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LEARNING OBJECTIVES

After studying this chapter, you should be able to:

◆ Discuss the four general means of authenticating a user’s identity.
◆ Explain the mechanism by which hashed passwords are used for user 

 authentication.
◆ Understand the use of the Bloom filter in password management.
◆ Present an overview of token-based user authentication.
◆ Discuss the issues involved and the approaches for remote user authentication.
◆ Summarize some of the key security issues for user authentication.

For example, user Alice Toklas could have the user identifier ABTOKLAS. This 
information needs to be stored on any server or computer system that Alice wishes 
to use and could be known to system administrators and other users. A typical item 
of  authentication information associated with this user ID is a password, which is 
kept  secret (known only to Alice and to the system)1. If no one is able to obtain or 
guess Alice’s password, then the combination of Alice’s user ID and password ena-
bles  administrators to set up Alice’s access permissions and audit her activity. Because 
Alice’s ID is not secret, system users can send her e-mail, but because her password is 
secret, no one can pretend to be Alice.

In essence, identification is the means by which a user provides a claimed identity 
to the system; user authentication is the means of establishing the validity of the claim. 
Note that user authentication is distinct from message authentication. As  defined in 
Chapter 2, message authentication is a procedure that allows communicating parties 
to verify that the contents of a received message have not been  altered and that the 
source is authentic. This chapter is concerned solely with user authentication.

 In most computer security contexts, user authentication is the fundamental build-
ing block and the primary line of defense. User authentication is the basis for most 
types of access control and for user accountability. RFC 4949 defines user authenti-
cation as follows:

1Typically, the password is stored in hashed form on the server and this hash code may not be secret, as 
explained subsequently in this chapter.

The process of verifying an identity claimed by or for a system entity.  
An  authentication process consists of two steps:

● Identification step: Presenting an identifier to the security system. (Identifiers 
should be assigned carefully, because authenticated identities are the basis for 
other security services, such as access control service.)

● Verification step: Presenting or generating authentication information that 
corroborates the binding between the entity and the identifier. 
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This chapter first provides an overview of different means of user authentication 
and then examines each in some detail.

  3.1 ELECTRONIC USER AUTHENTICATION PRINCIPLES

NIST SP 800-63-2 (Electronic Authentication Guideline, August 2013) defines elec-
tronic user authentication as the process of establishing confidence in user iden-
tities that are presented electronically to an information system. Systems can use 
the authenticated identity to determine if the authenticated individual is authorized 
to perform particular functions, such as database transactions or access to system 
resources. In many cases, the authentication and transaction or other authorized 
function take place across an open network such as the Internet. Equally authen-
tication and subsequent authorization can take place locally, such as across a local 
area network.

A Model for Electronic User Authentication

SP 800-63-2 defines a general model for user authentication that involves a number 
of entities and procedures. We discuss this model with reference to Figure 3.1.

The initial requirement for performing user authentication is that the user must 
be registered with the system. The following is a typical sequence for registration. An 
applicant applies to a registration authority (RA) to become a subscriber of a creden-
tial service provider (CSP). In this model, the RA is a trusted entity that establishes 
and vouches for the identity of an applicant to a CSP. The CSP then engages in an 
exchange with the subscriber. Depending on the details of the overall authentica-
tion system, the CSP issues some sort of electronic credential to the subscriber. The 
credential is a data structure that authoritatively binds an identity and additional 
attributes to a token possessed by a subscriber, and can be verified when presented 
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to the verifier in an authentication transaction. The token could be an encryption 
key or an encrypted password that identifies the subscriber. The token may be issued 
by the CSP, generated directly by the subscriber, or provided by a third party. The 
token and credential may be used in subsequent authentication events.

Once a user is registered as a subscriber, the actual authentication process can 
take place between the subscriber and one or more systems that perform authen-
tication and, subsequently, authorization. The party to be authenticated is called a 
claimant and the party verifying that identity is called a verifier. When a claimant 
successfully demonstrates possession and control of a token to a verifier through an 
authentication protocol, the verifier can verify that the claimant is the subscriber 
named in the corresponding credential. The verifier passes on an assertion about the 
identity of the subscriber to the relying party (RP). That assertion includes identity 
information about a subscriber, such as the subscriber name, an identifier assigned 
at registration, or other subscriber attributes that were verified in the registration 
process. The RP can use the authenticated information provided by the verifier to 
make access control or authorization decisions.

An implemented system for authentication will differ from or be more com-
plex than this simplified model, but the model illustrates the key roles and functions 
needed for a secure authentication system.

Means of Authentication

There are four general means of authenticating a user’s identity, which can be used 
alone or in combination:

� r� Something the individual knows: Examples includes a password, a personal 
identification number (PIN), or answers to a prearranged set of questions.

� r� Something the individual possesses: Examples include electronic keycards, 
smart cards, and physical keys. This type of authenticator is referred to as a 
token.

� r� Something the individual is (static biometrics): Examples include recognition 
by fingerprint, retina, and face.

� r� Something the individual does (dynamic biometrics): Examples include recog-
nition by voice pattern, handwriting characteristics, and typing rhythm.

All of these methods, properly implemented and used, can provide secure user 
authentication. However, each method has problems. An adversary may be able to 
guess or steal a password. Similarly, an adversary may be able to forge or steal a 
token. A user may forget a password or lose a token. Further, there is a significant 
administrative overhead for managing password and token information on systems 
and securing such information on systems. With respect to biometric authenticators, 
there are a variety of problems, including dealing with false positives and false nega-
tives, user acceptance, cost, and convenience.

Risk Assessment for User Authentication

Security risk assessment in general is dealt with in Chapter 14. Here, we introduce 
a specific example as it relates to user authentication. There are three separate 
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concepts we wish to relate to one another: assurance level, potential impact, and 
areas of risk.

ASSURANCE LEVEL An assurance level describes an organization’s degree of 
certainty that a user has presented a credential that refers to his or her identity. 
More specifically, assurance is defined as (1) the degree of confidence in the vetting 
process used to establish the identity of the individual to whom the credential was 
issued and (2) the degree of confidence that the individual who uses the credential is 
the individual to whom the credential was issued. SP 800-63-2 recognizes four levels 
of assurance:

� r� Level 1: Little or no confidence in the asserted identity’s validity. An example 
of where this level is appropriate is a consumer registering to participate in 
a discussion at a company web site discussion board. Typical authentication 
technique at this level would be a user-supplied ID and password at the time 
of the transaction.

� r� Level 2: Some confidence in the asserted identity’s validity. Level 2 creden-
tials are appropriate for a wide range of business with the public where organi-
zations require an initial identity assertion (the details of which are verified 
independently prior to any action). At this level, some sort of secure authenti-
cation protocol needs to be used, together with one of the means of authenti-
cation summarized previously and discussed in subsequent sections.

� r� Level 3: High confidence in the asserted identity’s validity. This level is appro-
priate to enable clients or employees to access restricted services of high value 
but not the highest value. An example for which this level is appropriate:  
A patent attorney electronically submits confidential patent information to 
the U.S. Patent and Trademark Office. Improper disclosure would give com-
petitors a competitive advantage. Techniques that would need to be used at 
this level require more than one factor of authentication; that is, at least two 
independent authentication techniques must be used.

� r� Level 4: Very high confidence in the asserted identity’s validity. This level is 
appropriate to enable clients or employees to access restricted services of very 
high value or for which improper access is very harmful. For example, a law 
enforcement official accesses a law enforcement database containing criminal 
records. Unauthorized access could raise privacy issues and/or compromise 
investigations. Typically, level 4 authentication requires the use of multiple 
factors as well as in-person registration.

POTENTIAL IMPACT A concept closely related to that of assurance level is potential 
impact. FIPS 199 (Standards for Security Categorization of Federal Information and 
Information Systems, 2004) defines three levels of potential impact on organizations 
or individuals should there be a breach of security (in our context, a failure in user 
authentication):

� r� Low: An authentication error could be expected to have a limited adverse 
effect on organizational operations, organizational assets, or individuals. More 
specifically, we can say that the error might: (1) cause a degradation in mission 
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capability to an extent and duration that the organization is able to perform its 
primary functions, but the effectiveness of the functions is noticeably reduced; 
(2) result in minor damage to organizational assets; (3) result in minor financial 
loss to the organization or individuals; or (4) result in minor harm to individuals.

� r� Moderate: An authentication error could be expected to have a serious 
adverse effect. More specifically, the error might: (1) cause a significant degra-
dation in mission capability to an extent and duration that the organization is 
able to perform its primary functions, but the effectiveness of the functions is 
significantly reduced; (2) result in significant damage to organizational assets; 
(3) result in significant financial loss; or (4) result in significant harm to indi-
viduals that does not involve loss of life or serious life threatening injuries.

� r� High: An authentication error could be expected to have a severe or cata-
strophic adverse effect. The error might: (1) cause a severe degradation in or 
loss of mission capability to an extent and duration that the organization is not 
able to perform one or more of its primary functions; (2) result in major dam-
age to organizational assets; (3) result in major financial loss to the organiza-
tion or individuals; or (4) result in severe or catastrophic harm to individuals 
involving loss of life or serious life threatening injuries.

AREAS OF RISK The mapping between the potential impact and the appropriate 
level of assurance that is satisfactory to deal with the potential impact depends on the 
context. Table 3.1 shows a possible mapping for various risks that an organization 
may be exposed to. This table suggests a technique for doing risk assessment. For 
a given information system or service asset of an organization, the organization 
needs to determine the level of impact if an authentication failure occurs, using the 
categories of impact, or risk areas, that are of concern.

For example, consider the potential for financial loss if there is an authenti-
cation error that results in unauthorized access to a database. Depending on the 
nature of the database, the impact could be:

� r� Low: At worst, an insignificant or inconsequential unrecoverable financial 
loss to any party, or at worst, an insignificant or inconsequential organization 
liability.

Table 3.1 Maximum Potential Impacts for Each Assurance Level

Assurance Level Impact Profiles

Potential Impact Categories for Authentication Errors 1 2 3 4

Inconvenience, distress, or damage to standing or reputation Low Mod Mod High

Financial loss or organization liability Low Mod Mod High

Harm to organization programs or interests None Low Mod High

Unauthorized release of sensitive information None Low Mod High

Personal safety None None Low Mod/
High

Civil or criminal violations None Low Mod High
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� r� Moderate: At worst, a serious unrecoverable financial loss to any party, or a 
serious organization liability.

� r� High: severe or catastrophic unrecoverable financial loss to any party; or se-
vere or catastrophic organization liability.

The table indicates that if the potential impact is low, an assurance level of 1 
is adequate. If the potential impact is moderate, an assurance level of 2 or 3 should 
be achieved. And if the potential impact is high, an assurance level of 4 should be 
implemented. Similar analysis can be performed for the other categories shown in 
the table. The analyst can then pick an assurance level such that it meets or exceeds 
the requirements for assurance in each of the categories listed in the table. So, for 
example, for a given system, if any of the impact categories has a potential impact of 
high, or if the personal safety category has a potential impact of moderate or high, 
then level 4 assurance should be implemented.

 3.2 PASSWORD-BASED AUTHENTICATION

A widely used line of defense against intruders is the password system. Virtually all 
multiuser systems, network-based servers, Web-based e-commerce sites, and other 
similar services require that a user provide not only a name or identifier (ID) but 
also a password. The system compares the password to a previously stored pass-
word for that user ID, maintained in a system password file. The password serves 
to  authenticate the ID of the individual logging on to the system. In turn, the ID 
provides security in the following ways:

 r The ID determines whether the user is authorized to gain access to a system. 
In some systems, only those who already have an ID filed on the system are 
 allowed to gain access.

 r� The ID determines the privileges accorded to the user. A few users may have 
supervisory or “superuser” status that enables them to read files and perform 
functions that are especially protected by the operating system. Some systems 
have guest or anonymous accounts, and users of these accounts have more 
 limited privileges than others.

 r� The ID is used in what is referred to as discretionary access control. For exam-
ple, by listing the IDs of the other users, a user may grant permission to them 
to read files owned by that user.

The Vulnerability of Passwords

In this subsection, we outline the main forms of attack against password-based 
 authentication and briefly outline a countermeasure strategy. The remainder of 
Section 3.2 goes into more detail on the key countermeasures.

Typically, a system that uses password-based authentication maintains a 
 password file indexed by user ID. One technique that is typically used is to store 
not the user’s password but a one-way hash function of the password, as described 
 subsequently.
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We can identify the following attack strategies and countermeasures:

 r Offline dictionary attack: Typically, strong access controls are used to pro-
tect the system’s password file. However, experience shows that determined 
hackers can frequently bypass such controls and gain access to the file. The 
attacker obtains the system password file and compares the password hashes 
against hashes of commonly used passwords. If a match is found, the  attacker 
can gain access by that ID/password combination. Countermeasures include 
controls to prevent unauthorized access to the password file, intrusion detec-
tion measures to identify a compromise, and rapid reissuance of passwords 
should the password file be compromised.

 r� Specific account attack: The attacker targets a specific account and submits 
password guesses until the correct password is discovered. The standard coun-
termeasure is an account lockout mechanism, which locks out access to the 
account after a number of failed login attempts. Typical practice is no more 
than five access attempts.

 r� Popular password attack: A variation of the preceding attack is to use a popu-
lar password and try it against a wide range of user IDs. A user’s tendency 
is to choose a password that is easily remembered; this unfortunately makes 
the password easy to guess. Countermeasures include policies to inhibit the 
 selection by users of common passwords and scanning the IP addresses of 
 authentication requests and client cookies for submission patterns.

 r� Password guessing against single user: The attacker attempts to gain knowl-
edge about the account holder and system password policies and uses that 
knowledge to guess the password. Countermeasures include training in and 
enforcement of password policies that make passwords difficult to guess. 
Such policies address the secrecy, minimum length of the password, character 
set, prohibition against using well-known user identifiers, and length of time 
before the password must be changed.

 r� Workstation hijacking: The attacker waits until a logged-in workstation is 
unattended. The standard countermeasure is automatically logging the work-
station out after a period of inactivity. Intrusion detection schemes can be 
used to detect changes in user behavior.

 r� Exploiting user mistakes: If the system assigns a password, then the user is 
more likely to write it down because it is difficult to remember. This situation 
creates the potential for an adversary to read the written password. A user 
may intentionally share a password, to enable a colleague to share files, for 
example. Also, attackers are frequently successful in obtaining passwords by 
using social engineering tactics that trick the user or an account manager into 
revealing a password. Many computer systems are shipped with preconfigured 
passwords for system administrators. Unless these preconfigured passwords 
are changed, they are easily guessed. Countermeasures include user training, 
intrusion detection, and simpler passwords combined with another authentica-
tion mechanism.

 r� Exploiting multiple password use: Attacks can also become much more 
 effective or damaging if different network devices share the same or a similar 
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password for a given user. Countermeasures include a policy that forbids the 
same or  similar password on particular network devices.

 r� Electronic monitoring: If a password is communicated across a network to 
log on to a remote system, it is vulnerable to eavesdropping. Simple encryp-
tion will not fix this problem, because the encrypted password is, in effect, the 
password and can be observed and reused by an adversary.

Despite the many security vulnerabilities of passwords, they remain the most 
commonly used user authentication technique, and this is unlikely to change in the 
foreseeable future [HERL12]. Among the reasons for the persistent popularity of 
passwords are the following:

 1. Techniques the utilize client-side hardware, such as fingerprint scanners and 
smart card readers, require the implementation of the appropriate user au-
thentication software to exploit this hardware on both the client and server 
systems. Until there is widespread acceptance on one side, there is reluctance 
to implement on the other side, so we end up with a who-goes-first stalemate.

 2. Physical tokens, such as smart cards, are expensive and/or inconvenient to 
carry around, especially if multiple tokens are needed.

 3. Schemes that rely on a single sign-on to multiple services, using one of the 
non-password techniques described in this chapter, create a single point of 
security risk.

 4. Automated password managers that relieve users of the burden of knowing 
and entering passwords have poor support for roaming and synchronization 
across multiple client platforms, and their usability had not be adequately 
researched.

Thus, it is worth our while to study the use of passwords for user authentica-
tion in some detail.

The Use of Hashed Passwords

A widely used password security technique is the use of hashed passwords and 
a salt value. This scheme is found on virtually all UNIX variants as well as on 
a  number of other operating systems. The following procedure is employed 
(Figure 3.2a). To load a new password into the system, the user selects or is 
assigned a password. This password is combined with a fixed-length salt 
value [MORR79]. In older implementations, this value is related to the time 
at which the password is assigned to the user. Newer implementations use a 
 pseudorandom or random number. The password and salt serve as inputs to a 
hashing algorithm to produce a fixed-length hash code. The hash algorithm is 
designed to be slow to execute in order to thwart attacks. The hashed password 
is then stored, together with a plaintext copy of the salt, in the password file for 
the corresponding user ID. The hashed password method has been shown to be 
secure against a variety of cryptanalytic attacks [WAGN00].

When a user attempts to log on to a UNIX system, the user provides an ID 
and a password (Figure 3.2b). The operating system uses the ID to index into the 
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password file and retrieve the plaintext salt and the encrypted password. The salt 
and user-supplied password are used as input to the encryption routine. If the result 
matches the stored value, the password is accepted.

The salt serves three purposes:

 r� It prevents duplicate passwords from being visible in the password file. Even if 
two users choose the same password, those passwords will be assigned different 
salt values. Hence, the hashed passwords of the two users will differ.
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 r� It greatly increases the difficulty of offline dictionary attacks. For a salt of 
length b bits, the number of possible passwords is increased by a factor of 2b, 
increasing the difficulty of guessing a password in a dictionary attack.

 r� It becomes nearly impossible to find out whether a person with passwords on 
two or more systems has used the same password on all of them.

To see the second point, consider the way that an offline dictionary attack 
would work. The attacker obtains a copy of the password file. Suppose first that 
the salt is not used. The attacker’s goal is to guess a single password. To that end, 
the  attacker submits a large number of likely passwords to the hashing function. 
If any of the guesses matches one of the hashes in the file, then the attacker 
has found a password that is in the file. But faced with the UNIX scheme, the 
attacker must take each guess and submit it to the hash function once for each 
salt value in the dictionary file, multiplying the number of guesses that must be 
checked.

There are two threats to the UNIX password scheme. First, a user can gain 
 access on a machine using a guest account or by some other means and then run 
a password guessing program, called a password cracker, on that machine. The 
attacker should be able to check many thousands of possible passwords with little 
resource consumption. In addition, if an opponent is able to obtain a copy of the 
password file, then a cracker program can be run on another machine at leisure. This 
enables the opponent to run through millions of possible passwords in a reasonable 
period.

UNIX IMPLEMENTATIONS Since the original development of UNIX, most imple-
mentations have relied on the following password scheme. Each user selects a password 
of up to eight printable characters in length. This is converted into a 56-bit value 
(using 7-bit ASCII) that serves as the key input to an encryption routine. The hash 
routine, known as crypt(3), is based on DES. A 12-bit salt value is used. The modified 
DES algorithm is executed with a data input consisting of a 64-bit block of zeros. The 
output of the algorithm then serves as input for a second  encryption. This process is 
repeated for a total of 25 encryptions. The resulting 64-bit output is then translated 
into an 11-character sequence. The modification of the DES algorithm converts it 
into a one-way hash function. The crypt(3) routine is designed to discourage guessing 
 attacks. Software implementations of DES are slow compared to hardware versions, 
and the use of 25 iterations multiplies the time required by 25.

This particular implementation is now considered woefully inadequate. For 
 example, [PERR03] reports the results of a dictionary attack using a supercomputer. 
The attack was able to process over 50 million password guesses in about 80 minutes. 
Further, the results showed that for about $10,000 anyone should be able to do the 
same in a few months using one uniprocessor machine. Despite its known weaknesses, 
this UNIX scheme is still often required for compatibility with existing  account man-
agement software or in multivendor environments.

There are other, much stronger, hash/salt schemes available for UNIX. 
The recommended hash function for many UNIX systems, including Linux, 
Solaris, and FreeBSD (a widely used open source UNIX), is based on the MD5 
secure hash algorithm (which is similar to, but not as secure as SHA-1). The 
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MD5 crypt routine uses a salt of up to 48 bits and effectively has no  limitations 
on password length. It produces a 128-bit hash value. It is also far slower than 
crypt(3). To achieve the slowdown, MD5 crypt uses an inner loop with 1000 
iterations.

Probably the most secure version of the UNIX hash/salt scheme was developed 
for OpenBSD, another widely used open source UNIX. This scheme, reported in 
[PROV99], uses a hash function based on the Blowfish symmetric block cipher. The 
hash function, called Bcrypt, is quite slow to execute. Bcrypt allows passwords of 
up to 55 characters in length and requires a random salt value of 128 bits, to pro-
duce a 192-bit hash value. Bcrypt also includes a cost variable; an increase in the cost 
variable causes a corresponding increase in the time required to perform a Bcyrpt 
hash. The cost assigned to a new password is configurable, so that administrators can 
assign a higher cost to privileged users.

 Password Cracking of User-Chosen Passwords

TRADITIONAL APPROACHES The traditional approach to password guessing, 
or password cracking as it is called, is to develop a large dictionary of possible 
passwords and to try each of these against the password file. This means that each 
password must be hashed using each available salt value and then compared with 
stored hash values. If no match is found, the cracking program tries variations 
on all the words in its dictionary of likely passwords. Such variations include 
backwards spelling of words, additional numbers or special characters, or sequence 
of characters.

An alternative is to trade-off space for time by precomputing potential hash 
values. In this approach the attacker generates a large dictionary of possible pass-
words. For each password, the attacker generates the hash values associated with 
each possible salt value. The result is a mammoth table of hash values known as a 
rainbow table. For example, [OECH03] showed that using 1.4 GB of data, he could 
crack 99.9% of all alphanumeric Windows password hashes in 13.8 seconds. This 
approach can be countered using a sufficiently large salt value and a sufficiently 
large hash length. Both the FreeBSD and OpenBSD approaches should be secure 
from this attack for the foreseeable future.

To counter the use of large salt values and hash lengths, password crackers 
exploit the fact that some people choose easily guessable passwords. Some users, 
when permitted to choose their own password, pick one that is absurdly short. 
One study at Purdue University [SPAF92a] observed password change choices on  
54 machines, representing approximately 7000 user accounts. Almost 3% of the 
passwords were three characters or fewer in length. An attacker could begin the 
attack by exhaustively testing all possible passwords of length 3 or fewer. A simple 
remedy is for the system to reject any password choice of fewer than, say, six charac-
ters or even to require that all passwords be exactly eight characters in length. Most 
users would not complain about such a restriction.

Password length is only part of the problem. Many people, when permit-
ted to choose their own password, pick a password that is guessable, such as their 
own name, their street name, a common dictionary word, and so forth. This makes 
the job of password cracking straightforward. The cracker simply has to test the 
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password file against lists of likely passwords. Because many people use guessable 
passwords, such a strategy should succeed on virtually all systems.

One demonstration of the effectiveness of guessing is reported in [KLEI90]. 
From a variety of sources, the author collected UNIX password files, containing 
nearly 14,000 encrypted passwords. The result, which the author rightly character-
izes as frightening, was that in all, nearly one-fourth of the passwords were guessed. 
The following strategy was used:

 1. Try the user’s name, initials, account name, and other relevant personal infor-
mation. In all, 130 different permutations for each user were tried.

 2. Try words from various dictionaries. The author compiled a dictionary of over 
60,000 words, including the online dictionary on the system itself, and various 
other lists as shown.

 3. Try various permutations on the words from step 2. This included making the 
first letter uppercase or a control character, making the entire word upper-
case, reversing the word, changing the letter “o” to the digit “zero,” and so on. 
These permutations added another 1 million words to the list.

 4. Try various capitalization permutations on the words from step 2 that were not 
considered in step 3. This added almost 2 million additional words to the list.

Thus, the test involved nearly 3 million words. Using the fastest processor avail-
able, the time to encrypt all these words for all possible salt values was under an 
hour. Keep in mind that such a thorough search could produce a success rate of 
about 25%, whereas even a single hit may be enough to gain a wide range of privi-
leges on a system.

Attacks that use a combination of brute-force and dictionary techniques have 
become common. A notable example of this dual approach is John the Ripper, an 
open-source password cracker first developed in 1996 and still in use [OPEN13].

MODERN APPROACHES Sadly, this type of vulnerability has not lessened in 
the past 25 years or so. Users are doing a better job of selecting passwords, and 
organizations are doing a better job of forcing users to pick stronger passwords, a 
concept known as a complex password policy, as discussed subsequently. However, 
password-cracking techniques have improved to keep pace. The improvements 
are of two kinds. First, the processing capacity available for password cracking has 
increased dramatically. Now used increasingly for computing, graphics processors 
allow password-cracking programs to work thousands of times faster than they did 
just a decade ago on similarly priced PCs that used traditional CPUs alone. A PC 
running a single AMD Radeon HD7970 GPU, for instance, can try on average an 
8.2 * 109 password combinations each second, depending on the algorithm used 
to scramble them [GOOD12a]. Only a decade ago, such speeds were possible only 
when using pricey supercomputers.

The second area of improvement in password cracking is in the use of sophisti-
cated algorithms to generate potential passwords. For example, [NARA05] developed 
a model for password generation using the probabilities of letters in natural language. 
The researchers used standard Markov modeling techniques from natural language 
processing to dramatically reduce the size of the password space to be searched.
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But the best results have been achieved by studying examples of actual pass-
words in use. To develop techniques that are more efficient and effective than sim-
ple dictionary and brute-force attacks, researchers and hackers have studied the 
structure of passwords. To do this, analysts need a large pool of real-word pass-
words to study, which they now have. The first big breakthrough came in late 2009, 
when an SQL injection attack against online games service RockYou.com exposed 
32 million plaintext passwords used by its members to log in to their accounts 
[TIMM10]. Since then, numerous sets of leaked password files have become avail-
able for analysis.

Using large datasets of leaked passwords as training data, [WEIR09] reports 
on the development of a probabilistic context-free grammar for password crack-
ing. In this approach, guesses are ordered according to their likelihood, based on 
the frequency of their character-class structures in the training data, as well as the 
frequency of their digit and symbol substrings. This approach has been shown to be 
efficient in password cracking [KELL12, ZHAN10].

[MAZU13] reports on an analysis of the passwords used by over 25,000 stu-
dents at a research university with a complex password policy. The analysts used 
the password-cracking approach introduced in [WEIR09]. They used a database 
consisting of a collection of leaked password files, including the RockYou file. 
Figure 3.3 summarizes a key result from the paper. The graph shows the percentage 
of passwords that have been recovered as a function of the number of guesses. As 
can be seen, over 10% of the passwords are recovered after only 1010 guesses. After 
1013 guesses, almost 40% of the passwords are recovered.
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Password File Access Control

One way to thwart a password attack is to deny the opponent access to the pass-
word file. If the hashed password portion of the file is accessible only by a privileged 
user, then the opponent cannot read it without already knowing the password of a 
privileged user. Often, the hashed passwords are kept in a separate file from the user 
IDs, referred to as a shadow password file. Special attention is paid to making the 
shadow password file protected from unauthorized access. Although password file 
protection is certainly worthwhile, there remain vulnerabilities:

 r� Many systems, including most UNIX systems, are susceptible to unanticipated 
break-ins. A hacker may be able to exploit a software vulnerability in the 
 operating system to bypass the access control system long enough to extract 
the password file. Alternatively, the hacker may find a weakness in the file 
system or database management system that allows access to the file.

 r� An accident of protection might render the password file readable, thus com-
promising all the accounts.

 r� Some of the users have accounts on other machines in other protection 
 domains, and they use the same password. Thus, if the passwords could 
be read by anyone on one machine, a machine in another location might be 
compromised.

 r� A lack of or weakness in physical security may provide opportunities for a 
hacker. Sometimes there is a backup to the password file on an emergency 
 repair disk or archival disk. Access to this backup enables the attacker to read 
the password file. Alternatively, a user may boot from a disk running another 
operating system such as Linux and access the file from this OS.

 r� Instead of capturing the system password file, another approach to collecting 
user IDs and passwords is through sniffing network traffic.

Thus, a password protection policy must complement access control measures with 
techniques to force users to select passwords that are difficult to guess.

Password Selection Strategies

When not constrained, many users choose a password that is too short or too easy 
to guess. At the other extreme, if users are assigned passwords consisting of eight 
randomly selected printable characters, password cracking is effectively impossible. 
But it would be almost as impossible for most users to remember their  passwords. 
Fortunately, even if we limit the password universe to strings of characters that are 
reasonably memorable, the size of the universe is still too large to permit practical 
cracking. Our goal, then, is to eliminate guessable  passwords while allowing the 
user to select a password that is memorable. Four basic  techniques are in use:

 r� User education
 r� Computer-generated passwords
 r� Reactive password checking
 r� Complex password policy
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Users can be told the importance of using hard-to-guess passwords and can 
be provided with guidelines for selecting strong passwords. This user education 
 strategy is unlikely to succeed at most installations, particularly where there is a large 
user population or a lot of turnover. Many users will simply ignore the guidelines. 
Others may not be good judges of what is a strong password. For example, many 
users  (mistakenly) believe that reversing a word or capitalizing the last letter makes 
a password unguessable.

Nonetheless, it makes sense to provide users with guidelines on the selection 
of passwords. Perhaps the best approach is the following advice: A good technique 
for choosing a password is to use the first letter of each word of a phrase. However, 
do not pick a well-known phrase like “An apple a day keeps the doctor away” 
(Aaadktda). Instead, pick something like “My dog’s first name is Rex” (MdfniR) 
or “My sister Peg is 24 years old” (MsPi24yo). Studies have shown that users can 
generally remember such passwords but that they are not susceptible to password 
guessing  attacks based on commonly used passwords.

Computer-generated passwords also have problems. If the passwords are quite 
random in nature, users will not be able to remember them. Even if the password 
is pronounceable, the user may have difficulty remembering it and so be tempted 
to write it down. In general, computer-generated password schemes have a history 
of poor acceptance by users. FIPS 181 defines one of the best-designed automated 
password generators. The standard includes not only a description of the  approach 
but also a complete listing of the C source code of the algorithm. The  algorithm 
 generates words by forming pronounceable syllables and concatenating them to 
form a word. A random number generator produces a random stream of characters 
used to construct the syllables and words.

A reactive password checking strategy is one in which the system periodi-
cally runs its own password cracker to find guessable passwords. The system can-
cels any passwords that are guessed and notifies the user. This tactic has a number 
of  drawbacks. First, it is resource intensive if the job is done right. Because a 
determined  opponent who is able to steal a password file can devote full CPU 
time to the task for hours or even days, an effective reactive password checker is 
at a  distinct disadvantage. Furthermore, any existing passwords remain vulnerable 
until the reactive password checker finds them. A good example is the openware 
Jack the Ripper password cracker (openwall.com/john/pro/), which works on a 
variety of operating systems.

A promising approach to improved password security is a complex password 
policy, or proactive password checker. In this scheme, a user is allowed to select his 
or her own password. How ever, at the time of selection, the system checks to see if 
the password is allowable and, if not, rejects it. Such checkers are based on the phi-
losophy that, with sufficient guidance from the system, users can select memorable 
passwords from a fairly large password space that are not likely to be guessed in a 
dictionary attack.

The trick with a proactive password checker is to strike a balance between 
user acceptability and strength. If the system rejects too many passwords, users will 
complain that it is too hard to select a password. If the system uses some simple 
 algorithm to define what is acceptable, this provides guidance to password crackers 
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to refine their guessing technique. In the remainder of this subsection, we look at 
possible approaches to proactive password checking.

RULE ENFORCEMENT The first approach is a simple system for rule enforcement. 
For example, the following rules could be enforced:

 r� All passwords must be at least eight characters long.
 r� In the first eight characters, the passwords must include at least one each of 

uppercase, lowercase, numeric digits, and punctuation marks.

These rules could be coupled with advice to the user. Although this approach is 
 superior to simply educating users, it may not be sufficient to thwart password 
crackers. This scheme alerts crackers as to which passwords not to try but may still 
make it possible to do password cracking.

The process of rule enforcement can be automated by using a proactive pass-
word checker, such as the openware pam_passwdqc (openwall.com/passwdqc/), 
which enforces a variety of rules on passwords and is configurable by the system 
administrator.

PASSWORD CHECKER Another possible procedure is simply to compile a large 
dictionary of possible “bad” passwords. When a user selects a password, the system 
checks to make sure that it is not on the disapproved list. There are two problems 
with this approach:

 r Space: The dictionary must be very large to be effective. For example, the 
 dictionary used in the Purdue study [SPAF92a] occupies more than 30 MB of 
storage.

 r Time: The time required to search a large dictionary may itself be large. In 
addition, to check for likely permutations of dictionary words, either those 
words must be included in the dictionary, making it truly huge, or each search 
must also involve considerable processing.

BLOOM FILTER A technique [SPAF92a, SPAF92b] for developing an effective 
and efficient proactive password checker that is based on rejecting words on a list 
has been implemented on a number of systems, including Linux. It is based on the 
use of a Bloom filter [BLOO70]. To begin, we explain the operation of the Bloom 
filter. A Bloom filter of order k consists of a set of k independent hash functions 
H1(x), H2(x), c, Hk(x),  where each function maps a password into a hash value in 
the range 0 to N – 1. That is,

Hi(Xj) = y   1 …  i …  k;  1 …  j …  D;   0 …  y …  N -  1

where

Xj = jth word in password dictionary
D = number of words in password dictionary
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The following procedure is then applied to the dictionary:

 1. A hash table of N bits is defined, with all bits initially set to 0.
 2. For each password, its k hash values are calculated, and the corresponding bits in 

the hash table are set to 1. Thus, if Hi  (Xj) = 67 for some (i, j), then the sixty- seventh 
bit of the hash table is set to 1; if the bit already has the value 1, it remains at 1.

When a new password is presented to the checker, its k hash values are 
 calculated. If all the corresponding bits of the hash table are equal to 1, then the 
password is rejected. All passwords in the dictionary will be rejected. But there will 
also be some “false positives” (that is, passwords that are not in the dictionary but 
that produce a match in the hash table). To see this, consider a scheme with two 
hash functions. Suppose that the passwords undertaker and hulkhogan are in the 
dictionary, but xG%# jj98 is not. Further suppose that

H1(undertaker) = 25 H1 (hulkhogan) = 83 H1 (xG%#jj98) = 665
H2(undertaker) = 998  H2 (hulkhogan) = 665  H2 (xG%#jj98) = 998

If the password xG%#jj98 is presented to the system, it will be rejected even 
though it is not in the dictionary. If there are too many such false positives, it will be 
difficult for users to select passwords. Therefore, we would like to design the hash 
scheme to minimize false positives. It can be shown that the probability P of a false 
positive can be approximated by

P ≈ 11 - e-kD/N2k
= 11 - e-k/R2k

or, equivalently,

R ≈
-k

ln(1-p1/k)
where

  k = number of hash functions
  N = number of bits in hash table
  D = number of words in dictionary
  R = N/D, ratio of hash table size (bits) to dictionary size (words)

Figure 3.4 plots P as a function of R for various values of k. Suppose we have 
a dictionary of 1 million words and we wish to have a 0.01 probability of rejecting a 
password not in the dictionary. If we choose six hash functions, the required ratio 
is R = 9.6. Therefore, we need a hash table of 9.6 * 106 bits or about 1.2 MB of 
storage. In contrast, storage of the entire dictionary would require on the order of 
8 MB. Thus, we achieve a compression of almost a factor of 7. Furthermore, pass-
word checking involves the straightforward calculation of six hash functions and is 
independent of the size of the dictionary, whereas with the use of the full  dictionary, 
there is substantial searching.2

2The Bloom filter involves the use of probabilistic techniques. There is a small probability that some 
passwords not in the dictionary will be rejected. It is often the case in designing algorithms that the use of 
probabilistic techniques results in a less time-consuming or less complex solution, or both.
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 3.3 TOKEN-BASED AUTHENTICATION

Objects that a user possesses for the purpose of user authentication are called 
 tokens. In this section, we examine two types of tokens that are widely used; these 
are cards that have the appearance and size of bank cards (see Table 3.2).

Memory Cards

Memory cards can store but not process data. The most common such card is the bank 
card with a magnetic stripe on the back. A magnetic stripe can store only a  simple 
 security code, which can be read (and unfortunately reprogrammed) by an inexpensive 
card reader. There are also memory cards that include an internal electronic memory.
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Figure 3.4  Performance of Bloom Filter

Table 3.2  Types of Cards Used as Tokens 

Card Type Defining Feature Example 

Embossed Raised characters only, on front Old credit card 

Magnetic stripe Magnetic bar on back, characters on front Bank card 

Memory Electronic memory inside Prepaid phone card 

Smart Electronic memory and processor inside Biometric ID card 

 Contact  Electrical contacts exposed on surface  
 Contactless  Radio antenna embedded inside  
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Memory cards can be used alone for physical access, such as a hotel room. For 
authentication, a user provides both the memory card and some form of password 
or personal identification number (PIN). A typical application is an automatic teller 
machine (ATM). The memory card, when combined with a PIN or password, pro-
vides significantly greater security than a password alone. An adversary must gain 
physical possession of the card (or be able to duplicate it) plus must gain knowledge 
of the PIN. Among the potential drawbacks are the following [NIST95]:

 r� Requires special reader: This increases the cost of using the token and creates 
the requirement to maintain the security of the reader’s hardware and software.

 r� Token loss: A lost token temporarily prevents its owner from gaining  system 
access. Thus there is an administrative cost in replacing the lost token. In addi-
tion, if the token is found, stolen, or forged, then an adversary now need only 
determine the PIN to gain unauthorized access.

 r� User dissatisfaction: Although users may have no difficulty in accepting the 
use of a memory card for ATM access, its use for computer access may be 
deemed inconvenient.

Smart Cards

A wide variety of devices qualify as smart tokens. These can be categorized along 
four dimensions that are not mutually exclusive:

 r� Physical characteristics: Smart tokens include an embedded microprocessor. 
A smart token that looks like a bank card is called a smart card. Other smart 
tokens can look like calculators, keys, or other small portable objects.

� r� User interface: Manual interfaces include a keypad and display for human/
token interaction.

� r� Electronic interface: A smart card or other token requires an electronic inter-
face to communicate with a compatible reader/writer. A card may have one or 
both of the following types of interface:

— Contact: A contact smart card must be inserted into a smart card reader 
with a direct connection to a conductive contact plate on the surface of the 
card (typically gold plated). Transmission of commands, data, and card sta-
tus takes place over these physical contact points.

—Contactless: A contactless card requires only close proximity to a reader. 
Both the reader and the card have an antenna, and the two communicate 
using radio frequencies. Most contactless cards also derive power for the 
internal chip from this electromagnetic signal. The range is typically one-
half to three inches for non-battery-powered cards, ideal for applications 
such as building entry and payment that require a very fast card interface.

 r� Authentication protocol: The purpose of a smart token is to provide a means 
for user authentication. We can classify the authentication protocols used with 
smart tokens into three categories:

— Static: With a static protocol, the user authenticates himself or herself to the 
token and then the token authenticates the user to the computer. The latter 
half of this protocol is similar to the operation of a memory token.
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— Dynamic password generator: In this case, the token generates a unique 
password periodically (e.g., every minute). This password is then  entered 
into the computer system for authentication, either manually by the user or 
electronically via the token. The token and the computer system must be 
initialized and kept synchronized so that the computer knows the password 
that is current for this token.

— Challenge-response: In this case, the computer system generates a chal-
lenge, such as a random string of numbers. The smart token generates a 
 response based on the challenge. For example, public-key cryptography 
could be used and the token could encrypt the challenge string with the 
token’s private key.

For user authentication the most important category of smart token is the 
smart card, which has the appearance of a credit card, has an electronic interface, 
and may use any of the type of protocols just described. The remainder of this 
 section discusses smart cards.

A smart card contains within it an entire microprocessor, including processor, 
memory, and I/O ports. Some versions incorporate a special co-processing circuit for 
cryptographic operation to speed the task of encoding and decoding messages or gen-
erating digital signatures to validate the information transferred. In some cards, the 
I/O ports are directly accessible by a compatible reader by means of  exposed electrical 
contacts. Other cards rely instead on an embedded antenna for wireless communica-
tion with the reader.

A typical smart card includes three types of memory. Read-only memory 
(ROM) stores data that does not change during the card’s life, such as the card 
 number and the cardholder’s name. Electrically erasable programmable ROM 
(EEPROM) holds application data and programs, such as the protocols that the 
card can execute. It also holds data that may vary with time. For example, in a 
 telephone card, the EEPROM holds the talk time remaining. Random access 
memory (RAM) holds temporary data generated when applications are  executed.

Figure 3.5 illustrates the typical interaction between a smart card and a reader 
or computer system. Each time the card is inserted into a reader, a reset is initiated 
by the reader to initialize parameters such as clock value. After the reset function 
is performed, the card responds with answer to reset (ATR)  message. This message 
defines the parameters and protocols that the card can use and the functions it can 
perform. The terminal may be able to change the protocol used and other parame-
ters via a protocol type selection (PTS) command. The cards PTS response confirms 
the protocols and parameters to be used. The terminal and card can now execute 
the protocol to perform the desired application.

Electronic Identity Cards

An application of increasing importance is the use of a smart card as a national iden-
tity card for citizens. A national electronic identity (eID) card can serve the same pur-
poses as other national ID cards, and similar cards such as a driver’s license, for access 
to government and commercial services. In addition, an eID card can provide stronger 
proof of identity and be used in a wider variety of applications. In effect, an eID card is 
a smart card that has been verified by the national government as valid and authentic.
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One of the most recent and most advanced eID deployments is the German 
eID card neuer Personalausweis [POLL12]. The card has human-readable data 
printed on its surface, including the following:

� r� Personal data: Such as name, date of birth, and address; this is the type of 
printed information found on passports and driver’s licenses.

� r� Document number: An alphanumerical nine-character unique identifier of 
each card.

� r� Card access number (CAN): A six-digit decimal random number printed on 
the face of the card. This is used as a password, as explained subsequently.

� r� Machine readable zone (MRZ): Three lines of human- and machine-readable 
text on the back of the card. This may also be used as a password.

EID FUNCTIONS The card has the following three separate electronic functions, 
each with its own protected dataset (Table 3.3):

� r� ePass: This function is reserved for government use and stores a digital rep-
resentation of the cardholder’s identity. This function is similar to, and may 
be used for, an electronic passport. Other government services may also use 
ePass. The ePass function must be implemented on the card.

� r� eID: This function is for general-purpose use in a variety of government and 
commercial applications. The eID function stores an identity record that 
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authorized service can access with cardholder permission. Citizens choose 
whether they want this function activated.

� r� eSign: This optional function stores a private key and a certificate verifying the 
key; it is used for generating a digital signature. A private sector trust center 
issues the certificate.

The ePass function is an offline function. That is, it is not used over a network 
but is used in a situation where the cardholder presents the card for a particular 
service at that location, such as going through a passport control checkpoint.

The eID function can be used for both online and offline services. An example 
of an offline use is an inspection system. An inspection system is a terminal for law 
enforcement checks, for example, by police or border control officers. An inspec-
tion system can read identifying information of the cardholder as well as biometric 
information stored on the card, such as facial image and fingerprints. The biometric 
information can be used to verify that the individual in possession of the card is the 
actual cardholder.

User authentication is a good example of online use of the eID function. 
Figure 3.6 illustrates a Web-based scenario. To begin, an eID user visits a Web 
site and requests a service that requires authentication. The Web site sends back 

Table 3.3 Electronic Functions and Data for eID Cards

Function Purpose PACE Password Data Uses

ePass (mandatory)
Authorized offline 
inspection systems 
read the data

CAN or MRZ

Face image; two 
fingerprint images 
(optional); MRZ 
data

Offline biometric 
identity verifica-
tion reserved  
for government 
access

eID (activation 
optional)

Online applica-
tions read the data 
or access functions 
as authorized

eID PIN
Family and given 
names; artistic 
name and doctoral 
degree: date and 
place of birth; 
address and  
community ID; 
expiration date

Identification; age 
verification; com-
munity ID verifi-
cation; restricted 
identification 
(pseudonym); 
revocation query

Offline inspection 
systems read the 
data and update 
the address and 
community ID

CAN or MRZ

eSign (certificate 
optional)

A certification 
authority installs 
the signature  
certificate  
online

eID PIN
Signature key;
X.509 certificate

Electronic  
signature creation

Citizens make elec-
tronic signature 
with eSign PIN

CAN

CAN = card access number
MRZ = machine readable zone
PACE = password authenticated connection establishment
PIN = personal identification number
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a redirect message that forwards an authentication request to an eID server. The 
eID server requests that the user enter the PIN number for the eID card. Once the 
user has correctly entered the PIN, data can be exchanged between the eID card 
and the terminal reader in encrypted form. The server then engages in an authen-
tication protocol exchange with the microprocessor on the eID card. If the user is 
authenticated the results are sent back to the user system to be redirected to the 
Web server application.

For the preceding scenario, the appropriate software and hardware are 
required on the user system. Software on the main user system includes function-
ality for requesting and accepting the PIN number and for message  redirection. 
The hardware required is an eID card reader. The card reader can be an external 
contact or contactless reader or a contactless reader internal to the user system.

PASSWORD AUTHENTICATED CONNECTION ESTABLISHMENT (PACE) Password 
Authenticated Connection Establishment (PACE) ensures that the contactless 
RF chip in the eID card cannot be read without explicit access control. For online 
applications, access to the card is established by the user entering the 6-digit PIN, 
which should only be known to the holder of the card. For offline applications, 
either the MRZ printed on the back of the card or the six-digit card access number 
(CAN) printed on the front is used.

eID
server

Host/application
server

6. User enters PIN

1. User requests service
(e.g., via Web browser)

4. Authentication request

5. PIN request

7. Authentication protocol exchange

8. Authentication result for redirect

2. Service request3. Redirect to eID message

9. Authentication result forwarded

10. Service granted

Figure 3.6 User Authentication with eID
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 3.4 BIOMETRIC AUTHENTICATION

A biometric authentication system attempts to authenticate an individual based on 
his or her unique physical characteristics. These include static characteristics, such 
as fingerprints, hand geometry, facial characteristics, and retinal and iris  patterns; 
and  dynamic characteristics, such as voiceprint and signature. In essence, biomet-
rics is based on pattern recognition. Compared to passwords and tokens, biometric 
 authentication is both technically more complex and expensive. While it is used in 
a  number of specific applications, biometrics has yet to mature as a standard tool 
for user  authentication to computer systems.

Physical Characteristics Used in Biometric Applications

A number of different types of physical characteristics are either in use or under 
study for user authentication. The most common are the following:

 r� Facial characteristics: Facial characteristics are the most common means 
of  human-to-human identification; thus it is natural to consider them for 
 identification by computer. The most common approach is to define charac-
teristics based on relative location and shape of key facial features, such as 
eyes,  eyebrows, nose, lips, and chin shape. An alternative approach is to use an 
 infrared camera to produce a face thermogram that correlates with the under-
lying vascular system in the human face.

 r� Fingerprints: Fingerprints have been used as a means of identification for 
 centuries, and the process has been systematized and automated particu-
larly for law enforcement purposes. A fingerprint is the pattern of ridges and 
 furrows on the surface of the fingertip. Fingerprints are believed to be unique 
across the entire human population. In practice, automated fingerprint recog-
nition and matching system extract a number of features from the fingerprint 
for storage as a numerical surrogate for the full fingerprint pattern.

 r� Hand geometry: Hand geometry systems identify features of the hand, 
 including shape, and lengths and widths of fingers.

 r� Retinal pattern: The pattern formed by veins beneath the retinal surface is 
unique and therefore suitable for identification. A retinal biometric system 
obtains a digital image of the retinal pattern by projecting a low-intensity 
beam of visual or infrared light into the eye.

 r� Iris: Another unique physical characteristic is the detailed structure of the iris.
 r� Signature: Each individual has a unique style of handwriting and this is 

 reflected especially in the signature, which is typically a frequently written 
 sequence. However, multiple signature samples from a single individual will 
not be  identical. This complicates the task of developing a computer represen-
tation of the signature that can be matched to future samples.

 r� Voice:  Whereas the signature style of an individual reflects not only the unique 
physical attributes of the writer but also the writing habit that has  developed, 
voice patterns are more closely tied to the physical and anatomical characteris-
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tics of the speaker. Nevertheless, there is still a variation from  sample to sample 
over time from the same speaker, complicating the biometric recognition task.

Figure 3.7 gives a rough indication of the relative cost and accuracy of these 
 biometric measures. The concept of accuracy does not apply to user authentication 
schemes using smart cards or passwords. For example, if a user enters a password, 
it  either matches exactly the password expected for that user or not. In the case of 
 biometric parameters, the system instead must determine how closely a presented bio-
metric characteristic matches a stored characteristic. Before elaborating on the concept 
of biometric accuracy, we need to have a general idea of how biometric  systems work.

Operation of a Biometric Authentication System

Figure 3.8 illustrates the operation of a biometric system. Each individual who is to 
be included in the database of authorized users must first be enrolled in the system. 
This is analogous to assigning a password to a user. For a biometric system, the user 
presents a name and, typically, some type of password or PIN to the system. At the 
same time the system senses some biometric characteristic of this user (e.g., finger-
print of right index finger). The system digitizes the input and then extracts a set of 
features that can be stored as a number or set of numbers representing this unique 
biometric characteristic; this set of numbers is referred to as the user’s template. The 
user is now enrolled in the system, which maintains for the user a name (ID),  perhaps 
a PIN or password, and the biometric value.

Depending on application, user authentication on a biometric system involves 
either verification or identification. Verification is analogous to a user logging on 
to a system by using a memory card or smart card coupled with a password or PIN. 
For biometric verification, the user enters a PIN and also uses a  biometric sensor. 
The system extracts the corresponding feature and compares that to the template 
stored for this user. If there is a match, then the system authenticates this user.

For an identification system, the individual uses the biometric sensor but 
 presents no additional information. The system then compares the presented 
 template with the set of stored templates. If there is a match, then this user is 
 identified. Otherwise, the user is rejected.
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Biometric Accuracy

In any biometric scheme, some physical characteristic of the individual is mapped into a 
digital representation. For each individual, a single digital representation, or template, is 
stored in the computer. When the user is to be authenticated, the  system compares the 
stored template to the presented template. Given the complexities of physical charac-
teristics, we cannot expect that there will be an exact match between the two templates. 
Rather, the system uses an algorithm to generate a matching score (typically a single 
number) that quantifies the similarity between the input and the stored template. To 
proceed with the discussion, we define the following terms. The false match rate is the 
frequency with which biometric samples from different sources are erroneously assessed 
to be from the same source. The false nonmatch rate is the frequency with which sam-
ples from the same source are erroneously assessed to be from different sources.
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Figure 3.8  A Generic Biometric System  Enrollment creates an associa-
tion between a user and the user’s biometric characteristics. Depending on the 
 application, user authentication either involves verifying that a claimed user  
is  the actual user or identifying an unknown user.



Figure 3.9 illustrates the dilemma posed to the system. If a single user is tested 
by the system numerous times, the matching score s will vary, with a probability 
 density function typically forming a bell curve, as shown. For example, in the case of 
a  fingerprint, results may vary due to sensor noise; changes in the print due to swell-
ing or dryness; finger placement; and so on. On average, any other  individual should 
have a much lower matching score but again will exhibit a bell-shaped probabil-
ity density function. The difficulty is that the range of matching scores produced by 
two individuals, one genuine and one an imposter, compared to a given reference 
template, are likely to overlap. In Figure 3.9 a threshold value is selected thus that 
if the presented value s Ú  t a match is assumed, and for s 6 t, a mismatch is assumed. 
The shaded part to the right of t indicates a range of values for which a false match is 
possible, and the shaded part to the left indicates a range of values for which a false 
nonmatch is possible. A false match results in the acceptance of a user who should not 
be accepted, and a false mismatch triggers the rejection of a valid user. The area of 
each shaded part represents the probability of a false match or nonmatch, respectively. 
By moving the threshold, left or right, the probabilities can be altered, but note that a 
decrease in false match rate results in an increase in false nonmatch rate, and vice versa.

For a given biometric scheme, we can plot the false match versus false nonmatch 
rate, called the operating characteristic curve. Figure 3.10 shows idealized curves for 
two different systems. The curve that is lower and to the left performs better. The 
dot on the curve corresponds to a specific threshold for biometric testing. Shifting the 
threshold along the curve up and to the left provides greater security and the cost of 
decreased convenience. The inconvenience comes from a valid user being denied access 
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match

possible
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Figure 3.9  Profiles of a Biometric Characteristic of an Imposter and an 
Authorized User  In this depiction, the comparison between the  presented 
feature and a reference feature is reduced to a single numeric value. If the 
input value (s) is greater than a preassigned  threshold (t), a match is declared.  
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and being required to take further steps. A plausible tradeoff is to pick a threshold that 
corresponds to a point on the curve where the rates are equal. A high-security applica-
tion may require a very low false match rate, resulting in a point farther to the left on the 
curve. For a forensic application, in which the system is looking for possible candidates, 
to be checked further, the requirement may be for a low false nonmatch rate.

Figure 3.11 shows characteristic curves developed from actual product testing. 
The iris system had no false matches in over 2 million cross-comparisons. Note that 
over a broad range of false match rates, the face biometric is the worst performer.

 3.5 REMOTE USER AUTHENTICATION

The simplest form of user authentication is local authentication, in which a user 
 attempts to access a system that is locally present, such as a stand-alone office PC or 
an ATM machine. The more complex case is that of remote user authentication, 
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which takes place over the Internet, a network, or a communications link. Remote 
user authentication raises additional security threats, such as an eavesdropper being 
able to capture a password, or an adversary replaying an authentication sequence 
that has been observed.

To counter threats to remote user authentication, systems generally rely on some 
form of challenge-response protocol. In this section, we present the basic elements of 
such protocols for each of the types of authenticators discussed in this chapter.

Password Protocol

Figure 3.12a provides a simple example of a challenge-response protocol for 
 authentication via password. Actual protocols are more complex, such as Kerberos, 
discussed in Chapter 23. In this example, a user first transmits his or her identity to 
the remote host. The host generates a random number r, often called a nonce, and 
returns this nonce to the user. In addition, the host specifies two functions, h() and 
f(), to be used in the response. This transmission from host to user is the challenge. 
The user’s response is the quantity f(r′, h(P′)), where r′ = r and P′ is the user’s pass-
word. The function h is a hash function, so that the response consists of the hash func-
tion of the user’s password combined with the random number using the function f.

The host stores the hash function of each registered user’s password, depicted 
as h(P(U)) for user U. When the response arrives, the host compares the  incoming 
f(r′, h(P′)) to the calculated f(r, h(P(U))). If the quantities match, the user is 
 authenticated.

This scheme defends against several forms of attack. The host stores not the pass-
word but a hash code of the password. As discussed in Section 3.2, this secures the 
password from intruders into the host system. In addition, not even the hash of the 
password is transmitted directly, but rather a function in which the password hash is 
one of the arguments. Thus, for a suitable function f, the password hash cannot be cap-
tured during transmission. Finally, the use of a random number as one of the arguments  

0.0001% 0.001% 0.01% 0.1%
0.1%

False match rate

Fa
ls

e 
no

nm
at

ch
 ra

te

1%

1%

10% 100%

10%

Face Fingerprint Voice Hand Iris
100%

Figure 3.11  Actual Biometric Measurement Operating Characteristic 
Curves, Reported in [MANSO1]  To clarify differences among  systems, 
a log-log scale is used.



102  CHAPTER 3 / USER AUTHENTICATION

of f defends against a replay attack, in which an adversary captures the user’s transmis-
sion and attempts to log on to a system by retransmitting the user’s messages.

Token Protocol

Figure 3.12b provides a simple example of a token protocol for authentication. 
As before, a user first transmits his or her identity to the remote host. The host 
returns a random number and the identifiers of functions f() and h() to be used in the 
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 response. At the user end, the token provides a passcode W′. The token either stores 
a static passcode or generates a one-time random passcode. For a one-time random 
passcode, the token must be synchronized in some fashion with the host. In either 
case, the user activates the passcode by entering a password P′. This password is 
shared only between the user and the token and does not involve the  remote host. 
The token responds to the host with the quantity f(r′, h(W′)). For a static passcode, 
the host stores the hashed value h(W(U)); for a dynamic passcode, the host generates 
a one-time passcode (synchronized to that generated by the token) and takes its hash. 
Authentication then proceeds in the same fashion as for the password protocol.

Static Biometric Protocol

Figure 3.12c is an example of a user authentication protocol using a static  biometric. 
As before, the user transmits an ID to the host, which responds with a random  number 
r and, in this case, the identifier for an encryption E(). On the user side is a client sys-
tem that controls a biometric device. The system generates a biometric template BT′ 
from the user’s biometric B′ and returns the ciphertext E(r′, D′, BT′), where D′ 
identifies this particular biometric device. The host decrypts the  incoming message to 
recover the three transmitted parameters and compares these to locally stored values. 
For a match, the host must find r′ = r. Also, the matching score between BT′ and 
the stored template must exceed a predefined threshold. Finally, the host provides 
a simple authentication of the  biometric capture device by comparing the  incoming 
device ID to a list of registered devices at the host database.

Dynamic Biometric Protocol

Figure 3.12d is an example of a user authentication protocol using a dynamic 
 biometric. The principal difference from the case of a stable biometric is that the 
host provides a random sequence as well as a random number as a challenge. The 
 sequence challenge is a sequence of numbers, characters, or words. The human 
user at the client end must then vocalize (speaker verification), type (keyboard 
dynamics verification), or write (handwriting verification) the sequence to gener-
ate a biometric signal BS′(x′). The client side encrypts the biometric signal and 
the random number. At the host side, the incoming message is decrypted. The 
 incoming random number r′ must be an exact match to the random number that 
was originally used as a challenge (r). In addition, the host generates a comparison 
based on the  incoming biometric signal BS′(x′), the stored  template BT(U) for 
this user and the original signal x. If the comparison value  exceeds a predefined 
threshold, the user is authenticated.

 3.6 SECURITY ISSUES FOR USER AUTHENTICATION

As with any security service, user authentication, particularly remote user authen-
tication, is subject to a variety of attacks. Table 3.4, from [OGOR03], summarizes 
the principal attacks on user authentication, broken down by type of authenticator. 
Much of the table is self-explanatory. In this section, we expand on some of the 
table’s entries.
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Client attacks are those in which an adversary attempts to achieve user 
 authentication without access to the remote host or to the intervening communica-
tions path. The adversary attempts to masquerade as a legitimate user. For a pass-
word-based system, the adversary may attempt to guess the likely user password. 
Multiple guesses may be made. At the extreme, the adversary sequences through 
all possible passwords in an exhaustive attempt to succeed. One way to thwart such 
an attack is to select a password that is both lengthy and unpredictable. In effect, 

Table 3.4  Some Potential Attacks, Susceptible Authenticators, and Typical Defenses

Attacks Authenticators Examples Typical Defenses 

Client attack 

Password Guessing, exhaustive 
search 

Large entropy; limited attempts  

Token Exhaustive search Large entropy; limited attempts;  
theft of object requires  

presence  

Biometric False match 
Large entropy; limited  

attempts  

Host attack 

Password Plaintext theft,  
dictionary/exhaustive  

search 

Hashing; large entropy;  
protection of password  

database  

Token Passcode theft Same as password; 1-time  
passcode  

Biometric Template theft Capture device authentication; 
 challenge  response  

Eavesdropping, 
theft, and  

 copying 

Password “Shoulder surfing” User diligence to keep secret; 
 administrator diligence to quickly 
 revoke compromised  passwords; 

 multifactor authentication  

Token Theft, counterfeiting 
 hardware 

Multifactor authentication; tamper 
 resistant/evident token  

Biometric Copying (spoofing) 
 biometric 

Copy detection at capture 
device and capture device 

 authentication  

Replay 

Password Replay stolen password 
 response 

Challenge-response protocol 

Token Replay stolen passcode 
 response 

Challenge-response protocol;  
1-time passcode  

Biometric Replay stolen biometric 
 template response 

Copy detection at capture 
device and capture device 

 authentication via challenge- 
response protocol  

Trojan horse Password, token, 
 biometric 

Installation of rogue  
client or capture device 

Authentication of client or  
capture device within trusted  

security perimeter  

Denial  
of service 

Password, token, 
 biometric 

Lockout by multiple  
failed authentications 

Multifactor with token   



such a password has large entropy; that is, many bits are required to represent the 
password. Another countermeasure is to limit the number of attempts that can be 
made in a given time period from a given source.

A token can generate a high-entropy passcode from a low-entropy PIN or pass-
word, thwarting exhaustive searches. The adversary may be able to guess or acquire 
the PIN or password but must additionally acquire the physical token to succeed.

Host attacks are directed at the user file at the host where passwords, token 
passcodes, or biometric templates are stored. Section 3.2 discusses the security 
considerations with respect to passwords. For tokens, there is the additional 
 defense of using one-time passcodes, so that passcodes are not stored in a host 
passcode file. Biometric features of a user are difficult to secure because they are 
physical features of the user. For a static feature, biometric device authentica-
tion adds a measure of protection. For a dynamic feature, a challenge-response 
 protocol enhances security.

Eavesdropping in the context of passwords refers to an adversary’s attempt to 
learn the password by observing the user, finding a written copy of the  password, 
or some similar attack that involves the physical proximity of user and adversary. 
 Another form of eavesdropping is keystroke logging (keylogging), in which  malicious 
hardware or software is installed so that the attacker can capture the user’s  keystrokes 
for later analysis. A system that relies on multiple factors (e.g., password plus token or 
password plus biometric) is resistant to this type of attack. For a token, an analogous 
threat is theft of the token or physical copying of the token. Again, a multifactor 
protocol resists this type of attack better than a pure token protocol. The analogous 
threat for a biometric protocol is copying or imitating the  biometric parameter so 
as to generate the desired template. Dynamic biometrics are less  susceptible to such 
 attacks. For static biometrics, device authentication is a useful countermeasure.

Replay attacks involve an adversary repeating a previously captured 
user  response. The most common countermeasure to such attacks is the challenge- 
response protocol.

In a Trojan horse attack, an application or physical device masquerades as 
an authentic application or device for the purpose of capturing a user password, 
passcode, or biometric. The adversary can then use the captured information to 
masquerade as a legitimate user. A simple example of this is a rogue bank  machine 
used to capture user ID/password combinations.

A denial-of-service attack attempts to disable a user authentication service by 
flooding the service with numerous authentication attempts. A more selective attack 
denies service to a specific user by attempting logon until the threshold is reached 
that causes lockout to this user because of too many logon attempts. A multifac-
tor authentication protocol that includes a token thwarts this attack, because the 
 adversary must first acquire the token.

 3.7 PRACTICAL APPLICATION: AN IRIS BIOMETRIC SYSTEM

As an example of a biometric user authentication system, we look at an iris bio-
metric system that was developed for use by the United Arab Emirates (UAE) at 
border control points [DAUG04, TIRO05, NBSP08]. The UAE relies heavily on an 
outside workforce, and has increasingly become a tourist attraction. Accordingly, 
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relative to its size, the UAE has a very substantial volume of incoming visitors. On 
a typical day, more than 6,500 passengers enter the UAE via seven international 
airports, three land ports, and seven sea ports. Handling a large volume of incoming 
visitors in an efficient and timely manner thus poses a significant security challenge. 
Of particular concern to the UAE are attempts by expelled persons to re-enter the 
country. Traditional means of preventing reentry involve identifying individuals by 
name, date of birth, and other text-based data. The risk is that this information can 
be changed after expulsion. An individual can arrive with a different passport with a 
different nationality and changes to other identifying information.

To counter such attempts, the UAE decided on using a biometric identifica-
tion system and identified the following requirements:

� r� Identify a single person from a large population of people
� r� Rely on a biometric feature that does not change over time
� r� Use biometric features that can be acquired quickly
� r� Be easy to use
� r� Respond in real-time for mass transit applications
� r� Be safe and non-invasive
� r� Scale into the billions of comparisons and maintain top performance
� r� Be affordable

And chose iris recognition as the most efficient and foolproof method. No two irises 
are alike. There is no correlation between the iris patterns of even identical twins, or 
the right and left eye of an individual.

System implementation involves enrollment and identity checking. All 
expelled foreigners are subjected to an iris scan at one of the multiple enrollment 
centers. This information is merged into one central database. Iris scanners are 
installed at all 17 air, land, and sea ports into the UAE. An iris-recognition cam-
era takes a black-and-white picture 5 to 24 inches from the eye, depending on the 
camera. The camera uses non-invasive, near-infrared illumination that is similar 
to a TV remote control, barely visible and considered extremely safe. The picture 
first is processed by software that localizes the inner and outer boundaries of the 
iris, and the eyelid contours, in order to extract just the iris portion. The software 
creates a so-called phase code for the texture of the iris, similar to a DNA sequence 
code. The unique features of the iris are captured by this code and can be compared 
against a large database of scanned irises to make a match. Over a distributed net-
work (Figure 3.13) the iris codes of all arriving passengers are compared in real-
time exhaustively against an enrolled central database.

Note that this is computationally a more demanding task than verifying an 
identity. In this case, the iris pattern of each incoming passenger is compared against 
the entire database of known patterns to determine if there is a match. Given the 
current volume of traffic and size of the database, the daily number of iris cross-
comparisons is well over 9 billion.

As with any security system, adversaries are always looking for countermeas-
ures. UAE officials had to adopt new security methods to detect if an iris has been 
dilated with eye drops before scanning. Expatriates who were banned from the 
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UAE started using eye drops in an effort to fool the government’s iris recognition 
system when they try to re-enter the country. A new algorithm and computerized 
step-by-step procedure has been adopted to help officials determine if an iris is in 
normal condition or an eye-dilating drop has been used.

  3.8 CASE STUDY: SECURITY PROBLEMS
  FOR ATM SYSTEMS

Redspin, Inc., an independent auditor, recently released a report describing a 
 security vulnerability in ATM (automated teller machine) usage that  affects a 
 number of small to mid-size ATM card issuers. This vulnerability provides a  useful 
case study  illustrating that cryptographic functions and services alone do not 
 guarantee security; they must be properly implemented as part of a system.

We begin by defining terms used in this section:

 r Cardholder: An individual to whom a debit card is issued. Typically, this 
 individual is also responsible for payment of all charges made to that card.
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Figure 3.13 General Iris Scan Site Architecture for UAE System
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 r Issuer: An institution that issues debit cards to cardholders. This institution 
is responsible for the cardholder’s account and authorizes all transactions. 
Banks and credit unions are typical issuers.

 r Processor: An organization that provides services such as core data processing 
(PIN recognition and account updating), electronic funds transfer (EFT), and so 
on to issuers. EFT allows an issuer to access regional and national networks that 
connect point of sale (POS) devices and ATMs worldwide. Examples of process-
ing  companies include Fidelity National Financial and Jack Henry & Associates.

Customers expect 24/7 service at ATM stations. For many small to mid-sized 
issuers, it is more cost-effective for contract processors to provide the required data 
processing and EFT/ATM services. Each service typically requires a dedicated data 
connection between the issuer and the processor, using a leased line or a virtual 
leased line.

Prior to about 2003, the typical configuration involving issuer, processor, 
and ATM machines could be characterized by Figure 3.14a. The ATM  units linked 
directly to the processor rather than to the issuer that owned the ATM, via leased 
or virtual leased line. The use of a dedicated link made it difficult to maliciously 

Internet

Internet

Issuer
(e.g., bank)

Issuer-owned ATM

(a) Point-to-point connection to processor

(b) Shared connection to processor
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Figure 3.14  ATM Architectures  Most small to mid-sized issuers of debit cards con-
tract processors to provide core data processing and electronic funds transfer (EFT) 
services. The bank’s ATM machine may link directly to the processor or to the bank.



intercept transferred data. To add to the security, the PIN portion of messages  
transmitted from ATM to processor was encrypted using DES (Data Encryption 
Standard). Processors have connections to EFT (electronic funds transfer) exchange 
networks to allow cardholders  access to accounts from any ATM. With the configu-
ration of Figure 3.14a, a transaction proceeds as follows. A user swipes her card and 
enters her PIN. The ATM  encrypts the PIN and transmits it to the processor as part 
of an  authorization request. The processor updates the customer’s information and 
sends a reply.

In the early 2000s, banks worldwide began the process of migrating from 
an older generation of ATMs using IBM’s OS/2 operating system to new systems 
 running Windows. The mass migration to Windows has been spurred by a number 
of factors, including IBM’s decision to stop supporting OS/2 by 2006, market 
 pressure from creditors such as MasterCard  International and Visa International to 
introduce stronger Triple DES, and pressure from U.S. regulators to introduce new 
 features for disabled users. Many banks, such as those audited by Redspin, included 
a number of other enhancements at the same time as the introduction of Windows 
and triple DES, especially the use of TCP/IP as a network transport.

Because issuers typically run their own Internet-connected local area  networks 
(LANs) and intranets using TCP/IP, it was attractive to connect ATMs to these 
issuer networks and maintain only a single dedicated line to the processor, leading 
to the configuration illustrated in Figure 3.14b. This configuration saves the issuer 
expensive monthly circuit fees and enables easier management of ATMs by the 
issuer. In this configuration, the information sent from the ATM to the processor 
traverses the  issuer’s network before being sent to the processor. It is during this 
time on the issuer’s network that the customer information is  vulnerable.

The security problem was that with the upgrade to a new ATM OS and a 
new communications configuration, the only security enhancement was the use of 
triple DES rather than DES to encrypt the PIN. The rest of the information in the 
ATM request message is sent in the clear. This  includes the card number, expiration 
date, account balances, and withdrawal amounts. A hacker tapping into the bank’s 
 network, either from an internal location or from across the Internet potentially 
would have complete access to every single ATM transaction.

The situation just described leads to two principal vulnerabilities:

 r Confidentiality: The card number, expiration date, and account balance can 
be used for online purchases or to create a duplicate card for signature-based 
transactions.

 r Integrity: There is no protection to prevent an attacker from injecting or 
altering data in transit. If an adversary is able to capture messages en route, 
the adversary can masquerade as either the processor or the ATM. Acting 
as the processor, the adversary may be able to  direct the ATM to dispense 
money without the processor ever knowing that a transaction has occurred. 
If an adversary captures a user’s account information and  encrypted PIN, 
the account is compromised until the ATM encryption key is changed, 
 enabling the adversary to modify account balances or effect transfers.

Redspin recommended a number of measures that banks can take to counter 
these threats. Short-term fixes include segmenting ATM traffic from the rest of the 
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network either by implementing strict firewall rule sets or physically dividing the 
networks altogether. An additional short-term fix is to implement network-level 
 encryption between routers that the ATM traffic traverses.

Long-term fixes involve changes in the application-level software. Protecting 
confidentiality requires encrypting all customer-related information that traverses the 
network. Ensuring data integrity requires better machine-to-machine authentication 
between the ATM and processor and the use of challenge-response protocols to coun-
ter replay attacks.

 3.9 RECOMMENDED READING

[OGOR03] is the paper to read for an authoritative survey of the topics of this chapter. 
[BURR13] is also a worthwhile survey. [SCAR09] is a comprehensive look at many issues 
related to password selection and management.

BURR13     Burr, W, et al. Electronic Authentication Guideline. Gaithersburg, MD: 
National Institute of Standards and Technology, Special Publication  
800–63–2, August 2013.

OGOR03    O’Gorman, L. “Comparing Passwords, Tokens and Biometrics for User 
 Authentication.” Proceedings of the IEEE, December 2003.

SCAR09a   Scarfone, K., and Souppaya, M. Guide to Enterprise Password Management 
(Draft). NIST Special Publication SP 800-118 (Draft), April 2009.

Review Questions

 3.1 In general terms, what are four means of authenticating a user’s identity?
 3.2 List and briefly describe the principal threats to the secrecy of passwords.
 3.3 What are two common techniques used to protect a password file?

biometric
challenge-response protocol
claimant
credential
credential service provider 

(CSP)
dynamic biometric
enroll
hashed password

identification
memory card
nonce
password
rainbow table
registration authority (RA)
relying party (RP)
salt
shadow password file

smart card
static biometric
subscriber
token
user authentication
verification
verifier

  3.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
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 3.4 List and briefly describe four common techniques for selecting or assigning passwords.
 3.5 Explain the difference between a simple memory card and a smart card.
 3.6 List and briefly describe the principal physical characteristics used for biometric 

identification.
 3.7 In the context of biometric user authentication, explain the terms, enrollment, verifi-

cation, and identification.
 3.8 Define the terms false match rate and false nonmatch rate, and explain the use of a 

threshold in relationship to these two rates.
 3.9 Describe the general concept of a challenge-response protocol.

Problems

 3.1 Explain the suitability or unsuitability of the following passwords:
 a. YK 334 b. mfmitm (for “my favorite  c. Natalie1 d. Washington

  movie is tender mercies)
 e. Aristotle f. tv9stove g. 12345678 h. dribgib

 3.2 An early attempt to force users to use less predictable passwords involved computer-
supplied passwords. The passwords were eight characters long and were taken from 
the character set consisting of lowercase letters and digits. They were generated by a 
pseudorandom number generator with 215 possible starting values. Using the technol-
ogy of the time, the time required to search through all character strings of length 8 
from a 36-character alphabet was 112 years. Unfortunately, this is not a true reflec-
tion of the actual security of the system. Explain the problem.

 3.3 Assume that passwords are selected from four-character combinations of 26 alpha-
betic characters. Assume that an adversary is able to attempt passwords at a rate of 
one per second.

 a. Assuming no feedback to the adversary until each attempt has been completed, 
what is the expected time to discover the correct password?

 b. Assuming feedback to the adversary flagging an error as each incorrect character 
is entered, what is the expected time to discover the correct password?

 3.4 Assume that source elements of length k are mapped in some uniform fashion into a 
target elements of length p. If each digit can take on one of r values, then the number 
of source elements is rk and the number of target elements is the smaller number rp. 
A particular source element xi is mapped to a particular target element yj.

 a. What is the probability that the correct source element can be selected by an 
 adversary on one try?

 b. What is the probability that a different source element xk (xi ≠ xk) that results in 
the same target element, yj, could be produced by an adversary?

 c. What is the probability that the correct target element can be produced by an 
 adversary on one try?

 3.5 A phonetic password generator picks two segments randomly for each six-letter 
 password. The form of each segment is CVC (consonant, vowel, consonant), where 
V = 6 a, e, i, o, u 7 and C = V- .

 a. What is the total password population?
 b. What is the probability of an adversary guessing a password correctly?
 3.6 Assume that passwords are limited to the use of the 95 printable ASCII characters 

and that all passwords are 10 characters in length. Assume a password cracker with 
an encryption rate of 6.4 million encryptions per second. How long will it take to test 
 exhaustively all possible passwords on a UNIX system?

 3.7 Because of the known risks of the UNIX password system, the SunOS-4.0 documen-
tation recommends that the password file be removed and replaced with a publicly 
readable file called /etc/publickey. An entry in the file for user A consists of a user’s 
identifier IDA, the user’s public key, PUa, and the corresponding private key PRa. 
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This private key is encrypted using DES with a key derived from the user’s login pass-
word Pa. When A logs in, the system decrypts E(Pa, PRa) to obtain PRa.

 a. The system then verifies that Pa was correctly supplied. How?
 b. How can an opponent attack this system?
 3.8 It was stated that the inclusion of the salt in the UNIX password scheme increases the dif-

ficulty of guessing by a factor of 4096. But the salt is stored in plaintext in the same entry 
as the corresponding ciphertext password. Therefore, those two characters are known to 
the attacker and need not be guessed. Why is it asserted that the salt increases security?

 3.9 Assuming that you have successfully answered the preceding problem and under-
stand the significance of the salt, here is another question. Wouldn’t it be possible to 
thwart completely all password crackers by dramatically increasing the salt size to, 
say, 24 or 48 bits?

 3.10 Consider the Bloom filter discussed in Section 3.3. Define k = number of hash func-
tions; N = number of bits in hash table; and D = number of words in dictionary.

 a. Show that the expected number of bits in the hash table that are equal to zero is 
expressed as

f = a1- k
N
bD

 b. Show that the probability that an input word, not in the dictionary, will be falsely 
accepted as being in the dictionary is

P = (1-f)k

 c. Show that the preceding expression can be approximated as

P ≈ (1 - e-kD/N)k

 3.11 For the biometric authentication protocols illustrated in Figure 3.12, note that the 
biometric capture device is authenticated in the case of a static biometric but not 
 authenticated for a dynamic biometric. Explain why authentication is useful in the 
case of a stable biometric but not needed in the case of a dynamic biometric.

 3.12 A relatively new authentication proposal is the Secure Quick Reliable Login (SQRL) 
described here: https://www.grc.com/sqrl/sqrl.htm. Write a brief summary of how 
SQRL works and indicate how it fits into the categories of types of user authentica-
tion listed in this chapter.


