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All the afternoon Mungo had been working on Stern’s code, principally with the
aid of the latest messages which he had copied down at the Nevin Square drop.
Stern was very confident. He must be well aware London Central knew about that
drop. It was obvious that they didn’t care how often Mungo read their messages, so
confident were they in the impenetrability of the code.

— Talking to Strange Men, Ruth Rendell

Amongst the tribes of Central Australia every man, woman, and child has a secret
or sacred name which is bestowed by the older men upon him or her soon after
birth, and which is known to none but the fully initiated members of the group. This
secret name is never mentioned except upon the most solemn occasions; to utter it
in the hearing of men of another group would be a most serious breach of tribal
custom. When mentioned at all, the name is spoken only in a whisper, and not until
the most elaborate precautions have been taken that it shall be heard by no one but
members of the group. The native thinks that a stranger knowing his secret name
would have special power to work him ill by means of magic.

—The Golden Bough, Sir James George Frazer

Symmetric encryption, also referred to as conventional encryption, secret-key, or
single-key encryption, was the only type of encryption in use prior to the develop-
ment of public-key encryption in the late 1970s.! It remains by far the most widely
used of the two types of encryption.

This chapter begins with a look at a general model for the symmetric encryp-
tion process; this will enable us to understand the context within which the
algorithms are used. Then we look at three important block encryption algorithms:
DES, triple DES, and AES. This is followed by a discussion of random and
pseudorandom number generation. Next, the chapter introduces symmetric stream
encryption and describes the widely used stream cipher RC4. Finally, we look at the
important topic of block cipher modes of operation.

2.1 SYMMETRIC ENCRYPTION PRINCIPLES

A symmetric encryption scheme has five ingredients (Figure 2.1):

* Plaintext: This is the original message or data that is fed into the algorithm as
mnput.

* Encryption algorithm: The encryption algorithm performs various substitutions
and transformations on the plaintext.

e Secret key: The secret key is also input to the algorithm. The exact substitutions
and transformations performed by the algorithm depend on the key.

Public-key encryption was first described in the open literature in 1976; the National Security Agency
(NSA) claims to have discovered it some years earlier.
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Figure 2.1 Simplified Model of Symmetric Encryption

e Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts.

* Decryption algorithm: This is essentially the encryption algorithm run in
reverse. It takes the ciphertext and the same secret key and produces the orig-
inal plaintext.

There are two requirements for secure use of symmetric encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the
algorithm to be such that an opponent who knows the algorithm and has
access to one or more ciphertexts would be unable to decipher the ciphertext
or figure out the key. This requirement is usually stated in a stronger form: The
opponent should be unable to decrypt ciphertext or discover the key even if he
or she is in possession of a number of ciphertexts together with the plaintext
that produced each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in
a secure fashion and must keep the key secure. If someone can discover
the key and knows the algorithm, all communication using this key 1is
readable.

It is important to note that the security of symmetric encryption depends on
the secrecy of the key, not the secrecy of the algorithm. That is, it is assumed that it is
impractical to decrypt a message on the basis of the ciphertext plus knowledge of
the encryption/decryption algorithm. In other words, we do not need to keep the
algorithm secret; we need to keep only the key secret.

This feature of symmetric encryption is what makes it feasible for widespread
use. The fact that the algorithm need not be kept secret means that manufacturers
can and have developed low-cost chip implementations of data encryption algo-
rithms. These chips are widely available and incorporated into a number of products.
With the use of symmetric encryption, the principal security problem is maintaining
the secrecy of the key.
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Cryptography
Cryptographic systems are generically classified along three independent dimensions:

1. The type of operations used for transforming plaintext to ciphertext. All
encryption algorithms are based on two general principles: substitution, in
which each element in the plaintext (bit, letter, group of bits or letters) is
mapped into another element, and transposition, in which elements in the
plaintext are rearranged. The fundamental requirement is that no information
be lost (that is, that all operations be reversible). Most systems, referred to as
product systems, involve multiple stages of substitutions and transpositions.

2. The number of keys used. If both sender and receiver use the same key, the system
is referred to as symmetric, single-key, secret-key, or conventional encryption. If the
sender and receiver each use a different key, the system is referred to as asymmetric,
two-key, or public-key encryption.

3. The way in which the plaintext is processed. A block cipher processes the input
one block of elements at a time, producing an output block for each input
block. A stream cipher processes the input elements continuously, producing
output one element at a time, as it goes along.

Cryptanalysis

The process of attempting to discover the plaintext or key is known as eryptanalysis.
The strategy used by the cryptanalyst depends on the nature of the encryption
scheme and the information available to the cryptanalyst.

Table 2.1 summarizes the various types of cryptanalytic attacks based on the
amount of information known to the cryptanalyst. The most difficult problem is
presented when all that is available is the ciphertext only. In some cases, not even the
encryption algorithm is known, but in general, we can assume that the opponent
does know the algorithm used for encryption. One possible attack under these
circumstances is the brute-force approach of trying all possible keys. If the key space
is very large, this becomes impractical. Thus, the opponent must rely on an analysis
of the ciphertext itself, generally applying various statistical tests to it. To use this
approach, the opponent must have some general idea of the type of plaintext that is
concealed, such as English or French text, an EXE file, a Java source listing, an
accounting file, and so on.

The ciphertext-only attack is the easiest to defend against because the opponent
has the least amount of information to work with. In many cases, however, the analyst
has more information. The analyst may be able to capture one or more plaintext
messages as well as their encryptions. Or the analyst may know that certain plain-
text patterns will appear in a message. For example, a file that is encoded in the
Postscript format always begins with the same pattern, or there may be a standardized
header or banner to an electronic funds transfer message, and so on. All of these are
examples of known plaintext. With this knowledge, the analyst may be able to deduce
the key on the basis of the way in which the known plaintext is transformed.

Closely related to the known-plaintext attack is what might be referred to as a
probable-word attack. If the opponent is working with the encryption of some general
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Table 2.1 Types of Attacks on Encrypted Messages

Type of Attack

Known to Cryptanalyst

Ciphertext only

e Encryption algorithm

e Ciphertext to be decoded

Known plaintext

e Encryption algorithm

e Ciphertext to be decoded

* One or more plaintext—ciphertext pairs formed with the secret key

Chosen plaintext e Encryption algorithm

e Ciphertext to be decoded

e Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext
generated with the secret key

Chosen ciphertext e Encryption algorithm

e Ciphertext to be decoded

¢ Purported ciphertext chosen by cryptanalyst, together with its corresponding
decrypted plaintext generated with the secret key

Chosen text e Encryption algorithm

e Ciphertext to be decoded

e Plaintext message chosen by cryptanalyst, together with its corresponding
ciphertext generated with the secret key

e Purported ciphertext chosen by cryptanalyst, together with its corresponding
decrypted plaintext generated with the secret key

prose message, he or she may have little knowledge of what is in the message.
However, if the opponent is after some very specific information, then parts of the
message may be known. For example, if an entire accounting file is being transmitted,
the opponent may know the placement of certain key words in the header of the file.
As another example, the source code for a program developed by a corporation might
include a copyright statement in some standardized position.

If the analyst is able somehow to get the source system to insert into the
system a message chosen by the analyst, then a chosen-plaintext attack is possible. In
general, if the analyst is able to choose the messages to encrypt, the analyst may
deliberately pick patterns that can be expected to reveal the structure of the key.

Table 2.1 lists two other types of attack: chosen ciphertext and chosen text.
These are less commonly employed as cryptanalytic techniques but are nevertheless
possible avenues of attack.

Only relatively weak algorithms fail to withstand a ciphertext-only attack.
Generally, an encryption algorithm is designed to withstand a known-plaintext attack.

An encryption scheme is computationally secure if the ciphertext generated
by the scheme meets one or both of the following criteria:

e The cost of breaking the cipher exceeds the value of the encrypted information.

e The time required to break the cipher exceeds the useful lifetime of the
information.
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Unfortunately, it is very difficult to estimate the amount of effort required to
cryptanalyze ciphertext successfully. However, assuming there are no inherent
mathematical weaknesses in the algorithm, then a brute-force approach is indicated,
and here we can make some reasonable estimates about costs and time.

A brute-force approach involves trying every possible key until an intelligi-
ble translation of the ciphertext into plaintext is obtained. On average, half of all
possible keys must be tried to achieve success. Table 2.2 shows how much time is
involved for various key sizes. The 56-bit key size is used with the DES
(Data Encryption Standard) algorithm. For each key size, the results are shown
assuming that it takes 1 us to perform a single decryption, which is a reasonable
order of magnitude for today’s machines. With the use of massively parallel
organizations of microprocessors, it may be possible to achieve processing rates
many orders of magnitude greater. The final column of Table 2.2 considers the
results for a system that can process 1 million keys per microsecond. As you can
see, at this performance level, DES no longer can be considered computationally
secure.

Feistel Cipher Structure

Many symmetric block encryption algorithms, including DES, have a structure first
described by Horst Feistel of IBM in 1973 [FEIS73] and shown in Figure 2.2. The
inputs to the encryption algorithm are a plaintext block of length 2w bits and a key
K. The plaintext block is divided into two halves, LEy and RE,. The two halves of
the data pass through n rounds of processing and then combine to produce the
ciphertext block. Each round i has as inputs LE;_| and RE;_| derived from the
previous round, as well as a subkey K; derived from the overall K. In general,
the subkeys K; are different from K and from each other and are generated from
the key by a subkey generation algorithm. In Figure 2.2, 16 rounds are used,
although any number of rounds could be implemented. The right-hand side of
Figure 2.2 shows the decryption process.

All rounds have the same structure. A substitution is performed on the left half
of the data. This is done by applying a round function F to the right half of the data and
then taking the exclusive-OR (XOR) of the output of that function and the left half of
the data. The round function has the same general structure for each round but is

Table 2.2 Average Time Required for Exhaustive Key Search

Number of Time Required at 1 Time Required at
Key Size (bits) Alternative Keys Decryption/us 10° Decryptions/us
32 N 1 23lus = 35.8 minutes 2.15 milliseconds
56 2% =172 x 10'° 2%us = 1142 years 10.01 hours
128 2128 = 34 x 10%® 21%7us = 5.4 X 10* years 5.4 x 10" years
168 218 =37 x 107 2175 = 5.9 X 10° years 5.9 x 10* years
éircr};f;i:zf) 26! = 4 X 10% 2 X 10%us = 6.4 X 10" years 6.4 X 100 years
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Figure 2.2 Feistel Encryption and Decryption (16 rounds)

parameterized by the round subkey K;. Following this substitution, a permutation is
performed that consists of the interchange of the two halves of the data.

The Feistel structure is a particular example of the more general structure
used by all symmetric block ciphers. In general, a symmetric block cipher consists of
a sequence of rounds, with each round performing substitutions and permutations
conditioned by a secret key value. The exact realization of a symmetric block cipher
depends on the choice of the following parameters and design features.
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* Block size: Larger block sizes mean greater security (all other things being
equal) but reduced encryption/decryption speed. A block size of 128 bits is
a reasonable tradeoff and is nearly universal among recent block cipher
designs.

* Key size: Larger key size means greater security but may decrease encryption/
decryption speed. The most common key length in modern algorithms is 128 bits.

* Number of rounds: The essence of a symmetric block cipher is that a single
round offers inadequate security but that multiple rounds offer increasing
security. A typical size is 16 rounds.

* Subkey generation algorithm: Greater complexity in this algorithm should
lead to greater difficulty of cryptanalysis.

* Round function: Again, greater complexity generally means greater resistance
to cryptanalysis.

There are two other considerations in the design of a symmetric block cipher:

* Fast software encryption/decryption: In many cases, encryption is embedded
in applications or utility functions in such a way as to preclude a hardware
implementation. Accordingly, the speed of execution of the algorithm
becomes a concern.

e Ease of analysis: Although we would like to make our algorithm as difficult as
possible to cryptanalyze, there is great benefit in making the algorithm easy to
analyze. That is, if the algorithm can be concisely and clearly explained, it is
easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore
develop a higher level of assurance as to its strength. DES, for example, does
not have an easily analyzed functionality.

Decryption with a symmetric block cipher is essentially the same as the encryp-
tion process. The rule is as follows: Use the ciphertext as input to the algorithm,
but use the subkeys K; in reverse order. That is, use K,, in the first round, K,,_; in the
second round, and so on until K; is used in the last round. This is a nice feature,
because it means we need not implement two different algorithms—one for encryp-
tion and one for decryption.

SYMMETRIC BLOCK ENCRYPTION ALGORITHMS

The most commonly used symmetric encryption algorithms are block ciphers.
A block cipher processes the plaintext input in fixed-sized blocks and produces a
block of ciphertext of equal size for each plaintext block. This section focuses on the
three most important symmetric block ciphers: the Data Encryption Standard
(DES), triple DES (3DES), and the Advanced Encryption Standard (AES).

Data Encryption Standard

The most widely used encryption scheme is based on the Data Encryption Standard
(DES) issued in 1977, as Federal Information Processing Standard 46 (FIPS 46) by
the National Bureau of Standards, now known as the National Institute of Standards
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and Technology (NIST). The algorithm itself is referred to as the Data Encryption
Algorithm (DEA).

DEescription oF THE ALGoriTHM The plaintext is 64 bits in length and the key is 56
bits in length; longer plaintext amounts are processed in 64-bit blocks. The DES
structure is a minor variation of the Feistel network shown in Figure 2.2. There are
16 rounds of processing. From the original 56-bit key, 16 subkeys are generated, one
of which is used for each round.

The process of decryption with DES is essentially the same as the encryption
process. The rule is as follows: Use the ciphertext as input to the DES algorithm, but
use the subkeys K; in reverse order. That is, use K¢ on the first iteration, K;5 on the
second iteration, and so on until K; is used on the 16th and last iteration.

THe STrENGTH ofF DES Concerns about the strength of DES fall into two
categories: concerns about the algorithm itself and concerns about the use of a
56-bit key. The first concern refers to the possibility that cryptanalysis is possible by
exploiting the characteristics of the DES algorithm. Over the years, there have been
numerous attempts to find and exploit weaknesses in the algorithm, making DES
the most-studied encryption algorithm in existence. Despite numerous approaches,
no one has so far succeeded in discovering a fatal weakness in DES.’

A more serious concern is key length. With a key length of 56 bits, there are
possible keys, which is approximately 7.2 x 10'® keys. Thus, on the face of it, a brute-
force attack appears impractical. Assuming that on average half the key space has to
be searched, a single machine performing one DES encryption per microsecond
would take more than a thousand years (see Table 2.2) to break the cipher.

However, the assumption of one encryption per microsecond is overly conserv-
ative. DES finally and definitively proved insecure in July 1998, when the Electronic
Frontier Foundation (EFF) announced that it had broken a DES encryption using a
special-purpose “DES cracker” machine that was built for less than $250,000. The
attack took less than three days. The EFF has published a detailed description of the
machine, enabling others to build their own cracker [EFF98]. And, of course, hard-
ware prices will continue to drop as speeds increase, making DES virtually worthless.

It is important to note that there is more to a key-search attack than simply
running through all possible keys. Unless known plaintext is provided, the analyst
must be able to recognize plaintext as plaintext. If the message is just plain text in
English, then the result pops out easily, although the task of recognizing English
would have to be automated. If the text message has been compressed before
encryption, then recognition is more difficult. And if the message is some more gen-
eral type of data, such as a numerical file, and this has been compressed, the problem
becomes even more difficult to automate. Thus, to supplement the brute-force

256

’The terminology is a bit confusing. Until recently, the terms DES and DEA could be used interchange-
ably. However, the most recent edition of the DES document includes a specification of the DEA
described here plus the triple DEA (3DES) described subsequently. Both DEA and 3DES are part of the
Data Encryption Standard. Furthermore, until the recent adoption of the official term 3DES, the triple
DEA algorithm was typically referred to as triple DES and written as 3DES. For the sake of convenience,
we will use 3DES.

3At least, no one has publicly acknowledged such a discovery.
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approach, some degree of knowledge about the expected plaintext is needed, and
some means of automatically distinguishing plaintext from garble is also needed. The
EFF approach addresses this issue as well and introduces some automated tech-
niques that would be effective in many contexts.

A final point: If the only form of attack that could be made on an encryption
algorithm is brute force, then the way to counter such attacks is obvious: use longer
keys. To get some idea of the size of key required, let us use the EFF cracker as a
basis for our estimates. The EFF cracker was a prototype, and we can assume that
with today’s technology a faster machine is cost effective. If we assume that a cracker
can perform one million decryptions per us, which is the rate used in Table 2.2, then a
DES code would take about 10 hours to crack. This is a speed-up of approximately a
factor of 7 compared to the EFF result. Using this rate, Figure 2.3 shows how long it
would take to crack a DES-style algorithm as a function of key size. For example, for
a 128-bit key, which is common among contemporary algorithms, it would take over
10'® years to break the code using the EFF cracker. Even if we managed to speed up
the cracker by a factor of 1 trillion (10'2), it would still take over 1 million years to
break the code. So a 128-bit key is guaranteed to result in an algorithm that is
unbreakable by brute force.

Triple DES

Triple DES (3DES) was first standardized for use in financial applications in ANSI
standard X9.17 in 1985. 3DES was incorporated as part of the Data Encryption
Standard in 1999 with the publication of FIPS 46-3.
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Figure 2.4 Triple DES

3DES uses three keys and three executions of the DES algorithm. The function
follows an encrypt-decrypt-encrypt (EDE) sequence (Figure 2.4a):

C = E(K3,D(Ky, E(Ky, P)))
where

C = ciphertext

P = plaintext
E[K, X] = encryption of X using key K
DI[K, Y] = decryption of Y using key K

Decryption is simply the same operation with the keys reversed (Figure 2.4b):
P =D(Ky, E(Ky, D(K3, C)))

There is no cryptographic significance to the use of decryption for the second
stage of 3DES encryption. Its only advantage is that it allows users of 3DES to
decrypt data encrypted by users of the older single DES:

C = E(K,,D(Ky, E(K}, P))) = E[K, P]

With three distinct keys, 3DES has an effective key length of 168 bits. FIPS 46-3
also allows for the use of two keys, with K| = Kj3; this provides for a key length of 112
bits. FIPS 46-3 includes the following guidelines for 3DES.

* 3DES is the FIPS approved symmetric encryption algorithm of choice.

e The original DES, which uses a single 56-bit key, is permitted under the standard
for legacy systems only. New procurements should support 3DES.

* Government organizations with legacy DES systems are encouraged to
transition to 3DES.

 Itis anticipated that 3DES and the Advanced Encryption Standard (AES) will
coexist as FIPS-approved algorithms, allowing for a gradual transition to AES.

It is easy to see that 3DES is a formidable algorithm. Because the underlying
cryptographic algorithm is DEA,3DES can claim the same resistance to cryptanalysis
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based on the algorithm as is claimed for DEA. Furthermore, with a 168-bit key length,
brute-force attacks are effectively impossible.

Ultimately, AES is intended to replace 3DES, but this process will take a number
of years. NIST anticipates that 3DES will remain an approved algorithm (for U.S.
government use) for the foreseeable future.

Advanced Encryption Standard

3DES has two attractions that assure its widespread use over the next few years.
First, with its 168-bit key length, it overcomes the vulnerability to brute-force attack
of DEA. Second, the underlying encryption algorithm in 3DES is the same as in
DEA. This algorithm has been subjected to more scrutiny than any other encryption
algorithm over a longer period of time, and no effective cryptanalytic attack based
on the algorithm rather than brute force has been found. Accordingly, there is a high
level of confidence that 3DES is very resistant to cryptanalysis. If security were the
only consideration, then 3DES would be an appropriate choice for a standardized
encryption algorithm for decades to come.

The principal drawback of 3DES is that the algorithm is relatively sluggish in
software. The original DEA was designed for mid-1970s hardware implementation
and does not produce efficient software code. 3DES, which has three times as many
rounds as DEA, is correspondingly slower. A secondary drawback is that both DEA
and 3DES use a 64-bit block size. For reasons of both efficiency and security, a larger
block size is desirable.

Because of these drawbacks, 3DES is not a reasonable candidate for long-term
use. As a replacement, NIST in 1997 issued a call for proposals for a new Advanced
Encryption Standard (AES), which should have a security strength equal to or better
than 3DES and significantly improved efficiency. In addition to these general
requirements, NIST specified that AES must be a symmetric block cipher with a
block length of 128 bits and support for key lengths of 128, 192, and 256 bits.
Evaluation criteria included security, computational efficiency, memory require-
ments, hardware and software suitability, and flexibility.

In a first round of evaluation, 15 proposed algorithms were accepted. A second
round narrowed the field to five algorithms. NIST completed its evaluation process
and published a final standard (FIPS PUB 197) in November of 2001. NIST selected
Rijndael as the proposed AES algorithm. The two researchers who developed and
submitted Rijndael for the AES are both cryptographers from Belgium: Dr. Joan
Daemen and Dr. Vincent Rijmen.

OvervieEw ofF THE ALcoriTHM AES uses a block length of 128 bits and a key length
that can be 128, 192, or 256 bits. In the description of this section, we assume a key
length of 128 bits, which is likely to be the one most commonly implemented.
Figure 2.5 shows the overall structure of AES. The input to the encryption and
decryption algorithms is a single 128-bit block. In FIPS PUB 197, this block is depicted
as a square matrix of bytes. This block is copied into the State array, which is modified
at each stage of encryption or decryption. After the final stage, State is copied to an
output matrix. Similarly, the 128-bit key is depicted as a square matrix of bytes. This
key is then expanded into an array of key schedule words: each word is four bytes and
the total key schedule is 44 words for the 128-bit key. The ordering of bytes within a
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Figure 2.5 AES Encryption and Decryption

matrix is by column. So, for example, the first four bytes of a 128-bit plaintext input to
the encryption cipher occupy the first column of the in matrix, the second four bytes
occupy the second column, and so on. Similarly, the first four bytes of the expanded
key, which form a word, occupy the first column of the w matrix.

The following comments give some insight into AES.

1. One noteworthy feature of this structure is that it is not a Feistel structure. Recall
that in the classic Feistel structure, half of the data block is used to modify the
other half of the data block, and then the halves are swapped. AES does not use
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10.

a Feistel structure but processes the entire data block in parallel during each
round using substitutions and permutation.

The key that is provided as input is expanded into an array of forty-four 32-bit
words, wli]. Four distinct words (128 bits) serve as a round key for each round.

Four different stages are used, one of permutation and three of substitution:

o Substitute bytes: Uses a table, referred to as an S-box,* to perform a byte-by-
byte substitution of the block.

* Shift rows: A simple permutation that is performed row by row.

* Mix columns: A substitution that alters each byte in a column as a function
of all of the bytes in the column.

* Add round key: A simple bitwise XOR of the current block with a portion
of the expanded key.

The structure is quite simple. For both encryption and decryption, the cipher
begins with an Add Round Key stage, followed by nine rounds that each includes
all four stages, followed by a tenth round of three stages. Figure 2.6 depicts the
structure of a full encryption round.

Only the Add Round Key stage makes use of the key. For this reason, the cipher
begins and ends with an Add Round Key stage. Any other stage, applied at the
beginning or end, is reversible without knowledge of the key and so would add
no security.

The Add Round Key stage by itself would not be formidable. The other three
stages together scramble the bits, but by themselves, they would provide no secu-
rity because they do not use the key. We can view the cipher as alternating oper-
ations of XOR encryption (Add Round Key) of a block, followed by scrambling
of the block (the other three stages), followed by XOR encryption, and so on.
This scheme is both efficient and highly secure.

. Each stage is easily reversible. For the Substitute Byte, Shift Row, and Mix

Columns stages, an inverse function is used in the decryption algorithm. For the
Add Round Key stage, the inverse is achieved by XORing the same round key to
the block, using the result that A @ B @ B = A.

As with most block ciphers, the decryption algorithm makes use of the expanded
key in reverse order. However, the decryption algorithm is not identical to the
encryption algorithm. This is a consequence of the particular structure of AES.

Once it is established that all four stages are reversible, it is easy to verify that
decryption does recover the plaintext. Figure 2.5 lays out encryption and decryp-
tion going in opposite vertical directions. At each horizontal point (e.g., the
dashed line in the figure), State is the same for both encryption and decryption.

The final round of both encryption and decryption consists of only three
stages. Again, this is a consequence of the particular structure of AES and is
required to make the cipher reversible.

“The term S-box, or substitution box, is commonly used in the description of symmetric ciphers to refer to
a table used for a table-lookup type of substitution mechanism.
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2.3 RANDOM AND PSEUDORANDOM NUMBERS

Random numbers play an important role in the use of encryption for various network
security applications. We provide an overview in this section. The topic is examined in
more detail in Appendix E.

The Use of Random Numbers

A number of network security algorithms based on cryptography make use of random
numbers. For example,

e Generation of keys for the RSA public-key encryption algorithm (described
in Chapter 3) and other public-key algorithms.

* Generation of a stream key for symmetric stream cipher (discussed in the
following section).

* Generation of a symmetric key for use as a temporary session key. This function
is used in a number of networking applications, such as Transport Layer Security
(Chapter 5), Wi-Fi (Chapter 6), e-mail security (Chapter 7), and IP security
(Chapter 8).

e In a number of key distribution scenarios, such as Kerberos (Chapter 4),
random numbers are used for handshaking to prevent replay attacks.

These applications give rise to two distinct and not necessarily compatible
requirements for a sequence of random numbers: randomness and unpredictability.

RanpomnEss Traditionally, the concern in the generation of a sequence of allegedly
random numbers has been that the sequence of numbers be random in some well-
defined statistical sense. The following criteria are used to validate that a sequence
of numbers is random.

* Uniform distribution: The distribution of bits in the sequence should be uniform;
that is, the frequency of occurrence of ones and zeros should be approximately
the same.

* Independence: No one subsequence in the sequence can be inferred from the
others.

Although there are well-defined tests for determining that a sequence of num-
bers matches a particular distribution, such as the uniform distribution, there is no such
test to “prove” independence. Rather, a number of tests can be applied to demonstrate
if a sequence does not exhibit independence. The general strategy is to apply a number
of such tests until the confidence that independence exists is sufficiently strong.

In the context of our discussion, the use of a sequence of numbers that appear
statistically random often occurs in the design of algorithms related to cryptography.
For example, a fundamental requirement of the RSA public-key encryption scheme
discussed in Chapter 3 is the ability to generate prime numbers. In general, it is
difficult to determine if a given large number N is prime. A brute-force approach
would be to divide N by every odd integer less than V/N.If N is on the order, say, of
10" (a not uncommon occurrence in public-key cryptography), such a brute-force
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approach is beyond the reach of human analysts and their computers. However, a
number of effective algorithms exist that test the primality of a number by using a
sequence of randomly chosen integers as input to relatively simple computations. If
the sequence is sufficiently long (but far, far less than \/10'"), the primality of a
number can be determined with near certainty. This type of approach, known as ran-
domization, crops up frequently in the design of algorithms. In essence, if a problem
is too hard or time-consuming to solve exactly, a simpler, shorter approach based on
randomization is used to provide an answer with any desired level of confidence.

UNpPrEDICTABILITY In applications such as reciprocal authentication and session
key generation, the requirement is not so much that the sequence of numbers be
statistically random but that the successive members of the sequence are
unpredictable. With “true” random sequences, each number is statistically
independent of other numbers in the sequence and therefore unpredictable.
However, as is discussed shortly, true random numbers are not always used; rather,
sequences of numbers that appear to be random are generated by some algorithm.
In this latter case, care must be taken that an opponent not be able to predict future
elements of the sequence on the basis of earlier elements.

TRNGs, PRNGs, and PRFs

Cryptographic applications typically make use of algorithmic techniques for random
number generation. These algorithms are deterministic and therefore produce
sequences of numbers that are not statistically random. However, if the algorithm is
good, the resulting sequences will pass many reasonable tests of randomness. Such
numbers are referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated
by a deterministic algorithm as if they were random numbers. Despite what might
be called “philosophical” objections to such a practice, it generally works. As one
expert on probability theory puts it [HAMMO1],

For practical purposes we are forced to accept the awkward concept
of “relatively random” meaning that with regard to the proposed use
we can see no reason why they will not perform as if they were
random (as the theory usually requires). This is highly subjective and
is not very palatable to purists, but it is what statisticians regularly
appeal to when they take “a random sample”—they hope that any
results they use will have approximately the same properties as a
complete counting of the whole sample space that occurs in their
theory.

Figure 2.7 contrasts a true random number generator (TRNG) with two
forms of pseudorandom number generators. A TRNG takes as input a source that
is effectively random; the source is often referred to as an entropy source. In
essence, the entropy source is drawn from the physical environment of the com-
puter and could include things such as keystroke timing patterns, disk electrical
activity, mouse movements, and instantaneous values of the system clock. The
source, or combination of sources, serves as input to an algorithm that produces
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Source of Context-
true specific
randomness Seed Seed values
Conversion Deterministic Deterministic
to binary algorithm algorithm
Random Pseudorandom Pseudorandom
bit stream bit stream value
(a) TRNG (b) PRNG (¢) PRF

TRNG = true random number generator
PRNG = pseudorandom number generator
PRF = pseudorandom function

Figure 2.7 Random and Pseudorandom Number Generators

random binary output. The TRNG may simply involve conversion of an analog
source to a binary output. The TRNG may involve additional processing to over-
come any bias in the source.

In contrast, a PRNG takes as input a fixed value, called the seed, and produces a
sequence of output bits using a deterministic algorithm. Typically, as shown in Figure 2.7,
there is some feedback path by which some of the results of the algorithm are fed back
as input as additional output bits are produced. The important thing to note is that the
output bit stream is determined solely by the input value or values, so that an adversary
who knows the algorithm and the seed can reproduce the entire bit stream.

Figure 2.7 shows two different forms of PRNGs, based on application.

* Pseudorandom number generator: An algorithm that is used to produce an
open-ended sequence of bits is referred to as a PRNG. A common application
for an open-ended sequence of bits is as input to a symmetric stream cipher, as
discussed in the following section.

* Pseudorandom function (PRF): A PRF is used to produce a pseudorandom
string of bits of some fixed length. Examples are symmetric encryption keys
and nonces. Typically, the PRF takes as input a seed plus some context specific
values, such as a user ID or an application ID. A number of examples of PRFs
will be seen throughout this book.

Other than the number of bits produced, there is no difference between a
PRNG and a PRF. The same algorithms can be used in both applications. Both
require a seed and both must exhibit randomness and unpredictability. Furthermore,
a PRNG application may also employ context-specific input.
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Algorithm Design

Cryptographic PRNGs have been the subject of much research over the years, and a
wide variety of algorithms have been developed. These fall roughly into two categories:

* Purpose-built algorithms: These are algorithms designed specifically and solely
for the purpose of generating pseudorandom bit streams. Some of these algo-
rithms are used for a variety of PRNG applications; several of these are described
in the next section. Others are designed specifically for use in a stream cipher.
The most important example of the latter is RC4, described in the next section.

* Algorithms based on existing cryptographic algorithms: Cryptographic algo-
rithms have the effect of randomizing input. Indeed, this is a requirement of
such algorithms. For example, if a symmetric block cipher produced ciphertext
that had certain regular patterns in it, it would aid in the process of cryptanalysis.
Thus, cryptographic algorithms can serve as the core of PRNGs. Three broad
categories of cryptographic algorithms are commonly used to create PRNGs:

—Symmetric block ciphers
— Asymmetric ciphers
— Hash functions and message authentication codes

Any of these approaches can yield a cryptographically strong PRNG. A
purpose-built algorithm may be provided by an operating system for general use.
For applications that already use certain cryptographic algorithms for encryption or
authentication, it makes sense to re-use the same code for the PRNG. Thus, all of
these approaches are in common use.

2.4 STREAM CIPHERS AND RC4

A block cipher processes the input one block of elements at a time, producing an
output block for each input block. A stream cipher processes the input elements
continuously, producing output one element at a time as it goes along. Although
block ciphers are far more common, there are certain applications in which a stream
cipher is more appropriate. Examples are given subsequently in this book. In this
section, we look at perhaps the most popular symmetric stream cipher, RC4.
We begin with an overview of stream cipher structure, and then examine RC4.

Stream Cipher Structure

A typical stream cipher encrypts plaintext one byte at a time, although a stream
cipher may be designed to operate on one bit at a time or on units larger than a byte
at a time. Figure 2.8 is a representative diagram of stream cipher structure. In this
structure, a key is input to a pseudorandom bit generator that produces a stream of
8-bit numbers that are apparently random. A pseudorandom stream is one that is
unpredictable without knowledge of the input key and which has an apparently
random character. The output of the generator, called a keystream, is combined one
byte at a time with the plaintext stream using the bitwise exclusive-OR (XOR)
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Key Key
K K
Y Y
Pseudorandom byte Pseudorandom byte
generator generator
(key stream generator) (key stream generator)

Plaintext Ciphertext Plaintext
byte stream k byte stream k byte stream
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> d-/ > > d-/ >
ENCRYPTION DECRYPTION

Figure 2.8 Stream Cipher Diagram

operation. For example, if the next byte generated by the generator is 01101100
and the next plaintext byte is 11001100, then the resulting ciphertext byte is

11001100 plaintext
@© 01101100 key stream
10100000 ciphertext

Decryption requires the use of the same pseudorandom sequence:

10100000 ciphertext
@ 01101100 key stream
11001100 plaintext

[KUMAY7] lists the following important design considerations for a stream
cipher.

1. The encryption sequence should have a large period. A pseudorandom num-
ber generator uses a function that produces a deterministic stream of bits that
eventually repeats. The longer the period of repeat, the more difficult it will be
to do cryptanalysis.

2. The keystream should approximate the properties of a true random number
stream as close as possible. For example, there should be an approximately equal
number of 1s and 0s. If the keystream is treated as a stream of bytes, then all of
the 256 possible byte values should appear approximately equally often. The
more random-appearing the keystream is, the more randomized the ciphertext is,
making cryptanalysis more difficult.

3. Note from Figure 2.8 that the output of the pseudorandom number generator
1s conditioned on the value of the input key. To guard against brute-force
attacks, the key needs to be sufficiently long. The same considerations as apply
for block ciphers are valid here. Thus, with current technology, a key length of
at least 128 bits is desirable.
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With a properly designed pseudorandom number generator, a stream cipher
can be as secure as block cipher of comparable key length. The primary advantage of
a stream cipher is that stream ciphers are almost always faster and use far less code
than do block ciphers. The example in this section, RC4, can be implemented in just a
few lines of code. Table 2.3, using data from [RESCO01], compares execution times of
RC4 with three well-known symmetric block ciphers. The advantage of a block
cipher is that you can reuse keys. However, if two plaintexts are encrypted with the
same key using a stream cipher, then cryptanalysis is often quite simple [DAWS96]. If
the two ciphertext streams are XORed together, the result is the XOR of the original
plaintexts. If the plaintexts are text strings, credit card numbers, or other byte streams
with known properties, then cryptanalysis may be successful.

For applications that require encryption/decryption of a stream of data (such
as over a data-communications channel or a browser/Web link), a stream cipher
might be the better alternative. For applications that deal with blocks of data (such
as file transfer, e-mail, and database), block ciphers may be more appropriate.
However, either type of cipher can be used in virtually any application.

The RC4 Algorithm

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a vari-
able key-size stream cipher with byte-oriented operations. The algorithm is based
on the use of a random permutation. Analysis shows that the period of the cipher is
overwhelmingly likely to be greater than 10'% [ROBS93a]. Eight to sixteen machine
operations are required per output byte, and the cipher can be expected to run very
quickly in software. RC4 is used in the Secure Sockets Layer/Transport Layer Security
(SSL/TLS) standards that have been defined for communication between Web
browsers and servers. It is also used in the Wired Equivalent Privacy (WEP) protocol
and the newer WiFi Protected Access (WPA) protocol that are part of the IEEE
802.11 wireless LAN standard. RC4 was kept as a trade secret by RSA Security. In
September 1994, the RC4 algorithm was anonymously posted on the Internet on the
Cypherpunks anonymous remailers list.

The RC4 algorithm is remarkably simple and quite easy to explain. A variable-
length key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte state
vector S, with elements S[0], S[1], .. ., S[255]. At all times, S contains a permutation of
all 8-bit numbers from 0 through 255. For encryption and decryption, a byte k (see
Figure 2.8) is generated from S by selecting one of the 255 entries in a systematic
fashion. As each value of k is generated, the entries in S are once again permuted.

Table 2.3 Speed Comparisons of Symmetric Ciphers on a Pentium 11

Cipher Key Length Speed (Mbps)
DES 56 9

3DES 168 3

RC2 Variable 0.9

RC4 Variable 45
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Inrriacization or S To begin, the entries of S are set equal to the values from 0
through 255 in ascending order; that is, S[0] = 0, S[1] = 1, . . ., S[255] = 255. A
temporary vector, T, is also created. If the length of the key K is 256 bytes, then K is
transferred to T. Otherwise, for a key of length keylen bytes, the first keylen elements
of T are copied from K, and then K is repeated as many times as necessary to fill out
T. These preliminary operations can be summarized as:

/* Initialization */
for i = 0 to 255 do
S[i] = 1i;

T[i] = K[1i mod keylen];

Next we use T to produce the initial permutation of S. This involves starting
with S[0] and going through to S[255] and, for each S[i], swapping S[i] with another
byte in S according to a scheme dictated by T[i]:

/* Initial Permutation of S */

j = 0;

for i = 0 to 255 do
jJ = (3 + s[i] + T[i]) mod 256;
Swap (S[i], SI[3jl);

Because the only operation on S is a swap, the only effect is a permutation. S
still contains all the numbers from 0 through 255.

Stream GENErRATION Once the S vector is initialized, the input key is no longer
used. Stream generation involves cycling through all the elements of S[i] and, for
each S[i], swapping S[i] with another byte in S according to a scheme dictated by the
current configuration of S. After S[255] is reached, the process continues, starting
over again at S[0]:

/* Stream Generation */

i, § = 0;

while (true)
i = (i + 1) mod 256;
j = (j + s[i]) mod 256;
Swap (S[i], SI[3j]);
t = (S[i] + S[j]) mod 256;
k = S[tl;

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR
the value k with the next byte of ciphertext.
Figure 2.9 illustrates the RC4 logic.

STRENGTH OF RC4 A number of papers have been published analyzing methods of
attacking RC4 (e.g., [KNUD9YS], [MIST98], [FLUHO00], [MANTO1], [PUDOQ02],
[PAULO3], [PAULO04]). None of these approaches is practical against RC4 with a
reasonable key length, such as 128 bits. A more serious problem is reported in
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[FLUHO1]. The authors demonstrate that the WEP protocol, intended to provide
confidentiality on 802.11 wireless LAN networks, is vulnerable to a particular attack
approach. In essence, the problem is not with RC4 itself but the way in which keys
are generated for use as input to RC4. This particular problem does not appear to be
relevant to other applications using RC4 and can be remedied in WEP by changing
the way in which keys are generated. This problem points out the difficulty in
designing a secure system that involves both cryptographic functions and protocols
that make use of them.

2.5 CIPHER BLOCK MODES OF OPERATION

A symmetric block cipher processes one block of data at a time. In the case of DES and
3DES, the block length is b = 64 bits; for AES, the block length is b = 128 bits. For
longer amounts of plaintext, it is necessary to break the plaintext into b-bit blocks
(padding the last block if necessary). To apply a block cipher in a variety of applica-
tions, five modes of operation have been defined by NIST (Special Publication 800-
38A). The five modes are intended to cover virtually all of the possible applications of
encryption for which a block cipher could be used. These modes are intended for use
with any symmetric block cipher, including triple DES and AES. The most important
modes are described briefly in the remainder of this section.

Electronic Codebook Mode

The simplest way to proceed is using what is known as electronic codebook (ECB)
mode, in which plaintext is handled b bits at a time and each block of plaintext is
encrypted using the same key. The term codebook is used because, for a given key,
there is a unique ciphertext for every b-bit block of plaintext. Therefore, one can
imagine a gigantic codebook in which there is an entry for every possible b-bit plain-
text pattern showing its corresponding ciphertext.

With ECB,; if the same b-bit block of plaintext appears more than once in the
message, it always produces the same ciphertext. Because of this, for lengthy mes-
sages, the ECB mode may not be secure. If the message is highly structured, it may
be possible for a cryptanalyst to exploit these regularities. For example, if it is known
that the message always starts out with certain predefined fields, then the cryptana-
lyst may have a number of known plaintext—ciphertext pairs to work with. If the
message has repetitive elements with a period of repetition a multiple of b bits, then
these elements can be identified by the analyst. This may help in the analysis or may
provide an opportunity for substituting or rearranging blocks.

To overcome the security deficiencies of ECB, we would like a technique in
which the same plaintext block, if repeated, produces different ciphertext blocks.

Cipher Block Chaining Mode

In the cipher block chaining (CBC) mode (Figure 2.10), the input to the encryption
algorithm is the XOR of the current plaintext block and the preceding ciphertext
block; the same key is used for each block. In effect, we have chained together the
processing of the sequence of plaintext blocks. The input to the encryption function
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(a) Encryption

(b) Decryption
Figure 2.10  Cipher Block Chaining (CBC) Mode

for each plaintext block bears no fixed relationship to the plaintext block.
Therefore, repeating patterns of b bits are not exposed.

For decryption, each cipher block is passed through the decryption algorithm.
The result is XORed with the preceding ciphertext block to produce the plaintext
block. To see that this works, we can write

C,=E(K,[Ci1 @ P)])
where E[K, X] is the encryption of plaintext X using key K, and @ is the exclusive-
OR operation. Then
D(K, C)) = D(K, E(K, [C;-1 @ P})))
D(K,C)=Ci1 @ P;
C1@®DKC)=Ci@Cii @ P =P,
which verifies Figure 2.10b.
To produce the first block of ciphertext, an initialization vector (IV) is XORed
with the first block of plaintext. On decryption, the IV is XORed with the output of
the decryption algorithm to recover the first block of plaintext.

The IV must be known to both the sender and receiver. For maximum security,
the I'V should be protected as well as the key. This could be done by sending the IV
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using ECB encryption. One reason for protecting the IV is as follows: If an opponent
is able to fool the receiver into using a different value for I'V, then the opponent is able
to invert selected bits in the first block of plaintext. To see this, consider the following:

Gy =E(K,[IV @ P1])
Pl =1V @ D(K, Cl)
Now use the notation that X[j] denotes the jth bit of the b-bit quantity X. Then
Pi[i] = 1V[i] ® D(K, Cy)[i]
Then, using the properties of XOR, we can state
Pi[i]' = IV[i]' ® D(K, ¢y)[i]

where the prime notation denotes bit complementation. This means that if an oppo-
nent can predictably change bits in I'V, the corresponding bits of the received value
of P can be changed.

Cipher Feedback Mode

It is possible to convert any block cipher into a stream cipher by using the cipher
feedback (CFB) mode. A stream cipher eliminates the need to pad a message to be
an integral number of blocks. It also can operate in real time. Thus, if a character
stream is being transmitted, each character can be encrypted and transmitted imme-
diately using a character-oriented stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the same
length as the plaintext. Thus, if 8-bit characters are being transmitted, each character
should be encrypted using 8 bits. If more than 8 bits are used, transmission capacity
is wasted.

Figure 2.11 depicts the CFB scheme. In the figure, it is assumed that the unit of
transmission is s bits; a common value is s = 8. As with CBC, the units of plaintext
are chained together, so that the ciphertext of any plaintext unit is a function of all
the preceding plaintext.

First, consider encryption. The input to the encryption function is a b-bit shift
register that is initially set to some initialization vector (IV). The leftmost (most
significant) s bits of the output of the encryption function are XORed with the first unit
of plaintext P to produce the first unit of ciphertext Cy, which is then transmitted. In
addition, the contents of the shift register are shifted left by s bits, and Cy is placed in
the rightmost (least significant) s bits of the shift register. This process continues until
all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext
unit is XORed with the output of the encryption function to produce the plaintext
unit. Note that it is the encryption function that is used, not the decryption function.
This is easily explained. Let S;(X) be defined as the most significant s bits of X. Then

C1 = P @ S,[E(K,1V)]
Therefore,
Py = C; @ S,[E(K,1V)]

The same reasoning holds for subsequent steps in the process.
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Although interest in the counter mode (CTR) has increased recently, with applica-
tions to ATM (asynchronous transfer mode) network security and IPSec (IP secu-

rity), this mode was proposed early on (e.g., [DIFF79]).

Figure 2.12 depicts the CTR mode. A counter equal to the plaintext block size
is used. The only requirement stated in SP 800-38A is that the counter value must be
different for each plaintext block that is encrypted. Typically, the counter is initial-
ized to some value and then incremented by 1 for each subsequent block (modulo
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Figure 2.12  Counter (CTR) Mode

2, where b is the block size). For encryption, the counter is encrypted and then
XORed with the plaintext block to produce the ciphertext block; there is no chain-
ing. For decryption, the same sequence of counter values is used, with each
encrypted counter XORed with a ciphertext block to recover the corresponding
plaintext block.

[LIPMOO] lists the following advantages of CTR mode.

* Hardware efficiency: Unlike the chaining modes, encryption (or decryption) in
CTR mode can be done in parallel on multiple blocks of plaintext or ciphertext.
For the chaining modes, the algorithm must complete the computation on one
block before beginning on the next block. This limits the maximum throughput of
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the algorithm to the reciprocal of the time for one execution of block encryption
or decryption. In CTR mode, the throughput is only limited by the amount of
parallelism that is achieved.

* Software efficiency: Similarly, because of the opportunities for parallel exe-
cution in CTR mode, processors that support parallel features (such
as aggressive pipelining, multiple instruction dispatch per clock cycle, a
large number of registers, and SIMD instructions) can be effectively
utilized.

* Preprocessing: The execution of the underlying encryption algorithm does
not depend on input of the plaintext or ciphertext. Therefore, if sufficient
memory is available and security is maintained, preprocessing can be used to
prepare the output of the encryption boxes that feed into the XOR functions
in Figure 2.12. When the plaintext or ciphertext input is presented, then the
only computation is a series of XORs. Such a strategy greatly enhances
throughput.

* Random access: The ith block of plaintext or ciphertext can be processed in
random-access fashion. With the chaining modes, block C; cannot be com-
puted until the i — 1 prior block are computed. There may be applications in
which a ciphertext is stored, and it is desired to decrypt just one block; for such
applications, the random access feature is attractive.

* Provable security: It can be shown that CTR is at least as secure as the other
modes discussed in this section.

e Simplicity: Unlike ECB and CBC modes, CTR mode requires only the imple-
mentation of the encryption algorithm and not the decryption algorithm. This
matters most when the decryption algorithm differs substantially from the
encryption algorithm, as it does for AES. In addition, the decryption key
scheduling need not be implemented.

2.6 RECOMMENDED READING AND WEB SITES

The topics in this chapter are covered in greater detail in [STAL11]. For coverage of crypto-
graphic algorithms, [SCHNY96] is an essential reference work; it contains descriptions of virtu-
ally every cryptographic algorithm and protocol published up to the time of the writing of the
book. Another worthwhile and detailed survey is [MENE97]. A more in-depth treatment,
with rigorous mathematical discussion, is [STIN06].

MENE97 Menezes, A.; van Oorschot, P.; and Vanstone, S. Handbook of Applied
Cryptography. Boca Raton, FL: CRC Press, 1997.

SCHN96 Schneier, B. Applied Cryptography. New York: Wiley, 1996.

STAL11 Stallings, W. Cryptography and Network Security: Principles and Practice, Fifth
LEdition. Upper Saddle River, NJ: Prentice Hall, 2011.

STINO6 Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: Chapman&Hall/
CRC Press, 2006.
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Recommended Web Sites:

* AES home page: NIST’s page on AES. Contains the standard plus a number of other
relevant documents.

¢ AES Lounge: Contains a comprehensive bibliography of documents and papers on
AES with access to electronic copies.

e Block Cipher Modes of Operation: NIST page with full information on NIST-approved
modes of operation.

2.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Advanced Encryption Cryptography keystream
Standard (AES) Data Encryption Standard link encryption

block cipher (DES) plaintext

brute-force attack decryption session key

cipher block chaining (CBC) electronic codebook (ECB) stream cipher
mode mode subkey

cipher feedback (CFB) mode encryption symmetric encryption

ciphertext end-to-end encryption triple DES (3DES)

counter mode (CTR) Feistel cipher

cryptanalysis key distribution

Review Questions

2.1 What are the essential ingredients of a symmetric cipher?

2.2 What are the two basic functions used in encryption algorithms?

2.3 How many keys are required for two people to communicate via a symmetric
cipher?

2.4 What is the difference between a block cipher and a stream cipher?

2.5 What are the two general approaches to attacking a cipher?

2.6 Why do some block cipher modes of operation only use encryption while others use
both encryption and decryption?

2.7  What s triple encryption?
2.8  Why is the middle portion of 3DES a decryption rather than an encryption?

Problems

2.1 This problem uses a real-world example of a symmetric cipher, from an old U.S.
Special Forces manual (public domain). The document, filename SpecialForces.pdf, is
available at this book’s Web site.
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a. Using the two keys (memory words) cryptographic and network security, encrypt
the following message:

Be at the third pillar from the left outside the lyceum theatre tonight at
seven. If you are distrustful bring two friends.

Make reasonable assumptions about how to treat redundant letters and
excess letters in the memory words and how to treat spaces and punctuation.
Indicate what your assumptions are. Note: The message is from the Sherlock
Holmes novel, The Sign of Four.

b. Decrypt the ciphertext. Show your work.

c. Comment on when it would be appropriate to use this technique and what its
advantages are.

Consider a very simple symmetric block encryption algorithm in which 32-bits blocks

of plaintext are encrypted using a 64-bit key. Encryption is defined as

C=(P@K)HK,

where C = ciphertext, K = secret key, Ky = leftmost 64 bits of K, K| = rightmost
64 bits of K, @ = bitwise exclusive OR, and [+] is addition mod 264,
a. Show the decryption equation. That is, show the equation for P as a function of C,
K(), and Kl-
b. Suppose and adversary has access to two sets of plaintexts and their correspond-
ing ciphertexts and wishes to determine K. We have the two equations:

C=(P@K)HKy;;C' = (P' @ Ko) H Ky

First, derive an equation in one unknown (e.g., Ky). Is it possible to proceed fur-
ther to solve for K;?
Perhaps the simplest “serious” symmetric block encryption algorithm is the Tiny
Encryption Algorithm (TEA). TEA operates on 64-bit blocks of plaintext using a
128-bit key. The plaintext is divided into two 32-bit blocks (L, Ry), and the key is
divided into four 32-bit blocks (K, K1, K>, K3). Encryption involves repeated applica-
tion of a pair of rounds, defined as follows for rounds i and i+1:

L;=R;i4
R; = L; 1l F(R;—1, Ky, K1, 6;)
Liy1 = R;

Riy1 = LiH F(R;, K2, K3, 6;41)

where F is defined as
F(M,K;, Ky, 6) = (M <<4HHK) (M >>5HK) ®MH )

and where the logical shift of x by y bits is denoted by x <<y, the logical right shift of

x by y bits is denoted by x >> y, and §; is a sequence of predetermined constants.

a. Comment on the significance and benefit of using the sequence of constants.

b. Illustrate the operation of TEA using a block diagram or flow chart type of
depiction.

c. If only one pair of rounds is used, then the ciphertext consists of the 64-bit
block (L5, R;). For this case, express the decryption algorithm in terms of
equations.

d. Repeat part (c) using an illustration similar to that used for part (b).

Show that Feistel decryption is the inverse of Feistel encryption.

Consider a Feistel cipher composed of 16 rounds with block length 128 bits and key
length 128 bits. Suppose that, for a given k, the key scheduling algorithm determines
values for the first eight round keys, k1, ky, . . ., kg, and then sets

ko = kg, k19 = k7,k11 = ke, . . ., kig = k1
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2.6

2.7

2.8

2.9

2.10

Suppose you have a ciphertext c. Explain how, with access to an encryption oracle,
you can decrypt ¢ and determine m using just a single oracle query. This shows that
such a cipher is vulnerable to a chosen plaintext attack. (An encryption oracle can
be thought of as a device that, when given a plaintext, returns the corresponding
ciphertext. The internal details of the device are not known to you, and you cannot
break open the device. You can only gain information from the oracle by making
queries to it and observing its responses.)

For any block cipher, the fact that it is a nonlinear function is crucial to its security.
To see this, suppose that we have a linear block cipher EL that encrypts 128-bit
blocks of plaintext into 128-bit blocks of ciphertext. Let EL(k, m) denote the
encryption of a 128-bit message m under a key k (the actual bit length of k is irrel-
evant). Thus,

EL(k, [m; ® my])= EL(k,my) @ EL(k, m;) for all 128-bit patterns my, m,

Describe how, with 128 chosen ciphertexts, an adversary can decrypt any ciphertext
without knowledge of the secret key k. (A “chosen ciphertext” means that an adver-
sary has the ability to choose a ciphertext and then obtain its decryption. Here, you
have 128 plaintext—ciphertext pairs to work with, and you have the ability to chose
the value of the ciphertexts.)

Suppose you have a true random bit generator where each bit in the generated
stream has the same probability of being a 0 or 1 as any other bit in the stream and
that the bits are not correlated; that is, the bits are generated from identical indepen-
dent distribution. However, the bit stream is biased. The probability of a 1is 0.5 + o
and the probability of a 0 is 0.5 — 3, where 0 < § < 0.5. A simple deskewing algorithm
is as follows: Examine the bit stream as a sequence of non-overlapping pairs. Discard
all 00 and 11 pairs. Replace each 01 pair with 0 and each 10 pair with 1.

What is the probability of occurrence of each pair in the original sequence?
What is the probability of occurrence of 0 and 1 in the modified sequence?

What is the expected number of input bits to produce x output bits?

Suppose that the algorithm uses overlapping successive bit pairs instead of
nonoverlapping successive bit pairs. That is, the first output bit is based on input
bits 1 and 2, the second output bit is based on input bits 2 and 3, and so on. What
can you say about the output bit stream?

o FE

Another approach to deskewing is to consider the bit stream as a sequence of

non-overlapping groups of n bits each and output the parity of each group. That is,

if a group contains an odd number of ones, the output is 1; otherwise the output

is 0.

a. Express this operation in terms of a basic Boolean function.

b. Assume, as in the Problem 2.7, that the probability of a 1 is 0.5 + 6. If each group
consists of 2 bits, what is the probability of an output of 1?

c. If each group consists of 4 bits, what is the probability of an output of 1?

d. Generalize the result to find the probability of an output of 1 for input groups of
n bits.

What RC4 key value will leave S unchanged during initialization? That is, after the
initial permutation of S, the entries of S will be equal to the values from 0 through 255
in ascending order.

RC4 has a secret internal state which is a permutation of all the possible values of the

vector S and the two indices i and j.

a. Using a straightforward scheme to store the internal state, how many bits are
used?

b. Suppose we think of it from the point of view of how much information is repre-
sented by the state. In that case, we need to determine how may different states
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there are, then take the log to the base 2 to find out how many bits of information
this represents. Using this approach, how many bits would be needed to represent
the state?

Alice and Bob agree to communicate privately via e-mail using a scheme based on
RC4, but they want to avoid using a new secret key for each transmission. Alice and
Bob privately agree on a 128-bit key k. To encrypt a message m consisting of a string
of bits, the following procedure is used.

Choose a random 80-bit value v

Generate the ciphertext c = RC4(v || k) @ m

Send the bit string (v | ¢)

Suppose Alice uses this procedure to send a message m to Bob. Describe how Bob
can recover the message m from (v || ¢) using k.

If an adversary observes several values (v{ || ¢1), (v2| ¢2), . . . transmitted between
Alice and Bob, how can he/she determine when the same key stream has been
used to encrypt two messages?

.

4

With the ECB mode, if there is an error in a block of the transmitted ciphertext, only

the corresponding plaintext block is affected. However, in the CBC mode, this error

propagates. For example, an error in the transmitted C; (Figure 2.10) obviously cor-

rupts P; and P,.

a. Are any blocks beyond P, affected?

b. Suppose that there is a bit error in the source version of P;. Through how
many ciphertext blocks is this error propagated? What is the effect at the
receiver?

Is it possible to perform encryption operations in parallel on multiple blocks of plain-
text in CBC mode? How about decryption?

Suppose an error occurs in a block of ciphertext on transmission using CBC. What
effect is produced on the recovered plaintext blocks?

CBC-Pad is a block cipher mode of operation used in the RCS5 block cipher, but it
could be used in any block cipher. CBC-Pad handles plaintext of any length. The
ciphertext is longer than the plaintext by at most the size of a single block.
Padding is used to assure that the plaintext input is a multiple of the block length.
It is assumed that the original plaintext is an integer number of bytes. This plain-
text is padded at the end by from 1 to bb bytes, where bb equals the block size in
bytes. The pad bytes are all the same and set to a byte that represents the number
of bytes of padding. For example, if there are 8 bytes of padding, each byte has the
bit pattern 00001000. Why not allow zero bytes of padding? That is, if the orig-
inal plaintext is an integer multiple of the block size, why not refrain from
padding?

Padding may not always be appropriate. For example, one might wish to store the
encrypted data in the same memory buffer that originally contained the plaintext. In
that case, the ciphertext must be the same length as the original plaintext. A mode for
that purpose is the ciphertext stealing (CTS) mode. Figure 2.13a shows an implemen-
tation of this mode.

a. Explain how it works.

b. Describe how to decrypt C,,_; and C,,.

Figure 2.13b shows an alternative to CTS for producing ciphertext of equal length to
the plaintext when the plaintext is not an integer multiple of the block size.

a. Explain the algorithm.

b. Explain why CTS is preferable to this approach illustrated in Figure 2.13b.

If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode,
how far does the error propagate?
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Figure 2.13 Block Cipher Modes for Plaintext not a Multiple of Block Size



