > AES : ~106 - 107

3DES > DES > SHA256 > BF  > SHA1 > AES  
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Comparative Performance of crypto methods

RSA Sig >> ECDSA Sig : ~101 to 103
RSA Sig Verif. < > ECDSA Sig  
but ECC  keysizes < RSA keysizes for sama level of security (afawk)
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Comparative Performance of crypto methods

Signed DH  >> DH  >> ECDH 
ECDH comparable woth ECDSA (Sig and Sig Verif) 
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Hybrid Constructions
– For practical purposes (security vs. usability vs. performance)

we use hybrid constructions

Ex. of Typical Constructions for Secure Communication:

{Ks, … Km, …}Kpub || {M}KS ||   Digital Sig (M) || MACKm (C)

{Ks, … Km, …}Kpub || {M || MACKM (M) }KS ||  Digital Sig (M)

C

Etc…
Constructions can optimize for specific uses the tradeoff:
<Security vs. Usability vs. Performance>
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Ex., Can you understand TLS Ciphersuitres ?
• Can you understand the TLS standardized Ciphersuites

as the Hybridization of Different Cryptographic 
Methods ?

• Ex., Labels for Ciphersuites for JSSE in Java:

– https://docs.oracle.com/javase/8/docs/technotes/guides/secu
rity/StandardNames.html#ciphersuites

• Ex., Labels for Ciphersuites in OPENSSL

– https://www.openssl.org/docs/man1.0.2/man1/ciphers.html

https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html%23ciphersuites
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Use of Asymmetric Cryptography
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Use of Public-Key Cryptography
Public-key/Asymmetric cryptography involves: 

Two keys (or a key-pair): 
– a public-key, known by anybody: can be used to encrypt 

messages, and verify signatures
– a private-key, known only to the recipient: used to decrypt 

messages, and sign (create) digital signatures

What we encrypt with one key, we can decrypt with the other 
key of the pair 

Same function (same computation) for encryption and for 
decryption

(*) Note the difference w/ Symmetric Encryption: use the same 
(shared) key for Encryption and Decryption with different 
Encryption and Decryption computations

*
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Encryption using a Public-Key System
For confidentiality principles: 
Encryption with the destination Public key

Bob Alice

C ={ P }KpubA

P ={ C }KprivA
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Authentication using Public-Key System
For authentication principles: 
Encryption with the sender Private Key

C ={ P }KprivB
P ={ C }KpubB

Bob Alice
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Public-Key Cryptography Assumptions
• In asymmetric methods:

– Those who encrypt messages or verify signatures 
cannot decrypt messages or create signatures

– Considering the key pair, what is encrypted with one 
key pair, is decrypted by the other key of that pair 
(for well-known algorithms)

– Encryption and Decryption functions implemented by 
the same computation

For ex: in RSA (Integer Modular Arithmetic)

C = PKpub mod N    for Encryption
P = CKpriv mod N    for Decryption

Exactly the same computation with different operators

Keypair:
[Kpriv, Kpub]
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Confidentiality + Authentication
Alice Bob

Here we have:             
{ { M }KprivAlive }KpubBob

Can we do better for practical use ? How ?
{M}KprivA || {M}KpubBob is wrong  !!! Why ?
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Design Principle for Digital Signatures
(for Peer-Authentication)
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Base Scheme for Authentication
• Principle of construction of Digital Signatures  

Schemes: Sender

H ( )

Hm = H(Mp)

{Hm}KprivE

M

SigKpriv(M)

Send Signed
(Peer 
Authenticated)
Message 

Padding
Method

Padding 
(Processing)

Hash
Function

Asymmetric
Algorithm
And Digit.
Signature
Construction

Private Key 
(Sender)

M || SigKpriv(M)
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Verification (recognition) of Digital Signatures
• Principle of Verification of Digital Signatures  

Schemes: Receiver Verification

H ( )

Hm = H(Mp)

{Hm}KpubE

M || Sig(M)

Padding
Method

Padding 
(Processing)

Hash
Function

Asymmetric
Algorithm
And Digit.
Signature
Construction

Piublic Key 
(Sender)

M Sig(M)

=
?

YES

NO

Signature
Verified

Signature
Invalidated
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Design Principle for Confidentiality

Public Key Envelopes w/ Symmetric 
“Session” Keys 
+
Encryption with Symmetric Encryption
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Use for Confidentiality
Alice: send M to Bob with confidentiality
• Generates a Session Key Ks for Symmetric Crypto Algorithm
• Decide the required security associations (ex., IVs and other 

considered security association parameters SAPs)
Alice send to Bob:

{Ks, <SAPs>}KpubDest || {M}Ks

Much better ! Why ? 
Think on 
“Security vs. 
Performance” vs. 
Flexibility

Public Key  Envelope
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Confidentiality + Integrity + Message Authenticity

Alice: send M to Bob with confidentiality
• Generates a Session Key Ks for Symmetric Crypto Algorithm
• Decide all required security associations (ex., IVs and other 

considered security association parameters SAPs)
• Decide on the use of Hash Functions or MAC construction
• Generates a MAC key 
Alice send to Bob:

{Ks, <SAPs>}KpubDest || {M || H(M) }Ks

Or

{Ks, Km, <SAPs>}KpubDest || {M }Ks || MACKm(M)

{Ks, Km, <SAPs>}KpubDest || {M }Ks || MACKm({M}Ks)

Confidentiliaty + Integrity

Confidentiliaty + Integrity + Message Authentication
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Use of public-key cryptography in general
• Confidentiality and Authentication 

– Verification by each principal, based on correct and 
trusted associations < principal ID, PublicKey >

– Or (principal ID, Public Key) certified associations

• Key exchange
– Two sides can cooperate to exchange a session key (or 

security association parameters): hybrid use of asymmetric 
and symmetric cryptography

• Ex.,  Keys (or other secrecy parameters) generated by 
Senders and distributed to Receivers in confidential 
envelopes protected by the destination Public Key:

– Some Other Assym. Crypto Methods are specifically 
targeted for Key-Exchange: ex., DH - Diffie Hellman, or 
GDH)
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Ex. Hybrid use with different Crypto. Methods
• Example (in PGP - Preety Good Privacy)

Confidentiality + Authentication
Public-Key Method  + Symmetric Encryption + Cryptographic hash

Note in this case: 
Compression always before encryption !
Compression always after signature !

Why ?
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Security Properties in Asymmetric 
Cryptography
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Properties of Public-Key Cryptography (1)

1. Computationally feasible (easy) for a principal to 
generate a key pair

BOB:  public key: KpubB; private key: KprivB
ALICE: public key: KpubA; private key: KprivA

2. Easy for sender (A) to generate ciphertext using 
the public-key of the receiver (B)

3. Easy for the receiver (B) to decrypt ciphertext
using the correct private key

C = {M}KpubB

M = {C}KprivB = { {M}KpubB }KprivB
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Properties of Public-Key Cryptography (2)

4. Computationally infeasible to determine private 
key (Kpriv) knowing the related public key (Kpub)

5. Computationally infeasible to recover message 
M, knowing Kpub and ciphertext C

6. Either of the two keys can be used for 
encryption, with the other used for decryption
(depending on the algorithms and purpose):

M =  { {M}Kpub }Kpriv =  { {M}Kpriv }Kpub

*

*) In practice, some Asymmetric Algorithms used for 
different purposes
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What means “easy” or “unfeasible” ?

• Easy, Feasible: something computationally solved 
(bound) in polynomial time, as a function of the 
input length
– Input: n bits =>  function proportional to na, with 

pre-known a = fixed constant
– Ex., RSA, DH. DSA: Modular exponentiations with 

Functions of class P (Prime Numbers and Properties 
of Functions w/ Prime Numbers)

• Unfeasible: if the effort to compute grows faster 
(much high complexity) than polynomial time
– Ex., RSA, DH, DSA: Prime Factorization of Big 

Numbers (Big Integers) + Computation of Discrete 
Logarithm Problem with very large exponents
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<= Polynomial 
Time

Ex: Modular 
Exponentiation w/
Known Input Parameters,
even using big integers

>>>>> than
Polynomial 
Time

Ex: Solve the discrete
Logarithm Problem given a
a very big number

Computational Cost
“Easy” (feasible)  vs. “Unfeasible”
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Use of Padding Processing for 
Asymmetric Cryptography
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Encryption/Decryption using Public Key Algorithms
• See more (hands-on) in Labs (Use of Public Key 

Algorithms for Secure Encryption Decryption 
constructions in Java JCE)

Key pair:  <Kpub, Kpriv>
C =   { M }Kpub
P =   { C   }Kpriv

• Use of Standardized Padding Methods (ex., RSA-
PKCS#1, RSA-PSS, RSA-OAEP, RFC 5756) for secure 
use in encryption/decryption and for Digital Signatures

Key pair:  <Kpub, Kpriv>
C =   { Padding || M }Kpub
P =   { C  }Kpriv

With no
Padidng

With
Padidng
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Ex., Padding for RSA: PKCS#1
• Form of structured, randomized values, added to plaintext 

M (on the left) before encryption assuring that:
– The M value (as an integer) does not fall into the range 

of insecure plaintexts
– M, once padded, will encrypt to one of a larger number of 

different possible ciphertext numbers !

PKCS#1 (RSA Security inc., Recommendation/Standard):
• But (up to version 1.5) is not recommended today  as a way to 

add high enough level of security, should be replaced 
wherever possible

• PKCS#1 – also incorporates processing schemes for 
additional security in RSA-based digital signatures (to see 
later)
– Called PKCS#1 PSS (Probabilistic Signature Scheme)
– … Some other available PSSs based schemes w/ patents 

expired in the period 2009 and 2019
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Example: RSA-OAEP
• Optimal Asymmetric Encryption Padding
• Published at Eurocrypt 2000 (Coron et al., )  Crypto 1998 

(Bleichenbacher et al)
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Digital Signatures
• See more (hands-on) in Labs (Use of Public Key 

Algorithms for Encryption Decryption in Java 
JCE)

Use of Standardized Padding Methods for secure 
Digital Signatures 

Key pair:  <Kpub, Kpriv>

Sig(M) =   { H ( Padding || M ) }Kpriv

Ex: RSA-PKCS#1, RSA-PSS
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RSA PKCS#1 (v1.5)
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RSA PSS (aka PKCS#1 v2, RFC 5756)
Signature

See, ex:
https://de.wikipedia.org/wiki/Probabilistic
_Signature_Scheme
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RSA PSS (aka PKCS#1 v2, RFC 5756)

Signature
Verification
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Practical use in Summary
(See Padding Exercises in next LABs)
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Practical use in summary (Alice > Bob):

E( ) D( )

For Encryption (Confidentiality, Secure Envelopes):

KpubBOB

P

Alg & Padding
Method KprivBOB

Alg & Padding
Method

PConfidential Content

We must use Secure and Standardized Constructions
(provided in available crypto libraries or crypto-provider 
implementations) 
=> TRUSTED COMPUTING BASES !
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Practical use in summary (Alice > Bob):

Sig ( ) V ( )

For Authenticity
(Signed Content w/ Sender Peer-Authenticity Guarantees):

KprivALICE

P

Sig. 
Constructions 
w/ Sec Hashing
and Padding
Parameteriz. KpubALICE

PSigned Content

Must use secure and classified patterns (standards) for 
Digital Signatures and Verifications, involving the combination of 
Asymmetric Crypto Alg., Secure Hash Functions and 
Secure Padding Processing 

Sig. 
Constructions 
w/ Sec Hashing
and Padding
Parameteriz.
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Outline

• Asymmetric cryptography
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA 
– ECC

- - - - - - - - - - - - - -
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Public Key Algorithms
Different algorithms …

Pay attention:
Asymmetric Algorithms are used for their specific purposes 
(and purposes are combined for different secure protocols and 
services), ex:

Encryption/
Decryption

Digital 
Signatures

Key (or Secrets) 
Exchange

RSA, ElGamal
ECC-Curves
Paillier, Cramer-Shoup
Knapsack, …

DSA,
ECDSA
…

DH,
ECDH
…
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RSA: Rivest, Shamir & Adleman, MIT, 1977 
• Best known & widely used and implemented public-key scheme 

– Used as a block cipher or digital signatures
– Digital signatures combining secure hash functions and 

standardized computations: ex., PKCS#N standards
– Hybrid use with symmetric crypto: digitally signed and 

confidential symmetric key-envelopes, combined with 
symmetric encryption

• Based on exponentiation in a finite (Galois) field over integers 
modulo a prime 
– Feasible to compute  Y=XK mod N  (knowing K, X and N)
– Impossible (computationally) to compute X from Y, N and K
– nb. exponentiation takes O((log n)3) operations (feasible) 

• Uses large integers (eg. 1024, 2048, 4096 bits)
• Security due to cost of factoring large numbers 

– nb. factorization takes O(e log n log log n) operations (hard) 
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RSA and Math involved
• Number theory, Math involved:

– Prime numbers, factorization
– Relatively primes and its properties:

• Ex., GCD

– Fermat theorem
– Euler theorem and Euler Totient Function ø(n)
– Primality testing

• Ex.,Miller-Rabin algorithm and prime distribution or estimation

– CRT (Chinese Reminder Theorem)
– Modular arithmetic and properties
– Primitive roots of integers and primes
– Discrete logarithms (inverse of exponentiation)

• Find i, such that b = ai (mod p),  or i = dloga b (mod p) 
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DH, El Gammal, DSS (or DSA)
• Diffie-Hellman 

– Exchange a secret key securely (secret key 
establishment) or key-agreement

– Unfeasible solution of discrete logarithms (computational 
time and complexity)

• El Gammal
– Block Cipher
– Unfeasible solution of discrete logarithms (computational 

time and complexity)
• Digital Signature Standard (DSS) or DSA

– Initially Make use of the SHA-1 (recent standardization
can use other Hash funcitons (SHA-2 and SHA-3)

– For digital signatures (only), not for encryption or key 
echange

– Also implementable with different asymmetric algorithms
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Elliptic Curve Cryptography
• Elliptic-Curve Cryptography (ECC)

– Good for smaller bit size
– Low confidence level yet, compared with RSA

• A Recent (in going) Story of Weak vs. Strong Curves
– Complexity, Reputation growing

• Majority of public-key crypto (RSA, D-H) use either integer or 
polynomial arithmetic with very large numbers/polynomials

• Imposes a significant load in storing and processing keys and 
messages

• ECC appears as an alternative for offering same security with 
smaller bit sizes

• Newer, but not as well (crypt)analyzed // Ongoing Research
• Standardization problem: different ECC curves and 

characteristics
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Comparable Key Sizes for Equivalent Security

Symmetric scheme
(key size in bits)

ECC-based scheme
(size of n in bits)

RSA, DSA
(modulus size in bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360

Computational effort for cryptanalysis
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Other Public-Key Algorithms …

Other public-key algorithms:
• Knapsack, Pohlig-Hellman, Rabin, McEliece, LUC, Finite 

Automaton, Paillier, etc.

Public-Key signature algorithms:
• DSA variants, GOST, Discrete Logarithm Variants, 
• Ong-Schnorr-Shamir, ESIGN, etc.

See also:
Bruce Schneier, Applied Cryptography, Wiley, 2006
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See more (hands-on) in LABs (Java, JCE)
Practical Use

• RSA Enc/Dec w/ Padding (PKCS#1 and OAEP)
• PKCS#1, PSS Padded Digital Signatures w/ RSA
• ElGamal Enc/Dec w/ Padding
• Use od DSA and ECDSA (Elliptic Curve) Digital Signatures
• Construction of Secure and Authenticated Envelopes

– Public Key Envelopes for Distribution of Symmetric Keys 
and Security Association Parameters

– Key-Wrapping (Protection) Techniques
– Protection of Private Keys wrapped w/ Symmetric 

Encryption Keys
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Outline

• Asymmetric cryptography
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA 
– ECC

- - - - - - - - - - - - - -
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The RSA Algorithm – Key Generation

1. Select p,q p and q both prime (secrets)
2. Calculate n = p x q   
3. Calculate
4. Select integer e
5. Calculate d
6. Public Key Kpub = {e,n}
7. Private key Kpriv = {d,n}

)1)(1()( --=F qpn
)(1;1)),(gcd( neen F<<=F

)(mod1 ned F= -

Key pair generation (summary and simple example)

1) Ex., 7, 17 2) n = 7 x 17 = 119 3)  ø(n) = 6 x 16 = 96
4) e = 5, gcd(96, 5) = 1,  com  1 < 5 < 96
5) 5xd = 1 x mod 96,  com d< 96    d=77

5 x 77 = 385 , notar que 4x96+1 =385     

Kpub = (5,   119)

Kpriv = (77, 119)
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The RSA Algorithm: Encryption/Decryption

• Plaintext: M<n
• Ciphertext: C = Me (mod n)

• Ciphertext: C
• Plaintext: M = Cd (mod n)

Encryption: C = {P}Kpub

Decryption: P = {C}Kpriv

Kpub = (5,   119) Kpriv = (77, 119)

Ex., M = 19 C= 66 M= 19
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Another RSA Example - Key Setup

1. Select primes: p=17 & q=11  (secrets)
2. Compute n = pq =17x11=187
3. Compute ø(n)=(p–1)(q-1)=16x10=160
4. Select e: gcd(e,160)=1; choose e=7
5. Determine d: de=1 mod 160

and d < 160 Value is d=23 since 
23x7=161= 10x160+1

1. Publish public key Kpub={7,187}
2. Keep secret private key Kpriv={23,187}
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Another RSA Example - Encrypt/Decrypt
• given message M = 88 (nb. 88<187)
• encryption:

C = 887 mod 187 = 11

• decryption:
M = 1123 mod 187 = 88
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More about RSA
• See W. Stallings, Network Security 

Essentials
– Chap. 3 – Public Key Cryptography and Message 

Authentication
• See, Sections 3.4 to 3.6
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Security vs Practical Use (ex. RSA)
Security considerations
• Math Attacks: 

– Evolving Methods for Optimization in Factoring 
the product of two big primes and relatively 
primes

SP 800-131A EU Regulations for Security 
(Transitions: Recommendation for Transitioning 
of Cryptographic Algorithms and Key Lenghts, 
2015): Use of 2048 bit keys for RSA

EU Agency for Network and Information Security 
: Algorithms, Key Size and Parameters Report), 
Nov 2014): use of 3072 bit keys for RSA
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Security vs Practical Use (ex. RSA)
Security considerations
• Timing Attacks

– Inference of Key Sizes from running time of 
decryption 

– Can be masked if needed, introducing random 
processing-delay

• Chosen Ciphertext Attacks (or Oracle Attacks)
– Selection of Data Blocks to be processed by the 

Private Key for the purpose of cryptanalysis 
– These attacks must be avoided using Strong Padding 

Schemes
– Also relevant to avoid the “low exponentiation 

problems”: large blocks and large keys
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Other sources to learn about RSA
• Summary of Math behind (see also additional slides in this 

presentation)
• Other sources: wikipedia article: 

https://en.wikipedia.org/wiki/RSA_(cryptosystem), is ok
• Math background and practical issues
• Relevance of Padding and attacks against plain RSA 

(without padding):
– Low encryption exponents  e
– Small values for plaintext values  M  (M < N1/e )

• Causes: that me is strictly smaller than modulus N
– Problems of sharing similar exponents, using the CRT (The 

Coopersmith Attack)
– Exploiting the deterministic nature of encryption (non 

semantically security)
– Exploiting the multiplication homomorphism of the RSA 

encryption

https://en.wikipedia.org/wiki/RSA_(cryptosystem
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Outline

• Asymmetric cryptography
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA 
– ECC

- - - - - - - - - - - - - -
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Diffie-Hellman Key Exchange
• First public-key type scheme:

– Diffie & Hellman in 1976 along with the exposition of public 
key concepts

• Note: now know that Williamson (UK CESG) secretly proposed 
the concept in 1970 

• Practical method for public exchange of a secret key k
between two principals: A and B
– Never exposing k:  key generated independently by A and B

• Key-Agreement without key exposition
– No pre-shared secrets between A and B
– PFS and PBS warranties
– Can be extended to groups of proncipals (A,B,C.D, …. etc)

• Used in many security standard protocols and today in 
several commercial products

New Directions in Cryptography,  IEEE TRANSACTIONS ON INFORMATION THEORY, 
Vol IT 22, N. 6. Nov 1976, https://ee.stanford.edu/~hellman/publications/24.pdf
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Diffie-Hellman Key Exchange
• It is a public-key scheme for use as a key (or secret) 

distribution scheme 
– Cannot be used to exchange an arbitrary message (not an 

encryption method)
– Rather it can establish a common key, known only to the two 

participants
– The common established key can be used as a shared and 

contributive secret key for the generation of key session

• Value of key depends on (and only on) the participants 
(and their private and public DH parameters) 
– D-H Private and Public Numbers + Initial (non-secret) setup 

parameters
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Diffie-Hellman Security and Math Behind

• Based on exponentiation in a finite (Galois) field 
(modulo a prime or a polynomial)

Easy to compute ! (computationally feasible)

• Security relies on the difficulty of computing 
discrete logarithms (similar to factoring)

Hard to compute (computationally unfeasible) 
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Diffie-Hellman: foundations (1)
• Global parameters:

– q: a large prime integer
– a: a primitive root mod q

• In modular arithmetic, a primitive root mod q is any 
number a that:
– Any number b (integer) relatively prime to q is congruent 

to a power ai mod q  i.e.,   bq ai mod q

– a is called the generator of a multiplicative group of 
integers modulo q

– a
i
mod q, where 0 <= i <= (q-1) generates all the 

integers between 1 and q-1,in some permutation order 
– For any integer b < q there is a unique exponent integer i

such that b = a
i
mod q

– Such i is called the index or 
the discrete logarithm of b
for the base a (mod q) 

i = dlog a,q(b)
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Diffie-Hellman: foundations (2)
• Considering i the discrete logarithm for which:
ai mod q = b, taking a and q (as known parameters)

– It is simple to calculate b, knowing i
– It is very hard to calculate i only knowing b, a and p

– This implies the computation of the discrete logarithm: no 
efficient solution (computational impossibility)

• Hard, above polynomial complexity
• Linear to a, computational complexity equivalent to a^I

From modular arithmetic properties for a, p and any value i=R : 
a
R
mod q = a

R1.R2
mod q

=( a
R1
mod q ) ( a

R2
mod q )  

= (a
R1

mod q)
R2

mod q
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Diffie-Hellman Setup and Agreement
• If A and B share the global parameters a and q, 

being a a primitive root modulo q
• A and B generate their (private, public) pairs:

– selects a random private secret number: x<q
– Principal A computes: yA = a

XA mod q and makes public yA
as a public number. The principal does the same
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Diffie-Hellman Key Exchange
• Shared session key for users A & B is KAB: 

KAB = a
xA.xB mod q

= yA
xB mod q (which B can compute) 

= yB
xA mod q (which A can compute) 

• KAB is used as session key in secret-key sharing  
encryption scheme between Alice and Bob

• If Alice and Bob subsequently communicate, they 
will have the same key as before, unless they choose 
new public-numbers for new D-H agreement
– Successive D-H agreements for rekeying of KAB
– PFS and PBS conditions warranted

• Note) It is possible to make generalized D-H 
agreements, extended to a group of N



© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 75

Diffie-Hellman Example 
• Users Alice & Bob who wish to swap keys:
• Ex., agree on prime q=353 and a=3

• Select random secret numbers:
– A chooses xA=97, B chooses xB=233

• Compute respective the public numbers:
– yA=397 

mod 353 = 40 (Alice)
– yB=3233

mod 353 = 248 (Bob)
• Compute shared session key as:

– KAB= yB
xA mod 353 = 24897

= 160 (Alice)
– KAB= yA

xB mod 353 = 40233
= 160 (Bob)

• PFS and PBS, without knowing the private numbers 
(never exposed) and without any previous shared 
secret or long-time duration secrets
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Diffie-Hellman Key Echange (example)

Xa=97 < 353

Xb=233 < 353

YA= 
397mod 353=40

YB= 3233mod 353=248

= 40

= 248
yB

xA mod 353 
= 24897mod 353 
= 160
Kab = 160

yA
xB mod 353 

= 40233mod 353 
= 160
Kba = 160

q = 353,  a=3 q = 353,  a=3Shared Values
q = 353,  a=3

Mallory

Alice Bob
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M={C}’KC={M}K

So Far so good ! 

YA

YB

KA = YB^XA mod q KB = YA^XB mod q
KA = KB = K

M
IM

But what if there is a MiM Attack?

Secure Channel
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M={C}KC={M}K

D-H with a MIM Attack

XD1
YD1=a^XD1 mod q

YA
YD1

XD2
YD2=a^XD2 mod q

YD2
YBM

IM

KA=YD2^XA mod q KB=YD1^XB mod qKA=YA^XD2 mod q

C={M}KA
M={C}KA

C={M}KB
C={M}KB

KB=YB^XD1 mod q
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The DH Authentication Problem

• Users could create random private/public D-H keys 
each time they communicate

• Users could create a known private/public D-H key and 
publish in a directory, then consulted and used to 
securely communicate with them
– Ephemeral D-H Agreement (EDH)

– Fixed D-H Agreement (FDH)

• Both of these are vulnerable to a possible Meet-in-the-
Middle (MIM) Attack
– Why ? 

• Anonymous D-H agreement (ADH)
• Authentication of the exchanged values is needed

– So, you will need Authenticated D-H agreements
– How ?
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Possible solution: Authenticated Key-Agreement

• Combination of D-H with another Public-Method 
allowing Digital Signatures covering the public D-H 
numbers exchanged by the principals involved

• Principle (in the DH-agreement):

Alice sends to Bob   SignKprivA(Ya)
Bob recognizes the signature and believes that Ya is an 
authentic DH public number generated by Alice

Bob sends to Alice   SignKprivB(Ya)
Alice recognizes the signature and believes that Yb is an 
authentic DH public number generated by Bob
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Authenticated Key-Exchange using Digital Signatures

• We can use a public-key (asymmetric) method to support 
digital signatures to authenticate public Diffie-Hellman 
public numbers
– Exampled: RSA Signatures, DSA Signatures, ECC-DSA 

Signatures etc…

• After the authenticated D-H exchange, the session key 
must be established independently by the principals 
involved
– No problem with seed materials passing in the channel (public 

D-H numbers are public !!!)
– Contributive key generation (or contributive rekeying), with 

PFC and BFS guarantees
• Perfect security with key generation control and key (or 

rekeying) independence
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Multiparty DH Agreements
• DH Agreement is easily extensible for key-

establishment protocols for multi-party 
environments

• Why ?

• Group-Diffie Hellman Schemes
– We will see this in action later, in a demo implementation 

in practical classes (See Practical Labs)
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Security of D-H

• The choice of G (cyclic group generator) 
and the generated element g
– The order of G must be large enough ! 

Particularly in the case that the same group 
used for large amounts of traffic

– G should have a large prime factor 
• Prevents optimized forms of solving the discrete 

logarithm problem (ex., Pohlig-Hellman Algorithm)
– Key point is the generation of private numbers 

with no secure random generators 
– Avoidance of using repeated DH numbers: 

trade-off between security, performance and 
usability
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Security of D-H

State-of art (The best Discrete Logarithm Algorithms, 
ex., Number Field Sieve): Complexity => computational 
impossibility 
• Today: DH numbers of 2048, …. 3072 bits !
• Recommendation: signatures w/ ECDH, using a group generator 

for P at least w/ 2048 bits

• Generation process for <public, private> DH numbers 
can be hard (harder for big modulus and big prime 
number generation/verification)
– In practice, cam use pre-generated parameters ! (Pre-

selected parameters in standard protocols)
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Diffie-Hellman Agreements:
Practical verifications
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Example: DH using openssl (1)
Need Global Parameters (G, Prime)

openssl genpkey -genparam -algorithm DH -out dhp.pem

Remember, these PUBLIC Global Parameters (no problem
to be known by anybody), that Alice and Bob will be
shared for the DH Agreement

Now Alice and Bob will generate theitr own pairs 
<private, public>
Alice:
openssl genpkey -paramfile dhp.pem -out dhkey2.pem

Bob:
openssl pkey -in dhkey2.pem -text -noout
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Example: DH using openssl (2)
Now will extract the public numbers

Alice:
openssl pkey -in dhkey1.pem -pubout -out dhpub1.pem

Public Nr from Alice:
openssl pkey -pubin -in dhpub1.pem -text

Bob
openssl pkey -in dhkey2.pem -pubout -out dhpub2.pem

Public Nr from Alice:
openssl pkey -pubin -in dhpub2.pem -text
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Example: DH Agreement
• Given the public numbers echanged ... Can compute 

the shared key:

Alice:
openssl pkeyutl -derive -inkey dhkey1.pem -peerkey dhpub2.pem 
-out secret1.bin

Bob:
openssl pkeyutl -derive -inkey dhkey2.pem -peerkey dhpub1.pem 
-out secret1.bin

See the both independent computations: 
cmp secret1.bin  secret2.bin   (or diff)

See what is inside with  od (octal dump) 
or xxd (hexadecimal dump)
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Example: DH using openssl (Size Impact)
Generation of public parameters today 
(In this case we generate a prime w/ different bit sizes)

openssl dhparam -out dhparams.pem 256          Tens of ms
openssl dhparam -out dhparams.pem 512           hund. ms to some sec.
openssl dhparam -out dhparams.pem 1024         Tens of sec.
openssl dhparam -out dhparams.pem 2048         Some-Tens of Minutes
openssl dhparam -out dhparams.pem 4096         L (((
….

What is the lesson leaned here ?

(*)  MAC Book Pro (Late 2013)  Intel Core i7, 2,3GHz
Openssl running on Mac OS Mojave 10.4

(*)
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In Labs
• We will see also how to program w/ DH primitives 

(Java /JCE ) in Lab:
– Two Way DH Agreement
– How to generalize to 3, 4 … N particioants

• Will see also ECDH Agreements
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Outline

• Asymmetric cryptography
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA 
– ECC

- - - - - - - - - - - - - -
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DSA
DSA, (Aug/1991) : Digital Signature Standard promoted by 
NIST under the designation: DSS – Digital Signature Standard 
(Standard FIPS 186-3, June 2009, 186-4 rev 2013)

(A variant of  Schnorr and El Gammal Crypto. but specifcally targetd
for digital signatures only  : similar to El Gammal Signatures

Ref:
https://en.wikipedia.org/wiki/Digital_Signature_
Algorithm

https://csrc.nist.gov/publications/detail/fips/186
/4/final

https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://csrc.nist.gov/publications/detail/fips/186/4/final
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DSA Parameterizations

H( ) : Secure hash function
• SHA 1, SHA 2 promoted in the standardization of 

DSS signature constructions

Two prime numbers: p (L bits) and q (N bits):
p-1 must be multiple of q

Must choose g, such that gq = 1 . mod p

So we have these shared parameters: p, q and g
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DSA Security Conditions
Decisions on the key length L and N. This is the primary 
measure of the criptographic strength of the used key

The original DSS constrained L to be a multiple of 64, 
between 512 and 1,024 (inclusive). 

NIST 800-57 recommendation for lengths of 2,048 (or 
3,072) for keys with security lifetimes extending beyond 
2010 (or 2030), using correspondingly longer N

FIPS 186-3 specifies L and N length pairs of (1,024, 160), 
(2,048, 224), (2,048, 256), and (3,072, 256). 
N must be less than or equal to the output length of the 
hash H.
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DSA Keys

Key pair (Kpriv, Kpub)

• Kpriv, chosen as a secret random, in such a 
way that 1 < Kpriv < q

• Kpub, chosen as: Kpub = gKpriv mod p



© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 96

DSA Signature Construction

1. Generate a random per-message value k, 
with 1 < k < q 

2. Compute r =  ( gk mod p ) mod q
if r=0, regenerate the random k

3. Compute s = k-1 ( H(M) + xr ) mod 1
if s = 0, regenerate the random k

4. If s !=0 => the Sig(M) = ( r, s )

… So we need initial parameters: p, q and g
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DSA Parameters involved

Alice Bob

Validation

M || ( r, s )

Initial
Shared Parameters: p, q, g

KpubAlice

DSA Signature
Construction
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DSA Signature Verification

Received M, (r,s) … and knowing p, k, g and KpubAlice

1. We must reject a signature 

if 0 < r < q  or     0 < s < q

2. Compute w = s-1 mod q

3. Compute u1 = H(M) .  w  mod q

4. Compute u2 = r . w mod q

5. Compute v = ( gu1 gu2 mod p )  mod q

6. If  v = r signature is valid ! Otherwise not valid !
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DSA Practical Observations
• DSA Signature Verification tend to be slowly 

compared with RSA, Signatures tend to be faster

• Sizes of signatures are shorter (and may have 
variable sizes)
– Can see this effect in LABs
– In RSA, the signature size is proportional to the key 

sizes and related modulo N (See the RSA algorithm)
– In DSA, depending on the parameters, can appear usually 

with 40 bytes but the standard representation (ASN.1) 
expands the signature to 44 – 48 bytes, plus 3 byres for 
bitstrng encoding. So you can expect: 47 to 51 bytes 

• In general, the DSA “keypair” generation process 
is faster than RSA (keys w/ same size)
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Ex: openssl benchmark (Sign vs. Verif)
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Outline

• Asymmetric cryptography
– Public-Key cryptography principles
– Public-Key algorithms
– RSA algorithm

• Key-Pair Generation and Encryption/Decryption
– Diffie-Hellman key exchange

– DSA 
– ECC

- - - - - - - - - - - - - -
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ECC: Elliptic Curve Cryptography
• Not one … But many Elliptic Curves !
• Different Curves => Different levels of security 

and => Different computation complexity

• Elliptic Curve (EC) systems as applied to 
cryptography: first proposed in 1985 
independently by Neal Koblitz and Victor Miller.

• The discrete logarithm problem on elliptic curve 
groups is believed to be more difficult than the 
corresponding problem in (the multiplicative group 
of nonzero elements of) the underlying finite 
field. 
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Definition of Elliptic curves

• An elliptic curve over a field  K is a  nonsingular cubic 
curve in two variables, f(x,y) =0 with a  rational point 
(which may be a point at infinity). 

• The field  K is usually taken to be the complex 
numbers, reals, rationals, algebraic extensions of 
rationals, p-adic numbers, or a finite field.
– ABELIAN Groups

• Elliptic curves groups for cryptography are examined 
with the underlying fields of Fp (where p>3 is a prime) 
and F2

m (a binary representation with 2m elements). 
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Abelian Groups

• P + Q = Q + P (commutativity)

• (P + Q) + R = P + (Q + R) (associativity)

• P + O = O + P = P (existence of an identity element) 

• there exists ( − P) such that − P + P = P + ( − P) 
= O (existence of inverses)

Given two points P,Q in E(Fp), there is a third 
point, denoted by P+Q on  E(Fp), and the 
following relations hold for all  P,Q,R in E(Fp)
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Elliptic Curve Picture

• Consider elliptic curve
E: y2 = x3 - x + 1

• If P1 and P2 are on E, we 
can define 

P3 = P1 + P2
as shown in picture

• Addition is all we need

P1
P2

P3

x

y
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Addition in Affine Co-ordinates

x

y

1 1 2 2

3 3

( , ), ( , )
( ) ( , )

P x y Q x y
R P Q x y
= =
= + =

y=m(x-x1)+y1

2 1

2 1

2 3
1 1
3 2 2

2
3 1 2

3 1 2 1

;

To find the intersection with E. we get
( ( ) )

,0 ...
,

( )

y ym
x x

m x x y x Ax B
or x m x
So x m x x
y m x x y

-
=

-

- + = + +

= - +

= - -
Þ = - -

Let, P≠Q,

y2=x3+Ax+B
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Doubling of a point

• Let, P=Q

• What happens when P2=∞?

2

2
1

1

1 1 2
3 2 2

2
3 1 3 1 3 1

2 3

3
2

, 0 (since then P +P = ):
0 ...

2 , ( )

dyy x A
dx

dy x Am
dx y

If y
x m x

x m x y m x x y

= +

+
Þ = =

¹ ¥

\ = - +

Þ = - = - -



© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 108

Why do we need the reflection?

P2=O=∞

P1

y

P1=P1+ O=P1
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What Is Elliptic Curve Cryptography (ECC)?

• Elliptic curve cryptography [ECC] is a public-key
cryptosystem just like RSA, Rabin, and El Gamal.

• Every user has a public and a private key.
– Public key is used for encryption/signature 

verification.
– Private key is used for decryption/signature 

generation.
• Elliptic curves are used as an extension to other 

current cryptosystems.
– Elliptic Curve Diffie-Hellman Key Exchange
– Elliptic Curve Digital Signature Algorithm
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Using Elliptic Curves In Cryptography

• The central part of any cryptosystem involving elliptic 
curves is the elliptic group.

• All public-key cryptosystems have some underlying 
mathematical operation.
– RSA has exponentiation (raising the message or 

ciphertext to the public or private values)
– ECC has point multiplication (repeated addition of two 

points).



© DI/FCT/UNL, Henrique Domingos, 2020/2021 Public-Key Cryptography - Slide 111

Generic Procedures of ECC
• Both parties agree to some publicly-known data items

– The elliptic curve equation
• values of a and b
• prime, p

– The elliptic group computed from the elliptic curve 
equation

– A base point, B, taken from the elliptic group
• Similar to the generator used in current 

cryptosystems
• Each user generates their public/private key pair

– Private Key = an integer, x, selected from the 
interval [1, p-1]

– Public Key = product, Q, of private key and base 
point 

• (Q = x*B)
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Operations in ECCs
• After that we can model and implement any other 

conventional operation (as in DSA, DH or RSA) 
with additions and multiplicatioons and modular 
constructions
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Why use ECC?
• How do we analyze Cryptosystems?

– How difficult is the underlying problem that it 
is based upon

• RSA – Integer Factorization
• DH – Discrete Logarithms
• ECC - Elliptic Curve Discrete Logarithm problem

– How do we measure difficulty?
• We examine the algorithms used to solve these 

problems
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Security of ECC

• To protect a 128 bit AES 
key it would take a:
– RSA Key Size: 3072 

bits
– ECC Key Size: 256 bits

• How do we strengthen 
RSA?
– Increase the key 

length
• Impractical?
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Applications of ECC
• Many devices are small, with limited resources (store, 

computational power and energy)
• Where can we apply ECC?

– Wireless communication devices
– Edge computing devices 
– Smart cards, Smart tokens
– Mobile phonee, avoiding energy, stiorage anc

computatioal costs
– Web servers that need to handle many session-contexts 

(very high scale-in vs high levels of concurrency) 

– Any application where security is needed but lacks the 
power, storage and computational power that is 
necessary for our current cryptosystems
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Benefits of ECC
• Same benefits of the other cryptosystems: 

confidentiality, integrity, authentication 
and non-repudiation but…

• Shorter key lengths
– Encryption, Decryption and Signature 

Verification speed up
– Storage and bandwidth savings
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Summary of ECC

• “Hard problem” analogous to discrete log
– Q=kP, where Q,P belong to a prime curve

given k,P à “easy” to compute Q
given Q,P à “hard” to find k

– known as the elliptic curve logarithm problem
• k must be large enough

• ECC security relies on elliptic curve 
logarithm problem
– compared to factoring, can use much smaller key 

sizes than with RSA etc
è for similar security ECC can offer 

significant computational advantages
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Some ECC Concerns

• Political concerns: the trustworthiness of NIST -
produced curves being questioned after 
revelations that the NSA willingly inserts 
backdoors into software, hardware components 
and published standards were made; 
– well-known respectable cryptographers have expressed 

doubts about how the NIST curves were designed, and 
voluntary tainting has already been proved in the past.

• Technical concerns: the difficulty to properly 
implement the standard and the slowness and 
design flaws which reduce security in 
insufficiently precautions implementations on 
random number generations
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Readings

• William Stallings, Network Security Essentials, 4rd Edition, 
2011, Part One – Cryptography,  Chap.3

• William Stallings, W. Cryptography and Network Security: 
Principles and Practice, Chap. 9, Pearson - Prentice Hall, 7th

Ed. , 2017

• More (for complementary interests)
Bruce Schneier, Applied Cryptography, New York: Wiley, 
1996, Chap. 

Fore more detail:


